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2.1. Paths in the Complex Plane

Let D be a subset of the complex plane C. We define a path in D
to be a continuous complex-valued function γ : [a, b]→ D defined
over some closed interval [a, b]. We shall denote the range
γ([a, b]) of the function γ defining the path by [γ]. Now it follows
from the Heine-Borel Theorem (Theorem 1.37) that the closed
bounded interval [a, b] is compact. Moreover continuous functions
map compact sets to compact sets (see Lemma 1.39). It follows
that [γ] is a closed bounded subset of the complex plane.
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Lemma 2.1

Let γ : [a, b]→ C be a path in the complex plane, and let w be a
complex number that does not lie on the path γ. Then there exists
some positive real number ε0 such that |γ(t)− w | ≥ ε0 > 0 for all
t ∈ [a, b].

Proof
The closed unit interval [a, b] is a closed bounded subset of R.
Now any continuous real-valued function on a compact set is
bounded above and below on that set (Lemma 1.40). Therefore
there exists some positive real number M such that
|γ(t)− w |−1 ≤ M for all t ∈ [a, b]. Let ε0 = M−1. Then the
positive real number ε0 has the required property.
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Definition

A path γ : [a, b]→ C in the complex plane is said to be closed if
γ(a) = γ(b).

Remark
The use of the technical term closed as in the above definition has
no relation to the notions of open and closed sets.) Thus a closed
path is a path that returns to its starting point.

Let γ : [a, b]→ C be a path in the complex plane. We say that a
complex number w lies on the path γ if w ∈ [γ], where
[γ] = γ([a, b]).
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2.2. The Exponential Map

The exponential map exp: C→ C is defined on the complex plane
so that

exp(x + iy) = ex cos y + i ex sin y

for all real numbers x and y , where i2 = −1. Then

exp(x + iy) = u(x , y) + i v(x , y)

where
u(x , y) = ex cos y , v(x , y) = ex sin y

for all real numbers x and y . The functions u : R2 → R and
v : R2 → R satisfy the partial differential equations

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x



2. Winding Numbers of Closed Curves in the Plane (continued)

These partial differential equations are the Cauchy-Riemann
equations that are satisfied by the real and imaginary parts of a
function of a complex variable if and only if that function is
holomorphic.

Lemma 2.2

The exponential map exp: C→ C satisfies the identities
exp(z + w) = exp(z) exp(w) and exp(−z) = exp(z)−1 for all
complex numbers z and w .
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Proof
Let z = x + iy and w = u + iv , where x , y , u and v are real
numbers and i2 = −1. Then

exp(z + w) = ex+u (cos(y + v) + i sin(y + v))

= exeu
(
cos y cos v − sin y sin v

+ i sin y cos v + i cos y sin v
)

= exeu(cos y + i sin y)(cos v + i sin v)

= exp(z) exp(w).

Applying this result with w = −z , we see that
exp(z) exp(−z) = exp(0) = 1, and therefore exp(−z) = exp(z)−1,
as required.
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Lemma 2.3

Let z and w be complex numbers. Then exp(z) = exp(w) if and
only if w = z + 2πin for some integer n.

Proof
Suppose that w = z + 2πin for some integer n. Then

exp(w) = exp(z) exp(2πin) = exp(z)(cos 2πn + i sin 2πn)

= exp(z).

Conversely suppose that exp(w) = exp(z). Let w − z = u + iv ,
where u and v are real numbers. Then

eu(cos v + i sin v) = exp(w − z) = exp(w) exp(z)−1 = 1.

Taking the modulus of both sides, we see that eu = 1, and thus
u = 0. Also cos v = 1 and sin v = 0, and therefore v = 2πn for
some integer n. The result follows.
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Remark

The infinite series
+∞∑
n=0

zn

n!
converges absolutely for all complex

numbers z . Standard theorems concerning power series then
ensure that the infinite series converges uniformly in z over any
closed disk of positive radius about zero in the complex plane. A
standard theorem of analysis regarding Cauchy products of
absolutely convergent infinite series then ensures that(

+∞∑
n=0

zn

n!

)(
+∞∑
n=0

wn

n!

)
=

(
+∞∑
n=0

(z + w)n

n!

)

for all complex numbers z .
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It follows that if z = x + iy , where x and y are real numbers and
i2 = −1, then

+∞∑
n=0

zn

n!
=

(
+∞∑
n=0

xn

n!

