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1. Results concerning Topological Spaces (continued)

1.20. Finite Cartesian Products of Compact Spaces

Theorem 1.49

A Cartesian product of a finite number of compact spaces is itself
compact.

Proof
It suffices to prove that the product of two compact topological
spaces X and Y is compact, since the general result then follows
easily by induction on the number of compact spaces in the
product.



1. Results concerning Topological Spaces (continued)

Let V be an open cover of X × Y . Then for each x ∈ X and
y ∈ Y there exists an open set Vx ,y in X × Y belonging to the
open cover V for which (x , y) ∈ Vx ,y . It then follows from the
definition of the product topology on X × Y that there exist an
open set Dx ,y in X and an open set Ex ,y in Y such that x ∈ Dx ,y ,
y ∈ Ex ,y and Dx ,y × Ex ,y ⊂ Vx ,y .

Now the compactness of the topological space Y ensures that for
each x ∈ X there exists a finite subset B(x) of Y for which⋃

y∈B(x) Ex ,y = Y . Let Wx =
⋂

y∈B(x)Dx ,y . Then Wx is the
intersection of a finite number of open sets in X , and is therefore
itself an open set in X . Moreover

Wx × Y ⊂
⋃

y∈B(x)
(Wx × Ex ,y ) ⊂

⋃
y∈B(x)

(Dx ,y × Ex ,y )

⊂
⋃

y∈B(x)
Vx ,y .



1. Results concerning Topological Spaces (continued)

It then follows from the compactness of the topological space X
that there exists a finite subset A of X for which

⋃
x∈AWx = X .

Let
C = {(x , y) : x ∈ A and y ∈ B(x)},

and, for each (x , y) ∈ C , let Vx ,y be an open set in X × Y
belonging to the open cover V for which Dx ,y × Ex ,y ⊂ Vx ,y . Now
C is a finite set, and

X × Y =
⋃

x∈A
(Wx × Y ) ⊂

⋃
x∈A

⋃
y∈B(x)

Vx ,y

=
⋃

(x ,y)∈C
Vx ,y .

Thus (Vx ,y : (x , y) ∈ C ) is an open cover of X × Y . Moreover it is
a finite subcover of the open cover V. We have thus shown that
X × Y is compact, as required.



1. Results concerning Topological Spaces (continued)

Theorem 1.50

Let K be a subset of Rn. Then K is compact if and only if K is
both closed and bounded.

Proof
Suppose that K is compact. Then K is closed, since Rn is
Hausdorff, and a compact subset of a Hausdorff space is closed (by
Corollary 1.43). For each natural number m, let Bm be the open
ball of radius m about the origin, given by
Bm = {x ∈ Rn : |x| < m}. Then {Bm : m ∈ N} is an open cover of
Rn. It follows from the compactness of K that there exist natural
numbers m1,m2, . . . ,mk such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk

.
But then K ⊂ BM , where M is the maximum of m1,m2, . . . ,mk ,
and thus K is bounded.



1. Results concerning Topological Spaces (continued)

Conversely suppose that K is both closed and bounded. Then
there exists some real number L such that K is contained within
the closed cube C given by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L, L] is compact by the Heine-Borel
Theorem (Theorem 1.37), and C is the Cartesian product of n
copies of the compact set [−L, L]. It follows from Theorem 1.49
that C is compact. But K is a closed subset of C , and a closed
subset of a compact topological space is itself compact, by
Lemma 1.38. Thus K is compact, as required.

Let K be a closed bounded subset of Rn. It follows from
Theorem 1.48 and Theorem 1.50 that any continuous function
f : K → Rk is uniformly continuous.
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