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3. The Fundamental Group of a Topological Space (continued)

3.4. The Fundamental Group of the Circle

Proposition 3.6
Let S* be the unit circle in the Euclidean plane, defined so that
S'={(xy) €R2 X+ =1},

and let y: [a, b] — S be a continuous map into S* defined on a
closed bounded interval [a, b]. Then there exists a continuous
real-valued function % [a, b] — R on the interval [a, b] with the
property that

(cos27mq(t), sin2w3(t)) = ~(t)

for all t € [a, b].
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Proof

Let v(t) = (71(t),72(t)) for all t € [a, b] and let n: [a, b] — C be
the continuous map into the complex plane defined such that

n(t) = v1(t) + iva(t) for all t € [a, b], where 2 = —1. Now

[n(t)] =1 for all t € [a, b]. It follows from the path-lifting property
of the exponential map (Theorem 2.5) that there exists a
continuous map 7j: [a, b] — C with the property that

exp(7j(t)) = n(t) for all t € [a, b]. Moreover Re[7j(t)] = 0 for all

t € [a, b] (where Re[7j(t)] denotes the real part of 7j(t)), because
[n(t)| =1 for all t € [a, b]. Therefore there exists a continuous
map 7: [a, b] — R such that 7j(t) = 2wi§(t) for all t € [a, b].
Then

cos2my(t) + i sin2w3(t) = exp(2miF(t)) = exp(7i(t))
= n(t) = n(t) + ir2(t)

for all t € [a, b]. The result follows. |}
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Let
St={(x,y) eR*: x> 4 y*> = 1}.

and let p: R — St be defined so that p(t) = (cos2nt, sin2xt) for
all t € R. This function p has the following periodicity property:

real numbers s and t satisfy p(s) = p(t) if and only if
s — t is an integer.

It follows from Proposition 3.6 that, given any loop 7: [0,1] — S*
in the circle S, there exists a continuous real-valued function
4:[0,1] — R with the property that po4 =~. Then

p(%7(1)) = p(7(0)). It follows from the periodicity property of the
function p that 4(1) — 5(0) is an integer. We now that the value
of this integer is determined by the loop ~, and does not depend
on the choice of function #, provided that po 5 = ~.
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If n: [0,1] — R is a continuous function with the property that
pomn =+ then pon = po# and therefore

n(t) —5(t) € Z

for all t € [0,1]. But n(t) — 4(t) is a continuous function of ¢ on
[0, 1], and the connectedness of [0, 1] ensures that every
continuous integer-valued function on [0, 1] is constant

(Corollary 1.58). It follows that there exists some integer m with
the property that 7(t) = 4(t) + m for all t € [0, 1], where the
value of m is independent of t. But then

n(1) —n(0) = (1) — 5(0). It follows that the loop ~ determines a
well-defined integer n(~y) characterized by the property that

n(v) = 4(1) — #(0) for all continuous real-valued functions
7:10,1] — R on [0, 1] that satisfy po 4 = .
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Definition

Let v: [0,1] — S* be a loop in the circle S*, where
St ={(x,y) e R*: x> + y?> = 1}.

The winding number n(~y) of  is defined to be unique integer
characterized by the property that

n(y) =4(1) —4(0)
for all continuous functions 7: [0, 1] — R that satisfy

(cos2m9(t), sin 2w3(t)) = ~(t)

for all t € [0, 1].
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Proposition 3.7

Let

St ={(x,y) e R?: x> 4 y? =1},
let H: [0,1] x [0,1] — S* be a continuous map that satisfies
H(0,7) = H(1,7) for all T € [0,1]. Also, for each T € [0, 1], let

n(v;) be the winding number of the loop v, in S' defined such
that v,(t) = H(t, ) for all t € [0,1]. Then n(~o) = n(y1).
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Proof

Let G = T o H, where T: R? — C is defined so that

T(x,y) = x + iy for all real numbers x and y. Then

G(t,7) = T o~,(t) for all t € [0,1] and 7 € [0, 1]. Moreover
n(y-) = n(T o~,,0) for all 7 € [0,1], where n(T o~;,0) denotes
the winding number of the closed curve T o+, around zero. It
therefore follows from Proposition 2.9 that

n(v0) = n(T ©70,0) = n(T ov1,0) = n(71),

as required. |}
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Corollary 3.8

Let ST be the unit circle in the Euclidean plane, defined so that
St={(xy) eR?:x*+y* =1},

and let b be a point of S1. Let o and (3 be loops in S based at b.
Suppose that a ~ [ rel {0,1}. Then n(a)) = n(3), where n(a) and
n(B) denote the winding numbers of the loops o and 3
respectively.

