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1. Results concerning Topological Spaces (continued)

1.17. Compact Topological Spaces

Let X be a topological space, and let A be a subset of X . A
collection of subsets of X in X is said to cover A if and only if every
point of A belongs to at least one of these subsets. In particular,
an open cover of X is collection of open sets in X that covers X .

If V and W are open covers of some topological space X then W
is said to be a subcover of V if and only if every open set
belonging to W also belongs to V.

Definition

A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.



1. Results concerning Topological Spaces (continued)

Lemma 1.36

Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any
collection V of open sets in X covering A, there exists a finite
collection V1,V2, . . . ,Vr of open sets belonging to V such that
A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr .

Proof
A subset B of A is open in A (with respect to the subspace
topology on A) if and only if B = A ∩ V for some open set V in
X . The desired result therefore follows directly from the definition
of compactness.
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We now show that any closed bounded interval in the real line is
compact. This result is known as the Heine-Borel Theorem. The
proof of this theorem uses the Least Upper Bound Principle which
states that, given any non-empty set S of real numbers which is
bounded above, there exists a least upper bound (or supremum)
supS for the set S .

Theorem 1.37 (Heine-Borel Theorem in One Dimension)

Let a and b be real numbers satisfying a < b. Then the closed
bounded interval [a, b] is a compact subset of R.
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Proof
Let V be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open
sets. We must show that [a, b] is covered by finitely many of these
open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is
covered by some finite collection of open sets belonging to V, and
let s = supS . Now s ∈W for some open set W belonging to V.
Moreover W is open in R, and therefore there exists some positive
real number δ such that (s − δ, s + δ) ⊂W . Moreover s − δ is not
an upper bound for the set S , hence there exists some τ ∈ S
satisfying τ > s − δ. It follows from the definition of S that [a, τ ]
is covered by some finite collection V1,V2, . . . ,Vr of open sets
belonging to V.
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Let t ∈ [a, b] satisfy τ ≤ t < s + δ. Then

[a, t] ⊂ [a, τ ] ∪ (s − δ, s + δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W ,

and thus t ∈ S . In particular s ∈ S , and moreover s = b, since
otherwise s would not be an upper bound of the set S . Thus
b ∈ S , and therefore [a, b] is covered by a finite collection of open
sets belonging to V, as required.



1. Results concerning Topological Spaces (continued)

Lemma 1.38

Let A be a closed subset of some compact topological space X .
Then A is compact.

Proof
Let V be any collection of open sets in X covering A. On adjoining
the open set X \ A to V, we obtain an open cover of X . This open
cover of X possesses a finite subcover, since X is compact.
Moreover A is covered by the open sets in the collection V that
belong to this finite subcover. It follows from Lemma 1.36 that A
is compact, as required.



1. Results concerning Topological Spaces (continued)

Lemma 1.39

Let f : X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X . Then f (A)
is a compact subset of Y .

Proof
Let V be a collection of open sets in Y which covers f (A). Then A
is covered by the collection of all open sets of the form f −1(V ) for
some V ∈ V. It follows from the compactness of A that there
exists a finite collection V1,V2, . . . ,Vk of open sets belonging to V
such that

A ⊂ f −1(V1) ∪ f −1(V2) ∪ · · · ∪ f −1(Vk).

But then f (A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk . This shows that f (A) is
compact.
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Lemma 1.40

Let f : X → R be a continuous real-valued function on a compact
topological space X . Then f is bounded above and below on X .

Proof
Let Vj = {x ∈ X : −j < f (x) < j} for all positive integers j . For
each integer j the subset Vj of X is the preimage under the
continuous map f of the open interval (−j , j), and moreover
(−j , j) is open in R. It follows from the continuity of f that Vj is
an open set in X for all positive integers j . Moreover the compact
topological space X is covered by these open sets. It follows from
the compactness of X that there exist positive integers j1, j2, . . . , jk
such that

X = Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let N be the largest of the positive integers j1, j2, . . . , jk . Then
−N < f (x) < N for all x ∈ X . The result follows.
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Proposition 1.41

Let f : X → R be a continuous real-valued function on a compact
topological space X . Then there exist points u and v of X such
that f (u) ≤ f (x) ≤ f (v) for all x ∈ X.

