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3. The Fundamental Group of a Topological Space (continued)

3.4. The Fundamental Group of the Circle

Proposition 3.6

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let γ : [a, b]→ S1 be a continuous map into S1 defined on a
closed bounded interval [a, b]. Then there exists a continuous
real-valued function γ̃ : [a, b]→ R on the interval [a, b] with the
property that

(cos 2πγ̃(t), sin 2πγ̃(t)) = γ(t)

for all t ∈ [a, b].



3. The Fundamental Group of a Topological Space (continued)

Proof
Let γ(t) =

(
γ1(t), γ2(t)

)
for all t ∈ [a, b] and let η : [a, b]→ C be

the continuous map into the complex plane defined such that
η(t) = γ1(t) + iγ2(t) for all t ∈ [a, b], where i2 = −1. Now
|η(t)| = 1 for all t ∈ [a, b]. It follows from the path-lifting property
of the exponential map (Theorem 2.5) that there exists a
continuous map η̃ : [a, b]→ C with the property that
exp(η̃(t)) = η(t) for all t ∈ [a, b]. Moreover Re[η̃(t)] = 0 for all
t ∈ [a, b] (where Re[η̃(t)] denotes the real part of η̃(t)), because
|η(t)| = 1 for all t ∈ [a, b]. Therefore there exists a continuous
map γ̃ : [a, b]→ R such that η̃(t) = 2πi γ̃(t) for all t ∈ [a, b].
Then

cos 2πγ̃(t) + i sin 2πγ̃(t) = exp(2πi γ̃(t)) = exp(η̃(t))

= η(t) = γ1(t) + i γ2(t)

for all t ∈ [a, b]. The result follows.
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Let
S1 = {(x , y) ∈ R2 : x2 + y2 = 1}.

and let p : R→ S1 be defined so that p(t) = (cos 2πt, sin 2πt) for
all t ∈ R. This function p has the following periodicity property:

real numbers s and t satisfy p(s) = p(t) if and only if
s − t is an integer.

It follows from Proposition 3.6 that, given any loop γ : [0, 1]→ S1

in the circle S1, there exists a continuous real-valued function
γ̃ : [0, 1]→ R with the property that p ◦ γ̃ = γ. Then
p(γ̃(1)) = p(γ̃(0)). It follows from the periodicity property of the
function p that γ̃(1)− γ̃(0) is an integer. We now that the value
of this integer is determined by the loop γ, and does not depend
on the choice of function γ̃, provided that p ◦ γ̃ = γ.
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If η : [0, 1]→ R is a continuous function with the property that
p ◦ η = γ then p ◦ η = p ◦ γ̃ and therefore

η(t)− γ̃(t) ∈ Z

for all t ∈ [0, 1]. But η(t)− γ̃(t) is a continuous function of t on
[0, 1], and the connectedness of [0, 1] ensures that every
continuous integer-valued function on [0, 1] is constant
(Corollary 1.58). It follows that there exists some integer m with
the property that η(t) = γ̃(t) + m for all t ∈ [0, 1], where the
value of m is independent of t. But then
η(1)− η(0) = γ̃(1)− γ̃(0). It follows that the loop γ determines a
well-defined integer n(γ) characterized by the property that
n(γ) = γ̃(1)− γ̃(0) for all continuous real-valued functions
γ̃ : [0, 1]→ R on [0, 1] that satisfy p ◦ γ̃ = γ.
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Definition

Let γ : [0, 1]→ S1 be a loop in the circle S1, where

S1 = {(x , y) ∈ R2 : x2 + y2 = 1}.

The winding number n(γ) of γ is defined to be unique integer
characterized by the property that

n(γ) = γ̃(1)− γ̃(0)

for all continuous functions γ̃ : [0, 1]→ R that satisfy

(cos 2πγ̃(t), sin 2πγ̃(t)) = γ(t)

for all t ∈ [0, 1].
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Proposition 3.7

Let
S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

let H : [0, 1]× [0, 1]→ S1 be a continuous map that satisfies
H(0, τ) = H(1, τ) for all τ ∈ [0, 1]. Also, for each τ ∈ [0, 1], let
n(γτ ) be the winding number of the loop γτ in S1 defined such
that γτ (t) = H(t, τ) for all t ∈ [0, 1]. Then n(γ0) = n(γ1).
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Proof
Let G = T ◦ H, where T : R2 → C is defined so that
T (x , y) = x + iy for all real numbers x and y . Then
G (t, τ) = T ◦ γτ (t) for all t ∈ [0, 1] and τ ∈ [0, 1]. Moreover
n(γτ ) = n(T ◦ γτ , 0) for all τ ∈ [0, 1], where n(T ◦ γτ , 0) denotes
the winding number of the closed curve T ◦ γτ around zero. It
therefore follows from Proposition 2.9 that

n(γ0) = n(T ◦ γ0, 0) = n(T ◦ γ1, 0) = n(γ1),

as required.
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Corollary 3.8

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Let α and β be loops in S1 based at b.
Suppose that α ' β rel {0, 1}. Then n(α) = n(β), where n(α) and
n(β) denote the winding numbers of the loops α and β
respectively.