Proof

The loops « and 3 satisfy a ~ (3 rel {0, 1} if and only if there
exists a homotopy H: [0,1] x [0,1] — S with the following
properties: H(t,0) = «(t) and H(t,1) = B(t) for all t € [0, 1];
H(0,7) = H(1,7) = b for all 7 € [0,1]. The result therefore
follows directly from Proposition 3.7. |}
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Theorem 3.9

Let S be the unit circle in the Euclidean plane, defined so that
S'={(x,y) eR?: x>+ y* =1},

and let b be a point of S'. Then the function sending each loop
in S' based at b to its winding number n(~y) induces an
isomorphism from the fundamental group 1(S*,b) of the circle S*
to the group Z of integers.

<
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Proof
Let p: R — S! denote the function from R to S* defined so that

p(t) = (cos2wt, sin 2mt)

for all real numbers t. Also, for each loop v: [0,1] — St in S?
based at b let [y] denote the element of the fundamental group
711(S, b) determined by ~, and let n(v) denote the winding
number of . Every element of 71(S?, b) is the based homotopy
class [y] of some loop 7 in S! based at b. If 5: [0,1] = R is a
real-valued function for which p o 4 = then n(y) = 5(1) — #(0).

Let « and 3 be loops in St based at b. Suppose that [a] = [A].
Then a ~ B rel {0,1}. It then follows from Corollary 3.8 that
n(a) = n(B). It follows from this that there is a well-defined
function \: m1(S!,b) — Z characterized by the property that
A([7]) = n(7) for all loops 7 in S based at b.
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Next we show that the function A: m1(S',b) — Z is a
homomorphism. Let «: [0,1] — St and 3: [0,1] — S* be loops in
S! based at b. Then there exists a continuous real-valued function
n: [0,1] — R with the property that

if0<t<3,
P(n(t)):{ﬁ(zt_l) f%g §:2l

where p(t) = (cos2rt,sin27t) for all t € R (see Proposition 3.6).
Then a(t) = p(n(5t)) for all t € [0,1]. It follows from the
definition of winding numbers that n(a) = n(%) — n(0). Also

B(t) = p(n(3(t +1))) for all t € [0,1], and therefore

n(B8) = n(1) — n(3). It follows that

n(a) + n(B) =n(1) —n(0) = n(pon) = n(a.pB),

where « . (8 is the concatenation of the loops o and 3. It follows
that
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A[ad) + A([8]) = n(a) + n(B) = n(a. B) = A[a . B]) = M([][5])-

We conclude that A: (S, b) — Z is a homomorphism.
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Next we show that A: 71(S%,b) — Z is injective. Let o and 3 be
loops in St for which n(a) = _n(f). Then there exist real-valued
functions &: [0,1] — R and /3: [0,1] — R for which o = p o & and
B=pof (Proposition 3.6). Moreover

&(1) — @(0) = n(a) = n(8) = 5(1) - 5(0).

Also p(&(0)) = b = p(3(0
integer m for which 5(0)

B(1) = A(1) = 5(0) + &(0) + m

)), and therefore there exists some
= &(0) + m. Then

a(1) + m.
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Let y
F(t,7) = (1—7)a(t) + 7(5(t) — m).