Proof
The function f : X → R is bounded on X (Lemma 1.40). Let
m = inf{f (x) : x ∈ X} and M = sup{f (x) : x ∈ X}. For each
positive integer j let Vj = {x ∈ X : f (x) < M − 1/j}. Then the
set Vj is an open set in X , being the preimage of an open interval
in R under the continuous map f . If j1, j2, . . . , jk are positive
integers then

Vj1 ∪ Vj2 ∪ · · · ∪ Vjk = VN

where N is the largest of the positive integers j1, j2, . . . , jk .
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Moreover VN is a proper subset of X , because M − 1/N is not an
upper bound on the values of the function f on X . It follows that
X cannot covered by any finite collection of sets from the
collection (Vj : j ∈ N). It then follows from the compactness of X
that (Vj : j ∈ N) is not an open cover of X , and therefore there
exists v ∈ X for which f (v) = M. Applying this argument with f
replaced by −f , we conclude that there also exists u ∈ X for which
f (u) = m. Then f (u) ≤ f (x) ≤ f (v) for all x ∈ X , as
required.
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1.18. Compact Subsets of Hausdorff Spaces

Proposition 1.42

Let X be a Hausdorff topological space, and let K be a compact
subset of X . Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂W and V ∩W = ∅.

Proof
For each point y ∈ K there exist open sets Vx ,y and Wx ,y such
that x ∈ Vx ,y , y ∈Wx ,y and Vx ,y ∩Wx ,y = ∅ (since X is a
Hausdorff space). But then there exists a finite set {y1, y2, . . . , yr}
of points of K such that K is contained in
Wx ,y1 ∪Wx ,y2 ∪ · · · ∪Wx ,yr , since K is compact. Define

V = Vx ,y1 ∩Vx ,y2 ∩· · ·∩Vx ,yr , W = Wx ,y1 ∪Wx ,y2 ∪· · ·∪Wx ,yr .

Then V and W are open sets, x ∈ V , K ⊂W and V ∩W = ∅, as
required.
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Corollary 1.43

A compact subset of a Hausdorff topological space is closed.

Proof
Let K be a compact subset of a Hausdorff topological space X . It
follows immediately from Proposition 1.42 that, for each
x ∈ X \ K , there exists an open set Vx such that x ∈ Vx and
Vx ∩K = ∅. But then X \K is equal to the union of the open sets
Vx as x ranges over all points of X \K , and any set that is a union
of open sets is itself an open set. We conclude that X \ K is open,
and thus K is closed.
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Lemma 1.44

Let f : X → Y be a continuous function from a compact
topological space X to a Hausdorff space Y . Then f (K ) is closed
in Y for every closed set K in X .

Proof
If K is a closed set in X , then K is compact (Lemma 1.38), and
therefore f (K ) is compact (Lemma 1.39). But any compact subset
of a Hausdorff space is closed (Corollary 1.43). Thus f (K ) is
closed in Y , as required.
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Theorem 1.45

A continuous bijection f : X → Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof
Let g : Y → X be the inverse of the bijection f : X → Y . If U is
open in X then X \ U is closed in X , and hence f (X \ U) is closed
in Y (see Lemma 1.44). But
f (X \ U) = g−1(X \ U) = Y \ g−1(U). It follows that g−1(U) is
open in Y for every open set U in X . Therefore g : Y → X is
continuous, and thus f : X → Y is a homeomorphism.
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Proposition 1.46

A continuous surjection f : X → Y from a compact topological
space X to a Hausdorff space Y is an identification map.

Proof
Let U be a subset of Y . We claim that Y \ U = f (K ), where
K = X \ f −1(U). Clearly f (K ) ⊂ Y \ U. Also, given any
y ∈ Y \ U, there exists x ∈ X satisfying y = f (x), since
f : X → Y is surjective. Moreover x ∈ K , since f (x) 6∈ U. Thus
Y \ U ⊂ f (K ), and hence Y \ U = f (K ), as claimed.

