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2. Winding Numbers of Closed Curves in the Plane (continued)

2.4. Winding Numbers

Let γ : [a, b]→ C be a closed path in the complex plane, and let w
be a complex number that does not lie on γ. Then there exists a
path γ̃w : [a, b]→ C in the complex plane such that
exp(γ̃w (t)) = γ(t)− w for all t ∈ [a, b] (Theorem 2.5). Now the
definition of closed paths ensures that γ(b) = γ(a). Also two
complex numbers z1 and z2 satisfy exp z1 = exp z2 if and only if
(2πi)−1(z2 − z1) is an integer (Lemma 2.3). It follows that there
exists some integer n(γ,w) such that γ̃w (b) = γ̃w (a) + 2πin(γ,w).



2. Winding Numbers of Closed Curves in the Plane (continued)

Now let ϕ : [a, b]→ C be any path with the property that
exp(ϕ(t)) = γ(t)− w for all t ∈ [a, b]. Then the function sending
t ∈ [a, b] to (2πi)−1(ϕ(t)− γ̃w (t)) is a continuous integer-valued
function on the interval [a, b], and is therefore constant on this
interval (Corollary 1.58). It follows that

ϕ(b)− ϕ(a) = γ̃w (b)− γ̃w (a) = 2πin(γ,w).

It follows from this that the value of the integer n(γ,w) depends
only on the choice of γ and w , and is independent of the choice of
path γ̃w satisfying exp(γ̃w (t)) = γ(t)− w for all t ∈ [a, b].
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Definition

Let γ : [a, b]→ C be a closed path in the complex plane, and let w
be a complex number that does not lie on γ. The winding number
of γ about w is defined to be the unique integer n(γ,w) with the
property that ϕ(b)− ϕ(a) = 2πin(γ,w) for all paths ϕ : [a, b]→ C
in the complex plane that satisfy exp(ϕ(t)) = γ(t)− w for all
t ∈ [a, b].

Example
Let n be an integer, and let γn : [0, 1]→ C be the closed path in
the complex plane defined by γn(t) = exp(2πint). Then
γn(t) = exp(ϕn(t)) for all t ∈ [0, 1] where ϕn : [0, 1]→ C is the
path in the complex plane defined such that ϕn(t) = 2πint for all
t ∈ [0, 1]. It follows that n(γn, 0) = (2πi)−1(ϕn(1)− ϕn(0)) = n.



2. Winding Numbers of Closed Curves in the Plane (continued)

Given a closed path γ, and given a complex number w that does
not lie on γ, the winding number n(γ,w) measures the number of
times that the path γ winds around the point w of the complex
plane in the anticlockwise direction.

Lemma 2.6 (Dog-Walking Lemma)

Let γ1 : [a, b]→ C and γ2 : [a, b]→ C be closed paths in the
complex plane, and let w be a complex number that does not lie
on γ1. Suppose that |γ2(t)− γ1(t)| < |γ1(t)− w | for all t ∈ [a, b].
Then n(γ2,w) = n(γ1,w).
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Proof
Note that the inequality satisfied by the functions γ1 and γ2
ensures that w does not lie on the path γ2. Let γ̃1 : [0, 1]→ C be
a path in the complex plane such that exp(γ̃1(t)) = γ1(t)− w for
all t ∈ [a, b], and let

ρ(t) =
γ2(t)− w

γ1(t)− w

for all t ∈ [a, b] Then

|ρ(t)− 1| =

∣∣∣∣γ2(t)− γ1(t)

γ1(t)− w

∣∣∣∣ < 1

for all t ∈ [a, b].
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Now it follows from Lemma 2.4 that there exists a continuous
function F : {z ∈ C : |z − 1| < 1} → C with the property that
exp(F (z)) = z for all complex numbers z satisfying |z − 1| < 1.
Let γ̃2 : [0, 1]→ C be the path in the complex plane defined such
that γ̃2(t) = F (ρ(t)) + γ̃1(t) for all t ∈ [a, b]. Then

exp(γ̃2(t)) = exp(F (ρ(t))) exp(γ̃1(t)) = ρ(t)(γ1(t)− w)

= γ2(t)− w .

Now ρ(b) = ρ(a). It follows that

2πin(γ2,w) = γ̃2(b)− γ̃2(a)

= F (ρ(b)) + γ̃1(b)− F (ρ(a))− γ̃1(a)

= γ̃1(b)− γ̃1(a)

= 2πin(γ1,w),

as required.



