MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 15 (February 17, 2017)

David R. Wilkins

3.4. The Fundamental Group of the Circle

Proposition 3.6

Let S^1 be the unit circle in the Euclidean plane, defined so that

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

and let $\gamma: [a, b] \to S^1$ be a continuous map into S^1 defined on a closed bounded interval [a, b]. Then there exists a continuous real-valued function $\tilde{\gamma}: [a, b] \to \mathbb{R}$ on the interval [a, b] with the property that

$$(\cos 2\pi \tilde{\gamma}(t), \sin 2\pi \tilde{\gamma}(t)) = \gamma(t)$$

for all $t \in [a, b]$.

Proof

Let $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ for all $t \in [a, b]$ and let $\eta \colon [a, b] \to \mathbb{C}$ be the continuous map into the complex plane defined such that $\eta(t) = \gamma_1(t) + i\gamma_2(t)$ for all $t \in [a, b]$, where $i^2 = -1$. Now $|\eta(t)| = 1$ for all $t \in [a, b]$. It follows from the path-lifting property of the exponential map (Theorem 2.5) that there exists a continuous map $\tilde{\eta} \colon [a, b] \to \mathbb{C}$ with the property that $\exp(\tilde{\eta}(t)) = \eta(t)$ for all $t \in [a, b]$. Moreover $\operatorname{Re}[\tilde{\eta}(t)] = 0$ for all $t \in [a, b]$ (where $\operatorname{Re}[\tilde{\eta}(t)]$ denotes the real part of $\tilde{\eta}(t)$), because $|\eta(t)| = 1$ for all $t \in [a, b]$. Therefore there exists a continuous map $\tilde{\gamma}$: $[a, b] \to \mathbb{R}$ such that $\tilde{\eta}(t) = 2\pi i \tilde{\gamma}(t)$ for all $t \in [a, b]$. Then

$$\cos 2\pi \tilde{\gamma}(t) + i \sin 2\pi \tilde{\gamma}(t) = \exp(2\pi i \tilde{\gamma}(t)) = \exp(\tilde{\eta}(t))$$
$$= \eta(t) = \gamma_1(t) + i \gamma_2(t)$$

for all $t \in [a, b]$. The result follows.

Let

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

and let $p: \mathbb{R} \to S^1$ be defined so that $p(t) = (\cos 2\pi t, \sin 2\pi t)$ for all $t \in \mathbb{R}$. This function p has the following periodicity property:

real numbers s and t satisfy p(s) = p(t) if and only if s - t is an integer.

It follows from Proposition 3.6 that, given any loop $\gamma \colon [0,1] \to S^1$ in the circle S^1 , there exists a continuous real-valued function $\tilde{\gamma} \colon [0,1] \to \mathbb{R}$ with the property that $p \circ \tilde{\gamma} = \gamma$. Then $p(\tilde{\gamma}(1)) = p(\tilde{\gamma}(0))$. It follows from the periodicity property of the function p that $\tilde{\gamma}(1) - \tilde{\gamma}(0)$ is an integer. We now that the value of this integer is determined by the loop γ , and does not depend on the choice of function $\tilde{\gamma}$, provided that $p \circ \tilde{\gamma} = \gamma$. If $\eta : [0,1] \to \mathbb{R}$ is a continuous function with the property that $p \circ \eta = \gamma$ then $p \circ \eta = p \circ \tilde{\gamma}$ and therefore

$$\eta(t) - ilde{\gamma}(t) \in \mathbb{Z}$$

for all $t \in [0,1]$. But $\eta(t) - \tilde{\gamma}(t)$ is a continuous function of t on [0,1], and the connectedness of [0,1] ensures that every continuous integer-valued function on [0,1] is constant (Corollary 1.58). It follows that there exists some integer m with the property that $\eta(t) = \tilde{\gamma}(t) + m$ for all $t \in [0,1]$, where the value of m is independent of t. But then $\eta(1) - \eta(0) = \tilde{\gamma}(1) - \tilde{\gamma}(0)$. It follows that the loop γ determines a well-defined integer $n(\gamma)$ characterized by the property that $n(\gamma) = \tilde{\gamma}(1) - \tilde{\gamma}(0)$ for all continuous real-valued functions $\tilde{\gamma} : [0,1] \to \mathbb{R}$ on [0,1] that satisfy $p \circ \tilde{\gamma} = \gamma$.

