MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 10 (February 6, 2017)

David R. Wilkins

2. Winding Numbers of Closed Curves in the Plane

2.1. Paths in the Complex Plane

Let *D* be a subset of the complex plane \mathbb{C} . We define a *path* in *D* to be a continuous complex-valued function $\gamma : [a, b] \to D$ defined over some closed interval [a, b]. We shall denote the range $\gamma([a, b])$ of the function γ defining the path by $[\gamma]$. Now it follows from the Heine-Borel Theorem (Theorem 1.37) that the closed bounded interval [a, b] is compact. Moreover continuous functions map compact sets to compact sets (see Lemma 1.39). It follows that $[\gamma]$ is a closed bounded subset of the complex plane.

Lemma 2.1

Let $\gamma: [a, b] \to \mathbb{C}$ be a path in the complex plane, and let w be a complex number that does not lie on the path γ . Then there exists some positive real number ε_0 such that $|\gamma(t) - w| \ge \varepsilon_0 > 0$ for all $t \in [a, b]$.

Proof

The closed unit interval [a, b] is a closed bounded subset of \mathbb{R} . Now any continuous real-valued function on a compact set is bounded above and below on that set (Lemma 1.40). Therefore there exists some positive real number M such that $|\gamma(t) - w|^{-1} \leq M$ for all $t \in [a, b]$. Let $\varepsilon_0 = M^{-1}$. Then the positive real number ε_0 has the required property.

Definition

A path $\gamma : [a, b] \to \mathbb{C}$ in the complex plane is said to be *closed* if $\gamma(a) = \gamma(b)$.

Remark

The use of the technical term *closed* as in the above definition has no relation to the notions of open and closed sets.) Thus a *closed path* is a path that returns to its starting point.

Let $\gamma \colon [a, b] \to \mathbb{C}$ be a path in the complex plane. We say that a complex number *w* lies on the path γ if $w \in [\gamma]$, where $[\gamma] = \gamma([a, b])$.

2.2. The Exponential Map

The exponential map exp: $\mathbb{C} \to \mathbb{C}$ is defined on the complex plane so that

$$\exp(x+iy) = e^x \cos y + i e^x \sin y$$

for all real numbers x and y, where $i^2 = -1$. Then

$$\exp(x+iy)=u(x,y)+i\,v(x,y)$$

where

$$u(x, y) = e^x \cos y, \quad v(x, y) = e^x \sin y$$

for all real numbers x and y. The functions $u \colon \mathbb{R}^2 \to \mathbb{R}$ and $v \colon \mathbb{R}^2 \to \mathbb{R}$ satisfy the partial differential equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

These partial differential equations are the *Cauchy-Riemann* equations that are satisfied by the real and imaginary parts of a function of a complex variable if and only if that function is holomorphic.

Lemma 2.2

The exponential map $\exp: \mathbb{C} \to \mathbb{C}$ satisfies the identities $\exp(z + w) = \exp(z) \exp(w)$ and $\exp(-z) = \exp(z)^{-1}$ for all complex numbers z and w.

Proof

Let z = x + iy and w = u + iv, where x, y, u and v are real numbers and $i^2 = -1$. Then

$$exp(z + w) = e^{x+u} (cos(y + v) + i sin(y + v))$$

= $e^x e^u (cos y cos v - sin y sin v$
+ $i sin y cos v + i cos y sin v)$
= $e^x e^u (cos y + i sin y) (cos v + i sin v)$
= $exp(z) exp(w).$

Applying this result with w = -z, we see that $\exp(z) \exp(-z) = \exp(0) = 1$, and therefore $\exp(-z) = \exp(z)^{-1}$, as required.

Lemma 2.3

Let z and w be complex numbers. Then $\exp(z) = \exp(w)$ if and only if $w = z + 2\pi in$ for some integer n.

Proof

Suppose that $w = z + 2\pi i n$ for some integer *n*. Then

$$\exp(w) = \exp(z)\exp(2\pi i n) = \exp(z)(\cos 2\pi n + i \sin 2\pi n)$$
$$= \exp(z).$$

Conversely suppose that $\exp(w) = \exp(z)$. Let w - z = u + iv, where u and v are real numbers. Then

$$e^{u}(\cos v + i \sin v) = \exp(w - z) = \exp(w) \exp(z)^{-1} = 1.$$

Taking the modulus of both sides, we see that $e^u = 1$, and thus u = 0. Also $\cos v = 1$ and $\sin v = 0$, and therefore $v = 2\pi n$ for some integer *n*. The result follows.

Remark

The infinite series $\sum_{n=0}^{+\infty} \frac{z^n}{n!}$ converges absolutely for all complex numbers z. Standard theorems concerning power series then ensure that the infinite series converges uniformly in z over any closed disk of positive radius about zero in the complex plane. A standard theorem of analysis regarding Cauchy products of absolutely convergent infinite series then ensures that

$$\left(\sum_{n=0}^{+\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{+\infty} \frac{w^n}{n!}\right) = \left(\sum_{n=0}^{+\infty} \frac{(z+w)^n}{n!}\right)$$

for all complex numbers z.

It follows that if z = x + iy, where x and y are real numbers and $i^2 = -1$, then

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!}\right) \left(\sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!} + i \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!}\right)$$
$$= e^x (\cos y + i \sin y)$$

for all real numbers x and y. Thus

$$\exp z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

for all complex numbers z.