Then F(t,0) = a(t) and F(t,1) = (t) — m for all t € [0, 1]. Also
F(0,7) = a&(0) and F(1,7) = &(1) for all 7 € [0,1]. Let

H:[0,1] x [0,1] — S* be defined so that H(t,7) = p(F(t, 7)) for
all t € [0,1] and 7 € [0,1]. Then H(t,0) = «(t) and

H(t,1) = 5(t) for all t € [0,1]. Also H(0,7) = H(1,7) = b for all
7 € [0,1]. It follows that o ~ S rel {0, 1} and therefore [o] =[]
in 71(X,b). We conclude therefore that \: 71(St,b) — Z is
injective.
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Let m be an integer, let ty be a real number for which p(ty) = b,
and let y(t) = p(to + mt) for all t € [0,1]. Then ~: [0,1] — St is
a loop in St based at b, and A\([y]) = n(y) = m. We conclude
that \: m1(S?,b) — Z is surjective. We have now shown that the
function X is a homomorphism that is both injective and surjective.
It follows that A: 71(S,b) — Z is an isomorphism. This
completes the proof. |}
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Proposition 3.10

Let X =R?\ {(0,0)}. Then m1(X,(1,0)) = Z.

Proof
Let
S ={(x,y) e RZ: x2+y2 =1,

let i: S — X be the inclusion map, and let r: X — S! be the
radial projection map, defined such that

I’(X,_y):< . ) 4 )
VY2 ey

for all (x,y) € X. Now the composition map r o/ is the identity
map of St. Let
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1—171

u(X7 y? T) \/m
for all (x,y) € X and 7 € [0,1]. Then the function
F: X x[0,1] — X that sends ((x,y),7) € X x [0,1] to
(u(x,y,7)x,u(x,y,T)y) is a homotopy between the composition
map i o r and the identity map of the punctured plane X.
Moreover F((x,y),T) = (x,y) for all (x,y) € St and 7 € [0, 1].

Let v: [0,1] — X be a loop in X based at (1,0) and let

H: [0,1] x [0,1] — X be defined so that H(t,7) = F(vy(t),7) for
all t € [0,1] and 7 € [0,1]. Then H(t,0) = r(y(t)) and

H(t,1) = ~(t) for all t € [0,1], and H(0,7) = H(1,7) = (1,0) for
all 7 € 0,1], and therefore j o ro~ ~ ~rel {0,1}.

+7
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Now the continuous maps i: S* — X and r: X — St induce
well-defined homomorphisms iz : 71(S?, (1,0)) — m1(X, (1,0))
and ry: m1(X,(1,0)) = m1(S, (1,0)), where ix[n] = [i o n] for all
loops 7 in S* based at (1,0) and rg[y] = [r o] for all loops v in
X based at (1,0). Moreover

iw(re([v]) = ig([roq]) =lioron] =
for all loops «y in X based at (1,0), and
ru(ig () rgli ol = [roion] = [n]

for all loops 7 in S! based at (1,0). It follows that the
homomorphism iy : m1(St, (1,0)) — m1(X, (1,0)) is an
isomorphism whose inverse is the homomorphism
ry: m1(X, (1,0)) — 71(S, (1,0)), and therefore

m1(X,(1,0)) = 11 (S, (1,0) = Z,

as required. |
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Example
Let D be the closed unit disk in R? and let 9D be its boundary
circle, where

D> = {(xy)eR?:x*+y* <1},
oD? =S' = {(x,y) eR?: x> +y? =1},

let i: 9D — D be the inclusion map, and let b = (1,0). Suppose
there were to exist a continuous map r: D — 0D with the property
that r(x) = x for all x € 9D. Then roi: 9D — 0D would be the
identity map of the unit circle 9D. It would then follow that

ry o iy would be the identity isomorphism of m1(0D, b), where

iy m(0D,b) = m1(D,) and ry: w1 (D,b) — m1(0D, ) denote the
homomorphisms of fundamental groups induced by i: 0D — D
and r: D — 0D respectively.
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But m1(D, b) is the trivial group, because D is a convex set in R?,
and 7m1(0D,b) = Z (Theorem 3.9). It follows that the identity
homomorphism of 71(D, b) cannot be expressed as a composition
of two homomorphisms 6 o ¢ where 6 is a homomorphism from
7m1(0D, b) to m1(D,b) and ¢ is a homomorphism from 71(D,b) to
7m1(0D, b). Therefore there cannot exist any continous map

r: D — 9D with the property that r(x) = x for all x € 9D. This
result has already been established (see Corollary 2.15). Moreover
the result is used to establish the Brouwer Fixed Point Theorem in
the two-dimensional case (Theorem 2.16) which ensures that every
continuous map from the two-dimensional closed disk D? to itself
has a fixed point.
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