Definition

Let $\gamma \colon [0,1] \to S^1$ be a loop in the circle S^1 , where

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

The winding number $n(\gamma)$ of γ is defined to be unique integer characterized by the property that

$$n(\gamma) = \tilde{\gamma}(1) - \tilde{\gamma}(0)$$

for all continuous functions $\tilde{\gamma} \colon [0,1] \to \mathbb{R}$ that satisfy

$$(\cos 2\pi \tilde{\gamma}(t), \sin 2\pi \tilde{\gamma}(t)) = \gamma(t)$$

for all $t \in [0, 1]$.

Proposition 3.7

Let

$$S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

let $H: [0,1] \times [0,1] \to S^1$ be a continuous map that satisfies $H(0,\tau) = H(1,\tau)$ for all $\tau \in [0,1]$. Also, for each $\tau \in [0,1]$, let $n(\gamma_{\tau})$ be the winding number of the loop γ_{τ} in S^1 defined such that $\gamma_{\tau}(t) = H(t,\tau)$ for all $t \in [0,1]$. Then $n(\gamma_0) = n(\gamma_1)$.

Proof

Let $G = T \circ H$, where $T : \mathbb{R}^2 \to \mathbb{C}$ is defined so that T(x, y) = x + iy for all real numbers x and y. Then $G(t, \tau) = T \circ \gamma_{\tau}(t)$ for all $t \in [0, 1]$ and $\tau \in [0, 1]$. Moreover $n(\gamma_{\tau}) = n(T \circ \gamma_{\tau}, 0)$ for all $\tau \in [0, 1]$, where $n(T \circ \gamma_{\tau}, 0)$ denotes the winding number of the closed curve $T \circ \gamma_{\tau}$ around zero. It therefore follows from Proposition 2.9 that

$$n(\gamma_0) = n(T \circ \gamma_0, 0) = n(T \circ \gamma_1, 0) = n(\gamma_1),$$

as required.

Corollary 3.8

Let S^1 be the unit circle in the Euclidean plane, defined so that

$$S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},$$

and let **b** be a point of S^1 . Let α and β be loops in S^1 based at **b**. Suppose that $\alpha \simeq \beta$ rel {0,1}. Then $n(\alpha) = n(\beta)$, where $n(\alpha)$ and $n(\beta)$ denote the winding numbers of the loops α and β respectively.

Proof

The loops α and β satisfy $\alpha \simeq \beta$ rel $\{0, 1\}$ if and only if there exists a homotopy $H: [0, 1] \times [0, 1] \rightarrow S^1$ with the following properties: $H(t, 0) = \alpha(t)$ and $H(t, 1) = \beta(t)$ for all $t \in [0, 1]$; $H(0, \tau) = H(1, \tau) = \mathbf{b}$ for all $\tau \in [0, 1]$. The result therefore follows directly from Proposition 3.7.

Theorem 3.9

Let S^1 be the unit circle in the Euclidean plane, defined so that

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},$$

and let **b** be a point of S^1 . Then the function sending each loop γ in S^1 based at **b** to its winding number $n(\gamma)$ induces an isomorphism from the fundamental group $\pi_1(S^1, \mathbf{b})$ of the circle S^1 to the group \mathbb{Z} of integers.

Proof

Let $p\colon \mathbb{R} \to S^1$ denote the function from \mathbb{R} to S^1 defined so that

$$p(t) = (\cos 2\pi t, \sin 2\pi t)$$

for all real numbers t. Also, for each loop $\gamma: [0,1] \to S^1$ in S^1 based at **b** let $[\gamma]$ denote the element of the fundamental group $\pi_1(S^1, \mathbf{b})$ determined by γ , and let $n(\gamma)$ denote the winding number of γ . Every element of $\pi_1(S^1, \mathbf{b})$ is the based homotopy class $[\gamma]$ of some loop γ in S^1 based at **b**. If $\tilde{\gamma}: [0,1] \to \mathbb{R}$ is a real-valued function for which $p \circ \tilde{\gamma} = \gamma$ then $n(\gamma) = \tilde{\gamma}(1) - \tilde{\gamma}(0)$.

Let α and β be loops in S^1 based at **b**. Suppose that $[\alpha] = [\beta]$. Then $\alpha \simeq \beta$ rel $\{0, 1\}$. It then follows from Corollary 3.8 that $n(\alpha) = n(\beta)$. It follows from this that there is a well-defined function $\lambda : \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ characterized by the property that $\lambda([\gamma]) = n(\gamma)$ for all loops γ in S^1 based at **b**. Next we show that the function $\lambda: \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is a homomorphism. Let $\alpha: [0, 1] \to S^1$ and $\beta: [0, 1] \to S^1$ be loops in S^1 based at **b**. Then there exists a continuous real-valued function $\eta: [0, 1] \to \mathbb{R}$ with the property that