We must show that the set U is open in Y if and only if f −1(U) is
open in X . First suppose that f −1(U) is open in X . Then K is
closed in X , and hence f (K ) is closed in Y , by Lemma 1.44. It
follows that U is open in Y . Conversely if U is open in Y then
f −1(U) is open in X , since f : X → Y is continuous. Thus the
surjection f : X → Y is an identification map.
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Example
Let S1 be the unit circle in R2, defined by
S1 = {(x , y) ∈ R2 : x2 + y2 = 1}, and let q : [0, 1]→ S1 be
defined by q(t) = (cos 2πt, sin 2πt) for all t ∈ [0, 1]. It has been
shown that the map q is an identification map. This also follows
directly from the fact that q : [0, 1]→ S1 is a continuous surjection
from the compact space [0, 1] to the Hausdorff space S1.
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1.19. The Lebesgue Lemma and Uniform Continuity

Definition

Let X be a metric space with distance function d . A subset A of X
is said to be bounded if there exists a non-negative real number K
such that d(x , y) ≤ K for all x , y ∈ A. The smallest real
number K with this property is referred to as the diameter of A,
and is denoted by diamA. (Note that diamA is the supremum of
the values of d(x , y) as x and y range over all points of A.)

Lemma 1.47 (Lebesgue Lemma)

Let (X , d) be a compact metric space and let V be an open cover
of X . Then there exists a positive real number δ such that every
subset of X whose diameter is less than δ is contained wholly
within one of the open sets belonging to the open cover V.
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Proof
Every point of X is contained in at least one of the open sets
belonging to the open cover V. It follows from this that, for each
point x of X , there exists some δx > 0 such that the open ball
B(x , 2δx) of radius 2δx about the point x is contained wholly
within one of the open sets belonging to the open cover V. But
then the collection consisting of the open balls B(x , δx) of radius
δx about the points x of X forms an open cover of the compact
space X . Therefore there exists a finite set x1, x2, . . . , xr of points
of X such that

B(x1, δ1) ∪ B(x2, δ2) ∪ · · · ∪ B(xr , δr ) = X ,

where δi = δxi for i = 1, 2, . . . , r . Let δ be the minimum of
δ1, δ2, . . . , δr . Then δ > 0.
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Suppose that A is a subset of X whose diameter is less than δ. Let
u be a point of A. Then u belongs to B(xi , δi ) for some integer i
between 1 and r . But then it follows that A ⊂ B(xi , 2δi ), since, for
each point v of A,

d(v , xi ) ≤ d(v , u) + d(u, xi ) < δ + δi ≤ 2δi .

But B(xi , 2δi ) is contained wholly within one of the open sets
belonging to the open cover V. Thus A is contained wholly within
one of the open sets belonging to V, as required.
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Let V be an open cover of a compact metric space X . A Lebesgue
number for the open cover V is a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly
within one of the open sets belonging to the open cover V. The
Lebesgue Lemma thus states that there exists a Lebesgue number
for every open cover of a compact metric space.
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Definition

Let X and Y be metric spaces with distance functions dX and dY
respectively, and let f : X → Y be a function from X to Y . The
function f is said to be uniformly continuous on X if and only if,
given ε > 0, there exists some positive real number δ such that
dY (f (x), f (x ′)) < ε for all points x and x ′ of X satisfying
dX (x , x ′) < δ. (The value of δ should be independent of both x
and x ′.)
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Theorem 1.48

Let X and Y be metric spaces. Suppose that X is compact. Then
every continuous function from X to Y is uniformly continuous.

Proof
Let dX and dY denote the distance functions for the metric spaces
X and Y respectively. Let f : X → Y be a continuous function
from X to Y . We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f (x), y) < 1
2ε}.

Note that Vy = f −1
(
BY (y , 12ε)

)
, where BY (y , 12ε) denotes the

open ball of radius 1
2ε about y in Y . Now the open ball BY (y , 12ε)

is an open set in Y , and f is continuous. Therefore Vy is open
in X for all y ∈ Y . Note that x ∈ Vf (x) for all x ∈ X .
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Now {Vy : y ∈ Y } is an open cover of the compact metric
space X . It follows from the Lebesgue Lemma (Lemma 1.47) that
there exists some positive real number δ such that every subset of
X whose diameter is less than δ is a subset of some set Vy . Let x
and x ′ be points of X satisfying dX (x , x ′) < δ. The diameter of
the set {x , x ′} is dX (x , x ′), which is less than δ. Therefore there
exists some y ∈ Y such that x ∈ Vy and x ′ ∈ Vy . But then
dY (f (x), y) < 1

2ε and dY (f (x ′), y) < 1
2ε, and hence

dY (f (x), f (x ′)) ≤ dY (f (x), y) + dY (y , f (x ′)) < ε.

This shows that f : X → Y is uniformly continuous, as
required.
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