2. Winding Numbers of Closed Curves in the Plane (continued)

Remark
Imagine that you are exercising a dog in a park. You walk along a
path close to the perimeter of the park that remains at all times at
at least 200 metres from an oak tree in the centre of the park.
Your dog runs around in your vicinity, but remains at all times
within 100 metres of you. In order to leave the park you and your
dog return to the point at which you entered the park. The
Dog-Walking Lemma then ensures that the number of times that
your dog went around the oak tree in the centre of the park is equal
to the number of times that you yourself went around that tree.



2. Winding Numbers of Closed Curves in the Plane (continued)

Example
Let γ : [0, 1]→ C be the closed curve in the complex plane defined
such that

γ(t) = 3 cos 6πt + 4i sin 6πt + (sin 16πt)(sin 8πt)

− 2iecos 8πt−1 cos 8πt

for all t ∈ [0, 1], where i2 = −1. Let

γ1(t) = 3 cos 6πt + 4i sin 6πt

for all t ∈ [0, 1]. Then |γ1(t)| ≥ 3 for all t ∈ [0, 1]. Also
| sin 16πt| ≤ 1 and 0 ≤ ecos 8πt−1 ≤ 1 for all t ∈ [0, 1], and
therefore
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∣∣(sin 16πt)(sin 8πt)− 2iecos 8πt−1 cos 8πt
∣∣2

≤ sin2 8πt + 4 cos2 8πt ≤ 4

for all t ∈ [0, 1]. It follows that

|γ(t)− γ1(t)| =
∣∣(sin 16πt)(sin 8πt)− 2iecos 8πt−1 cos 8πt

∣∣
≤ 2 < |γ1(t)|

for all t ∈ [0, 1]. The Dog-Walking Lemma (Lemma 2.6) then
ensures that n(γ, 0) = n(γ1, 0). Another application of the
Dog-Walking Lemma then ensures that n(γ1, 0) = n(γ2, 0), where

γ2(t) = 3(cos 6πt + i sin 6πt)

for all t ∈ [0, 1]. Moreover γ2 = exp ◦γ̃2 where γ̃2 : [0, 1]→ C is
the path in C defined so that γ̃2(t) = log 3 + 6πt for all t ∈ [0, 1].
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The definition of winding number ensures that

n(γ2, 0) = (2πi)−1(γ̃2(1)− γ̃2(0)) = 3.

Therefore n(γ, 0) = 3.

Lemma 2.7

Let γ : [a, b]→ C be a closed path in the complex plane and let W
be the set C \ [γ] of all points of the complex plane that do not lie
on the curve γ. Then the function that sends w ∈W to the
winding number n(γ,w) of γ about w is a continuous function on
W .
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Proof
Let w ∈W . It then follows from Lemma 2.1 that there exists
some positive real number ε0 such that |γ(t)− w | ≥ ε0 > 0 for all
t ∈ [a, b]. Let w1 be a complex number satisfying |w1 − w | < ε0,
and let γ1 : [a, b]→ C be the closed path in the complex plane
defined such that γ1(t) = γ(t) + w − w1 for all t ∈ [a, b]. Then
γ(t)− w1 = γ1(t)− w for all t ∈ [a, b], and therefore
n(γ,w1) = n(γ1,w). Also |γ1(t)− γ(t)| < |γ(t)− w | for all
t ∈ [a, b]. It follows from the Dog-Walking Lemma (Lemma 2.6)
that n(γ,w1) = n(γ1,w) = n(γ,w). This shows that the function
sending w ∈W to n(γ,w) is continuous on W , as required.
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Lemma 2.8

Let γ : [a, b]→ C be a closed path in the complex plane, and let R
be a positive real number with the property that |γ(t)| < R for all
t ∈ [a, b]. Then n(γ,w) = 0 for all complex numbers w satisfying
|w | ≥ R.

Proof
Let γ0 : [a, b]→ C be the constant path defined by γ0(t) = 0 for all
[a, b]. If |w | > R then |γ(t)− γ0(t)| = |γ(t)| < |w | = |γ0(t)− w |.
It follows from the Dog-Walking Lemma (Lemma 2.6) that
n(γ,w) = n(γ0,w) = 0, as required.
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Proposition 2.9