Proof
The loops α and β satisfy α ' β rel {0, 1} if and only if there
exists a homotopy H : [0, 1]× [0, 1]→ S1 with the following
properties: H(t, 0) = α(t) and H(t, 1) = β(t) for all t ∈ [0, 1];
H(0, τ) = H(1, τ) = b for all τ ∈ [0, 1]. The result therefore
follows directly from Proposition 3.7.



3. The Fundamental Group of a Topological Space (continued)

Theorem 3.9

Let S1 be the unit circle in the Euclidean plane, defined so that

S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

and let b be a point of S1. Then the function sending each loop γ
in S1 based at b to its winding number n(γ) induces an
isomorphism from the fundamental group π1(S1,b) of the circle S1

to the group Z of integers.



3. The Fundamental Group of a Topological Space (continued)

Proof
Let p : R→ S1 denote the function from R to S1 defined so that

p(t) = (cos2πt, sin 2πt)

for all real numbers t. Also, for each loop γ : [0, 1]→ S1 in S1

based at b let [γ] denote the element of the fundamental group
π1(S1,b) determined by γ, and let n(γ) denote the winding
number of γ. Every element of π1(S1,b) is the based homotopy
class [γ] of some loop γ in S1 based at b. If γ̃ : [0, 1]→ R is a
real-valued function for which p ◦ γ̃ = γ then n(γ) = γ̃(1)− γ̃(0).

Let α and β be loops in S1 based at b. Suppose that [α] = [β].
Then α ' β rel {0, 1}. It then follows from Corollary 3.8 that
n(α) = n(β). It follows from this that there is a well-defined
function λ : π1(S1,b)→ Z characterized by the property that
λ([γ]) = n(γ) for all loops γ in S1 based at b.
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Next we show that the function λ : π1(S1,b)→ Z is a
homomorphism. Let α : [0, 1]→ S1 and β : [0, 1]→ S1 be loops in
S1 based at b. Then there exists a continuous real-valued function
η : [0, 1]→ R with the property that

p(η(t)) =

{
α(2t) if 0 ≤ t ≤ 1

2 ,
β(2t − 1) if 1

2 ≤ t ≤ 1,

where p(t) = (cos 2πt, sin 2πt) for all t ∈ R (see Proposition 3.6).
Then α(t) = p(η(12 t)) for all t ∈ [0, 1]. It follows from the
definition of winding numbers that n(α) = η(12)− η(0). Also
β(t) = p(η(12(t + 1))) for all t ∈ [0, 1], and therefore
n(β) = η(1)− η(12). It follows that

n(α) + n(β) = η(1)− η(0) = n(p ◦ η) = n(α . β),

where α . β is the concatenation of the loops α and β. It follows
that
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λ([α]) + λ([β]) = n(α) + n(β) = n(α . β) = λ([α . β]) = λ([α][β]).

We conclude that λ : π1(S1,b)→ Z is a homomorphism.
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Next we show that λ : π1(S1,b)→ Z is injective. Let α and β be
loops in S1 for which n(α) = n(β). Then there exist real-valued
functions α̃ : [0, 1]→ R and β̃ : [0, 1]→ R for which α = p ◦ α̃ and
β = p ◦ β̃ (Proposition 3.6). Moreover

α̃(1)− α̃(0) = n(α) = n(β) = β̃(1)− β̃(0).

Also p(α̃(0)) = b = p(β̃(0)), and therefore there exists some
integer m for which β̃(0) = α̃(0) + m. Then

β̃(1) = β̃(1)− β̃(0) + α̃(0) + m = α̃(1) + m.
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Let
F (t, τ) = (1− τ)α̃(t) + τ(β̃(t)−m).

Then F (t, 0) = α̃(t) and F (t, 1) = β̃(t)−m for all t ∈ [0, 1]. Also
F (0, τ) = α̃(0) and F (1, τ) = α̃(1) for all τ ∈ [0, 1]. Let
H : [0, 1]× [0, 1]→ S1 be defined so that H(t, τ) = p(F (t, τ)) for
all t ∈ [0, 1] and τ ∈ [0, 1]. Then H(t, 0) = α(t) and
H(t, 1) = β(t) for all t ∈ [0, 1]. Also H(0, τ) = H(1, τ) = b for all
τ ∈ [0, 1]. It follows that α ' β rel {0, 1} and therefore [α] = [β]
in π1(X ,b). We conclude therefore that λ : π1(S1,b)→ Z is
injective.
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Let m be an integer, let t0 be a real number for which p(t0) = b,
and let γ(t) = p(t0 + mt) for all t ∈ [0, 1]. Then γ : [0, 1]→ S1 is
a loop in S1 based at b, and λ([γ]) = n(γ) = m. We conclude
that λ : π1(S1,b)→ Z is surjective. We have now shown that the
function λ is a homomorphism that is both injective and surjective.
It follows that λ : π1(S1,b)→ Z is an isomorphism. This
completes the proof.
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Proposition 3.10

Let X = R2 \ {(0, 0)}. Then π1(X , (1, 0)) ∼= Z.