$$p(\eta(t)) = \left\{ egin{array}{ll} lpha(2t) & ext{if } 0 \leq t \leq rac{1}{2}, \ eta(2t-1) & ext{if } rac{1}{2} \leq t \leq 1, \end{array}
ight.$$

where $p(t) = (\cos 2\pi t, \sin 2\pi t)$ for all $t \in \mathbb{R}$ (see Proposition 3.6). Then $\alpha(t) = p(\eta(\frac{1}{2}t))$ for all $t \in [0, 1]$. It follows from the definition of winding numbers that $n(\alpha) = \eta(\frac{1}{2}) - \eta(0)$. Also $\beta(t) = p(\eta(\frac{1}{2}(t+1)))$ for all $t \in [0, 1]$, and therefore $n(\beta) = \eta(1) - \eta(\frac{1}{2})$. It follows that

$$n(\alpha) + n(\beta) = \eta(1) - \eta(0) = n(p \circ \eta) = n(\alpha \cdot \beta),$$

where α , β is the concatenation of the loops α and $\beta.$ It follows that

$$\lambda([\alpha]) + \lambda([\beta]) = n(\alpha) + n(\beta) = n(\alpha \cdot \beta) = \lambda([\alpha \cdot \beta]) = \lambda([\alpha][\beta]).$$

We conclude that $\lambda \colon \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is a homomorphism.

Next we show that $\lambda : \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is injective. Let α and β be loops in S^1 for which $n(\alpha) = n(\beta)$. Then there exist real-valued functions $\tilde{\alpha} : [0, 1] \to \mathbb{R}$ and $\tilde{\beta} : [0, 1] \to \mathbb{R}$ for which $\alpha = p \circ \tilde{\alpha}$ and $\beta = p \circ \tilde{\beta}$ (Proposition 3.6). Moreover

$$\tilde{\alpha}(1) - \tilde{\alpha}(0) = n(\alpha) = n(\beta) = \tilde{\beta}(1) - \tilde{\beta}(0).$$

Also $p(\tilde{\alpha}(0)) = \mathbf{b} = p(\tilde{\beta}(0))$, and therefore there exists some integer *m* for which $\tilde{\beta}(0) = \tilde{\alpha}(0) + m$. Then

$$ilde{eta}(1) = ilde{eta}(1) - ilde{eta}(0) + ilde{lpha}(0) + m = ilde{lpha}(1) + m.$$

Let

$$F(t,\tau) = (1-\tau)\tilde{\alpha}(t) + \tau(\tilde{\beta}(t) - m).$$

Then $F(t,0) = \tilde{\alpha}(t)$ and $F(t,1) = \tilde{\beta}(t) - m$ for all $t \in [0,1]$. Also $F(0,\tau) = \tilde{\alpha}(0)$ and $F(1,\tau) = \tilde{\alpha}(1)$ for all $\tau \in [0,1]$. Let $H: [0,1] \times [0,1] \to S^1$ be defined so that $H(t,\tau) = p(F(t,\tau))$ for all $t \in [0,1]$ and $\tau \in [0,1]$. Then $H(t,0) = \alpha(t)$ and $H(t,1) = \beta(t)$ for all $t \in [0,1]$. Also $H(0,\tau) = H(1,\tau) = \mathbf{b}$ for all $\tau \in [0,1]$. It follows that $\alpha \simeq \beta$ rel $\{0,1\}$ and therefore $[\alpha] = [\beta]$ in $\pi_1(X, \mathbf{b})$. We conclude therefore that $\lambda: \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is injective.

Let *m* be an integer, let t_0 be a real number for which $p(t_0) = \mathbf{b}$, and let $\gamma(t) = p(t_0 + mt)$ for all $t \in [0, 1]$. Then $\gamma: [0, 1] \to S^1$ is a loop in S^1 based at **b**, and $\lambda([\gamma]) = n(\gamma) = m$. We conclude that $\lambda: \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is surjective. We have now shown that the function λ is a homomorphism that is both injective and surjective. It follows that $\lambda: \pi_1(S^1, \mathbf{b}) \to \mathbb{Z}$ is an isomorphism. This completes the proof.

Proposition 3.10

Let
$$X = \mathbb{R}^2 \setminus \{(0,0)\}$$
. Then $\pi_1(X,(1,0)) \cong \mathbb{Z}$.