Lemma 2.4

Let w be a non-zero complex number, and let

$$D_{w,|w|} = \{z \in \mathbb{C} : |z - w| < |w|\}.$$

Then there exists a continuous function $F_w: D_{w,|w|} \to \mathbb{C}$ with the property that $\exp(F_w(z)) = z$ for all $z \in D_{w,|w|}$.

Proof

Let $U = \mathbb{C} \setminus \{x \in \mathbb{R} : x \leq 0\}$, and let $\log: U \to \mathbb{C}$ be the "principal branch" of the logarithm function, defined so that $\log(re^{i\theta}) = \log r + i\theta$ for all real numbers r and θ satisfying r > 0and $\pi < \theta < \pi$. Then the function $\log: U \to \mathbb{C}$ is continuous, and $\exp(\log z) = z$ for all $z \in U$. Let ζ be a complex number satisfying $\exp \zeta = w$. Then $z/w \in U$ for all $z \in D_{w,|w|}$. Let $F_w: D_{w,|w|} \to \mathbb{C}$ be defined so that $F_w(z) = \zeta + \log(z/w)$ for all $z \in D_{w,|w|}$. Then

$$\exp(F_w(z)) = \exp(\zeta) \exp(\log(z/w)) = w(z/w) = z$$

for all $z \in D(w, |w|)$, as required.

2.3. Path-Lifting with respect to the Exponential Map

Theorem 2.5

Let $\gamma : [a, b] \to \mathbb{C} \setminus \{0\}$ be a path in the set $\mathbb{C} \setminus \{0\}$ of non-zero complex numbers. Then there exists a path $\tilde{\gamma} : [a, b] \to \mathbb{C}$ in the complex plane which satisfies $\exp(\tilde{\gamma}(t)) = \gamma(t)$ for all $t \in [a, b]$.

Proof

The complex number $\gamma(t)$ is non-zero for all $t \in [a, b]$, and therefore there exists some positive number ε_0 such that $|\gamma(t)| \ge \varepsilon_0$ for all $t \in [a, b]$. (Lemma 2.1). Now any continuous complex-valued function on a closed bounded interval is uniformly continuous. (This follows, for example, from Theorem 1.48.) Therefore there exists some positive real number δ such that $|\gamma(t) - \gamma(s)| < \varepsilon_0$ for all $s, t \in [a, b]$ satisfying $|t - s| < \delta$. Let *m* be a positive integer satisfying $m > |b - a|/\delta$, and let $t_j = a + j(b - a)/m$ for j = 0, 1, 2, ..., m. Then $|t_j - t_{j-1}| < \delta$ for j = 1, 2, ..., m. It follows from this that

$$|\gamma(t) - \gamma(t_j)| < \varepsilon_0 \le |\gamma(t_j)|$$

for all $t \in [t_{j-1}, t_j]$, and thus

$$\gamma([t_{j-1}, t_j]) \subset D_{\gamma(t_j), |\gamma(t_j)|}$$

for j = 1, 2, ..., n, where

$$D_{w,|w|} = \{z \in \mathbb{C} : |z - w| < |w|\}$$

for all $w \in \mathbb{C}$.

Now there exist continuous functions $F_j: D_{\gamma(t_j), |\gamma(t_j)|} \to \mathbb{C}$ with the property that $\exp(F_j(z)) = z$ for all $z \in D_{\gamma(t_j), |\gamma(t_j)|}$ (see Lemma 2.4). Let $\tilde{\gamma}_j(t) = F_j(\gamma(t))$ for all $t \in [t_{j-1}, t_j]$. Then, for each integer j between 1 and m, the function $\tilde{\gamma}_j: [t_{j-1}, t_j] \to \mathbb{C}$ is continuous, and is thus a path in the complex plane with the property that $\exp(\tilde{\gamma}_j(t)) = \gamma(t)$ for all $t \in [t_{j-1}, t_j]$. Now

$$\exp(\tilde{\gamma}_j(t_j)) = \gamma(t_j) = \exp(\tilde{\gamma}_{j+1}(t_j))$$

for each integer j between 1 and m-1. The periodicity properties of the exponential function (Lemma 2.3) therefore ensure that there exist integers $k_1, k_2, \ldots, k_{m-1}$ such that $\tilde{\gamma}_{j+1}(t_j) = \tilde{\gamma}_j(t_j) + 2\pi i k_j$ for $j = 1, 2, \ldots, m-1$. Then

$$\tilde{\gamma}_{j+1}(t_j) - 2\pi i \sum_{r=1}^{j} k_r = \tilde{\gamma}_j(t_j) - 2\pi i \sum_{r=1}^{j-1} k_r$$

for j = 1, 2, ..., m - 1. The Pasting Lemma (Lemma 1.24) then ensures the existence of a continuous function $\tilde{\gamma} : [a, b] \to \mathbb{C}$ defined so that $\tilde{\gamma}(t) = \tilde{\gamma}_1(t)$ whenever $t \in [a, t_1]$, and

$$\tilde{\gamma}(t) = \tilde{\gamma}_j(t) - 2\pi i \sum_{r=1}^{j-1} k_r$$

whenever $t \in [t_{j-1}, t_j]$ for some integer j between 2 and m. Moreover $\exp(\tilde{\gamma}(t)) = \gamma(t)$ for all $t \in [a, b]$. We have thus proved the existence of a path $\tilde{\gamma}$ in the complex plane with the required properties.