Proof
Let

S1 = {(x , y) ∈ R2 : x2 + y2 = 1,

let i : S1 → X be the inclusion map, and let r : X → S1 be the
radial projection map, defined such that

r(x , y) =

(
x√

x2 + y2
,

y√
x2 + y2

)

for all (x , y) ∈ X . Now the composition map r ◦ i is the identity
map of S1. Let
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u(x , y , τ) =
1− τ√
x2 + y2

+ τ

for all (x , y) ∈ X and τ ∈ [0, 1]. Then the function
F : X × [0, 1]→ X that sends ((x , y), τ) ∈ X × [0, 1] to
(u(x , y , τ)x , u(x , y , τ)y) is a homotopy between the composition
map i ◦ r and the identity map of the punctured plane X .
Moreover F ((x , y), τ) = (x , y) for all (x , y) ∈ S1 and τ ∈ [0, 1].

Let γ : [0, 1]→ X be a loop in X based at (1, 0) and let
H : [0, 1]× [0, 1]→ X be defined so that H(t, τ) = F (γ(t), τ) for
all t ∈ [0, 1] and τ ∈ [0, 1]. Then H(t, 0) = r(γ(t)) and
H(t, 1) = γ(t) for all t ∈ [0, 1], and H(0, τ) = H(1, τ) = (1, 0) for
all τ ∈ [0, 1], and therefore i ◦ r ◦ γ ' γ rel {0, 1}.
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Now the continuous maps i : S1 → X and r : X → S1 induce
well-defined homomorphisms i# : π1(S1, (1, 0))→ π1(X , (1, 0))
and r# : π1(X , (1, 0))→ π1(S1, (1, 0)), where i#[η] = [i ◦ η] for all
loops η in S1 based at (1, 0) and r#[γ] = [r ◦ γ] for all loops γ in
X based at (1, 0). Moreover

i#(r#([γ]) = i#([r ◦ γ]) = [i ◦ r ◦ γ] = [γ]

for all loops γ in X based at (1, 0), and

r#(i#([η])r#[i ◦ η] = [r ◦ i ◦ η] = [η]

for all loops η in S1 based at (1, 0). It follows that the
homomorphism i# : π1(S1, (1, 0))→ π1(X , (1, 0)) is an
isomorphism whose inverse is the homomorphism
r# : π1(X , (1, 0))→ π1(S1, (1, 0)), and therefore

π1(X , (1, 0)) ∼= π1(S1, (1, 0)) ∼= Z,

as required.
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Example
Let D be the closed unit disk in R2 and let ∂D be its boundary
circle, where

D2 = {(x , y) ∈ R2 : x2 + y2 ≤ 1},
∂D2 = S1 = {(x , y) ∈ R2 : x2 + y2 = 1},

let i : ∂D → D be the inclusion map, and let b = (1, 0). Suppose
there were to exist a continuous map r : D → ∂D with the property
that r(x) = x for all x ∈ ∂D. Then r ◦ i : ∂D → ∂D would be the
identity map of the unit circle ∂D. It would then follow that
r# ◦ i# would be the identity isomorphism of π1(∂D,b), where
i# : π1(∂D,b)→ π1(D, ) and r# : π1(D,b)→ π1(∂D, ) denote the
homomorphisms of fundamental groups induced by i : ∂D → D
and r : D → ∂D respectively.
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But π1(D,b) is the trivial group, because D is a convex set in R2,
and π1(∂D,b) ∼= Z (Theorem 3.9). It follows that the identity
homomorphism of π1(D,b) cannot be expressed as a composition
of two homomorphisms θ ◦ ϕ where θ is a homomorphism from
π1(∂D,b) to π1(D,b) and ϕ is a homomorphism from π1(D,b) to
π1(∂D,b). Therefore there cannot exist any continous map
r : D → ∂D with the property that r(x) = x for all x ∈ ∂D. This
result has already been established (see Corollary 2.15). Moreover
the result is used to establish the Brouwer Fixed Point Theorem in
the two-dimensional case (Theorem 2.16) which ensures that every
continuous map from the two-dimensional closed disk D2 to itself
has a fixed point.
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