Let [a, b] and [c , d ] be closed bounded intervals, and, for each
s ∈ [c, d ], let γs : [a, b]→ C be a closed path in the complex
plane. Let w be a complex number that does not lie on any of the
paths γs . Suppose that the function H : [a, b]× [c , d ]→ C is
continuous, where H(t, s) = γs(t) for all t ∈ [a, b] and s ∈ [c , d ].
Then n(γc ,w) = n(γd ,w).
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Proof
The rectangle [a, b]× [c , d ] is a closed bounded subset of R2, and
is therefore compact. It follows that the continuous function on
the closed rectangle [a, b]× [c, d ] that sends a point (t, s) of the
rectangle to |H(t, s)−w |−1 is a bounded function on [a, b]× [c, d ]
(see, for example, Lemma 1.40). Therefore there exists some
positive number ε0 such that |H(t, s)− w | ≥ ε0 > 0 for all
t ∈ [a, b] and s ∈ [c , d ].
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Now any continuous complex-valued function on a closed bounded
subset of a Euclidean space is uniformly continuous. (This follows,
for example, on combining the results of Theorem 1.50 and
Theorem 1.48.) Therefore there exists some positive real number δ
such that |H(t, s)− H(t, u)| < ε0 for all t ∈ [a, b] and for all
s, u ∈ [c , d ] satisfying |s − u| < δ. Let s0, s1, . . . , sm be real
numbers chosen such that c = s0 < s1 < . . . < sm = d and
|sj − sj−1| < δ for j = 1, 2, . . . ,m. Then

|γsj (t)− γsj−1(t)| = |H(t, sj)− H(t, sj−1)|
< ε0 ≤ |H(t, sj−1)− w | = |γsj−1(t)− w |

for all t ∈ [a, b], and for each integer j between 1 and m. It
therefore follows from the Dog-Walking Lemma (Lemma 2.6) that
n(γsj−1 ,w) = n(γsj ,w) for each integer j between 1 and m. But
then n(γc ,w) = n(γd ,w), as required.
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Definition

Let D be a subset of the complex plane, and let γ : [a, b]→ D be a
closed path in D. The closed path γ is said to be contractible in D
if and only if there exists a continuous function
H : [a, b]× [0, 1]→ D and an element z0 of D such that
H(t, 0) = γ(t) and H(t, 1) = z0 for all t ∈ [a, b], and
H(a, s) = H(b, s) for all s ∈ [0, 1].

Corollary 2.10

Let D be a subset of the complex plane, and let γ : [a, b]→ D be a
closed path in D. Suppose that γ is contractible in D. Then
n(γ,w) = 0 for all w ∈ C \ D, where n(γ,w) denotes the winding
number of γ about w.
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Proof
The closed curve γ is contractible, and therefore there exists an
element z0 of D and a continuous function H : [a, b]× [0, 1]→ D
such that H(t, 0) = γ(t) and H(t, 1) = z0 for all t ∈ [a, b], and
H(a, s) = H(b, s) for all s ∈ [0, 1]. For each s ∈ [0, 1] let
γs : [a, b]→ D be the closed path in D defined such that
γs(t) = H(t, s) for all t ∈ [a, b]. Then γ1 is a constant path, and
therefore n(γ1,w) = 0 for all points w that do not lie on γ1. Let w
be an element of w ∈ C \ D. Then w does not lie on any of the
paths γs . It follows from Proposition 2.9 that

n(γ,w) = n(γ0,w) = n(γ1,w) = 0,

as required.
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2.5. Simply-Connected Subsets of the Complex Plane

Definition

A subset D of the complex plane is said to be path-connected if,
given any elements z1 and z2, there exists a path in D from z1 and
z2.

Definition

A path-connected subset D of the complex plane is said to be
simply-connected if every closed loop in D is contractible.
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Definition

An subset D of the complex plane is said to be a star-shaped if
there exists some complex number z0 in D with the property that

{(1− t)z + tz0 : t ∈ [0, 1]} ⊂ D

for all z ∈ D. (Thus an open set in the complex plane is a
star-shaped if and only if the line segment joining any point of D
to z0 is contained in D.)
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Lemma 2.11

Star-shaped subsets of the complex plane are simply-connected.

Proof
Let D be a star-shaped subset of the complex plane. Then there
exists some element z0 of D such that the line segment joining z0
to z is contained in D for all z ∈ D. The star-shaped set D is
obviously path-connected. Let γ : [a, b]→ D be a closed path in D,
and let H(t, s) = (1− s)γ(t) + sz0 for all t ∈ [a, b] and s ∈ [0, 1].
Then H(t, s) ∈ D for all t ∈ [a, b] and s ∈ [0, 1], H(t, 0) = γ(t)
and H(t, 1) = z0 for all t ∈ [a, b]. Also γ(a) = γ(b), and therefore
H(a, s) = H(b, s) for all s ∈ [0, 1]. It follows that the closed
path γ is contractible. Thus D is simply-connected.
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The following result is an immediate consequence of Corollary 2.10

Proposition 2.12

Let D be a simply-connected subset of the complex plane, and let
γ be a closed path in D. Then n(γ,w) = 0 for all w ∈ C \ D.
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