)(
+∞∑
k=0

(−1)ky2k

(2k)!
+ i

+∞∑
k=0

(−1)ky2k+1

(2k + 1)!

)
= ex(cos y + i sin y)

for all real numbers x and y . Thus

exp z =
+∞∑
n=0

zn

n!

for all complex numbers z .
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Lemma 2.4

Let w be a non-zero complex number, and let

Dw ,|w | = {z ∈ C : |z − w | < |w |}.

Then there exists a continuous function Fw : Dw ,|w | → C with the
property that exp(Fw (z)) = z for all z ∈ Dw ,|w |.
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Proof
Let U = C \ {x ∈ R : x ≤ 0}, and let log : U → C be the
“principal branch” of the logarithm function, defined so that
log(re iθ) = log r + iθ for all real numbers r and θ satisfying r > 0
and π < θ < π. Then the function log : U → C is continuous, and
exp(log z) = z for all z ∈ U. Let ζ be a complex number satisfying
exp ζ = w . Then z/w ∈ U for all z ∈ Dw ,|w |. Let Fw : Dw ,|w | → C
be defined so that Fw (z) = ζ + log(z/w) for all z ∈ Dw ,|w |. Then

exp(Fw (z)) = exp(ζ) exp(log(z/w)) = w(z/w) = z

for all z ∈ D(w , |w |), as required.
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2.3. Path-Lifting with respect to the Exponential Map

Theorem 2.5

Let γ : [a, b]→ C \ {0} be a path in the set C \ {0} of non-zero
complex numbers. Then there exists a path γ̃ : [a, b]→ C in the
complex plane which satisfies exp(γ̃(t)) = γ(t) for all t ∈ [a, b].

Proof
The complex number γ(t) is non-zero for all t ∈ [a, b], and
therefore there exists some positive number ε0 such that
|γ(t)| ≥ ε0 for all t ∈ [a, b]. (Lemma 2.1). Now any continuous
complex-valued function on a closed bounded interval is uniformly
continuous. (This follows, for example, from Theorem 1.48.)
Therefore there exists some positive real number δ such that
|γ(t)− γ(s)| < ε0 for all s, t ∈ [a, b] satisfying |t − s| < δ.
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Let m be a positive integer satisfying m > |b − a|/δ, and let
tj = a + j(b − a)/m for j = 0, 1, 2, . . . ,m. Then |tj − tj−1| < δ for
j = 1, 2, . . . ,m. It follows from this that

|γ(t)− γ(tj)| < ε0 ≤ |γ(tj)|

for all t ∈ [tj−1, tj ], and thus

γ([tj−1, tj ]) ⊂ Dγ(tj ),|γ(tj )|

for j = 1, 2, . . . , n, where

Dw ,|w | = {z ∈ C : |z − w | < |w |}

for all w ∈ C.
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Now there exist continuous functions Fj : Dγ(tj ),|γ(tj )| → C with the
property that exp(Fj(z)) = z for all z ∈ Dγ(tj ),|γ(tj )| (see
Lemma 2.4). Let γ̃j(t) = Fj(γ(t)) for all t ∈ [tj−1, tj ]. Then, for
each integer j between 1 and m, the function γ̃j : [tj−1, tj ]→ C is
continuous, and is thus a path in the complex plane with the
property that exp(γ̃j(t)) = γ(t) for all t ∈ [tj−1, tj ]. Now

exp(γ̃j(tj)) = γ(tj) = exp(γ̃j+1(tj))

for each integer j between 1 and m − 1. The periodicity properties
of the exponential function (Lemma 2.3) therefore ensure that
there exist integers k1, k2, . . . , km−1 such that
γ̃j+1(tj) = γ̃j(tj) + 2πikj for j = 1, 2, . . . ,m − 1. Then
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γ̃j+1(tj)− 2πi

j∑
r=1

kr = γ̃j(tj)− 2πi

j−1∑
r=1

kr

for j = 1, 2, . . . ,m − 1. The Pasting Lemma (Lemma 1.24) then
ensures the existence of a continuous function γ̃ : [a, b]→ C
defined so that γ̃(t) = γ̃1(t) whenever t ∈ [a, t1], and

γ̃(t) = γ̃j(t)− 2πi

j−1∑
r=1

kr

whenever t ∈ [tj−1, tj ] for some integer j between 2 and m.
Moreover exp(γ̃(t)) = γ(t) for all t ∈ [a, b]. We have thus proved
the existence of a path γ̃ in the complex plane with the required
properties.
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