Proof

Let

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1,$$

let $i: S^1 \to X$ be the inclusion map, and let $r: X \to S^1$ be the radial projection map, defined such that

$$r(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)$$

for all $(x, y) \in X$. Now the composition map $r \circ i$ is the identity map of S^1 . Let

$$u(x,y,\tau) = \frac{1-\tau}{\sqrt{x^2+y^2}} + \tau$$

for all $(x, y) \in X$ and $\tau \in [0, 1]$. Then the function $F: X \times [0,1] \to X$ that sends $((x,y),\tau) \in X \times [0,1]$ to $(u(x, y, \tau)x, u(x, y, \tau)y)$ is a homotopy between the composition map $i \circ r$ and the identity map of the punctured plane X. Moreover $F((x, y), \tau) = (x, y)$ for all $(x, y) \in S^1$ and $\tau \in [0, 1]$. Let $\gamma \colon [0,1] \to X$ be a loop in X based at (1,0) and let $H: [0,1] \times [0,1] \to X$ be defined so that $H(t,\tau) = F(\gamma(t),\tau)$ for all $t \in [0,1]$ and $\tau \in [0,1]$. Then $H(t,0) = r(\gamma(t))$ and $H(t,1) = \gamma(t)$ for all $t \in [0,1]$, and $H(0,\tau) = H(1,\tau) = (1,0)$ for all $\tau \in [0, 1]$, and therefore $i \circ r \circ \gamma \simeq \gamma$ rel $\{0, 1\}$.

3. The Fundamental Group of a Topological Space (continued)

Now the continuous maps $i: S^1 \to X$ and $r: X \to S^1$ induce well-defined homomorphisms $i_{\#}: \pi_1(S^1, (1,0)) \to \pi_1(X, (1,0))$ and $r_{\#}: \pi_1(X, (1,0)) \to \pi_1(S^1, (1,0))$, where $i_{\#}[\eta] = [i \circ \eta]$ for all loops η in S^1 based at (1,0) and $r_{\#}[\gamma] = [r \circ \gamma]$ for all loops γ in X based at (1,0). Moreover

$$i_{\#}(r_{\#}([\gamma]) = i_{\#}([r \circ \gamma]) = [i \circ r \circ \gamma] = [\gamma]$$

for all loops γ in X based at (1,0), and

$$r_{\#}(i_{\#}([\eta])r_{\#}[i\circ\eta] = [r\circ i\circ\eta] = [\eta]$$

for all loops η in S^1 based at (1,0). It follows that the homomorphism $i_{\#} : \pi_1(S^1, (1,0)) \to \pi_1(X, (1,0))$ is an isomorphism whose inverse is the homomorphism $r_{\#} : \pi_1(X, (1,0)) \to \pi_1(S^1, (1,0))$, and therefore

$$\pi_1(X,(1,0)) \cong \pi_1(S^1,(1,0)) \cong \mathbb{Z},$$

as required.

Example

Let D be the closed unit disk in \mathbb{R}^2 and let ∂D be its boundary circle, where

$$\begin{aligned} D^2 &= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}, \\ \partial D^2 &= S^1 &= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}, \end{aligned}$$

let $i: \partial D \to D$ be the inclusion map, and let $\mathbf{b} = (1, 0)$. Suppose there were to exist a continuous map $r: D \to \partial D$ with the property that $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \partial D$. Then $r \circ i: \partial D \to \partial D$ would be the identity map of the unit circle ∂D . It would then follow that $r_{\#} \circ i_{\#}$ would be the identity isomorphism of $\pi_1(\partial D, \mathbf{b})$, where $i_{\#}: \pi_1(\partial D, \mathbf{b}) \to \pi_1(D,)$ and $r_{\#}: \pi_1(D, \mathbf{b}) \to \pi_1(\partial D,)$ denote the homomorphisms of fundamental groups induced by $i: \partial D \to D$ and $r: D \to \partial D$ respectively.

But $\pi_1(D, \mathbf{b})$ is the trivial group, because D is a convex set in \mathbb{R}^2 , and $\pi_1(\partial D, \mathbf{b}) \cong \mathbb{Z}$ (Theorem 3.9). It follows that the identity homomorphism of $\pi_1(D, \mathbf{b})$ cannot be expressed as a composition of two homomorphisms $\theta \circ \varphi$ where θ is a homomorphism from $\pi_1(\partial D, \mathbf{b})$ to $\pi_1(D, \mathbf{b})$ and φ is a homomorphism from $\pi_1(D, \mathbf{b})$ to $\pi_1(\partial D, \mathbf{b})$. Therefore there cannot exist any continous map $r: D \to \partial D$ with the property that $r(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \partial D$. This result has already been established (see Corollary 2.15). Moreover the result is used to establish the Brouwer Fixed Point Theorem in the two-dimensional case (Theorem 2.16) which ensures that every continuous map from the two-dimensional closed disk D^2 to itself has a fixed point.