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1. Results concerning Topological Spaces (continued)

1.14. Bases for Topologies

Proposition 1.26

Let X be a set, let β be a collection of subsets of X , and let τ be
the collection consisting of the empty set, together with all subsets
of X that are unions of sets belonging to the collection β. Then τ
is a topology on X if and only if the following conditions are
satisfied:—

(i) the set X is the union of the subsets belonging to the
collection β;

(ii) given subsets B1,B2 ∈ β, and given any point p of B1 ∩ B2,
there exists some B ∈ β such that p ∈ B and B ⊂ B1 ∩ B2.
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Proof
First suppose that τ is a topology on X . Then X ∈ τ . But any
subset of X that belongs to τ is a union of sets belonging to β.
Therefore X is a union of subsets belonging to the collection β,
and thus condition (i) is satisfied.

Moreover the intersection of any two open subsets of a topological
space is required to be open. Thus if τ is a topology on X , and if
B1,B2 ∈ β, then B1,B2 ∈ τ and therefore B1 ∩ B2 ∈ τ . It follows
that B1 ∩ B2 is a union of subsets of X that belong to β, and
therefore, given any p ∈ B1 ∩ B2, there exists B ∈ β such that
p ∈ B and B ⊂ B1 ∩ B2. Thus condition (ii) is satisfied.

Conversely we must prove that if the collection β of subsets of a
set X satisfies conditions (i) and (ii) then the collection τ of
unions of sets belonging to β is a topology on X .
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The empty set belongs to τ . Condition (i) ensures that the whole
set X belongs to τ . It follows directly from the definition of τ that
any union of sets belonging to τ is a union of sets belonging to β,
and therefore itself belongs to τ .

It therefore only remains to show that the intersection of any finite
collection of sets belonging to τ belongs to τ . It suffices to prove
that the intersection of two sets belonging to τ belongs to τ . Let
V1,V2 ∈ τ , and let p ∈ V1 ∩ V2. Then V1 and V2 are union of sets
belonging to β, and therefore there exist B1,B2 ∈ β such that
p ∈ B1, p ∈ B2, B1 ⊂ V1, and B2 ⊂ V2. Now condition (ii)
ensures the existence of Bp ∈ β such that p ∈ Bp and
Bp ⊂ B1 ∩ B2. Then Bp ⊂ V1 ∩ V2. It follows that the set V1 ∩ V2

is the union of all subsets B of V1 ∩ V2 that belong to β, and
therefore V1 ∩ V2 itself belongs to τ . It then follows by induction
on the number of sets involved that the intersection of any finite
number of subsets of X belonging to τ must itself belong to τ .
Thus τ is a topology on the set X , as required.



1. Results concerning Topological Spaces (continued)

Definition

Let X be a set. A collection β of subsets of X is said to be a base
for a topology on X if the following conditions are satisfied:—

(i) the set X is the union of the subsets belonging to the
collection β;

(ii) given subsets B1,B2 ∈ β, and given any point p of B1 ∩ B2,
there exists some B ∈ β such that p ∈ B and B ⊂ B1 ∩ B2.

If β is a base for a topology on X then the topology generated by
β is the topology whose open sets are those subsets of X that are
unions of sets belonging to the base β.
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Lemma 1.27

Let X be a set, and let β be a base for a topology on X . A
non-empty subset V is open in X with respect to the topology
generated by β if and only if, given any point v of V , there exists
B ∈ β such that v ∈ B and B ⊂ V .

Proof
This result follows directly from the fact that the non-empty open
sets in X are those subsets of X that are unions of sets belonging
to the base β.

Example
Let X be a metric space. Then the collection of all open balls of
positive radius centred on points of X is a base for the topology on
X generated by the distance function on X .
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1.15. Product Topologies

The Cartesian product X1 × X2 × · · · × Xn of sets X1,X2, . . . ,Xn is
defined to be the set of all ordered n-tuples (x1, x2, . . . , xn), where
xi ∈ Xi for i = 1, 2, . . . , n.

The sets R2 and R3 are the Cartesian products R× R and
R× R× R respectively.
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Let X1,X2,X3, . . . ,Xn be topological spaces, and let Vi and Wi be
open sets in Xi for i = 1, 2, . . . , n. Then

(V1×V2×· · ·×Vn)∩ (W1×W2×· · ·×Wn) = E1×E2×· · ·×En,

where Ei = Vi ∩Wi for i = 1, 2, . . . , n. The intersection of two
open sets in a topological space is always itself open. Therefore Ei

is an open set in Xi for i = 1, 2, . . . , n. It follows from this that if
β is the collection of subsets of X1 × X2 × · · · × Xn that are of the
form V1 ×V2 × · · · ×Vn, where Vi is open in Xi for i = 1, 2, . . . , n,
then β is the base for a topology on X1 × X2 × · · · × Xn. This
topology is the product topology on this Cartesian product of
topological spaces. Lemma 1.27 ensures that a non-empty
subset W of X1 × X2 × · · · × Xn is open in X1 × X2 × · · · × Xn

with respect to this product topology if and only if, given any
point (x1, x2, . . . , xn) of W , there exist open sets V1,V2, . . . ,Vn

such that xi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂W .



1. Results concerning Topological Spaces (continued)

The definition of the product topology is then encapsulated in the
following formal definition.

Definition

Let X1,X2, . . . ,Xn be topological spaces. The product topology on
the Cartesian product X1×X2× · · · ×Xn is the unique topology on
this Cartesian product of sets that satisfies the following criterion:

a non-empty subset W of the Cartesian product
X1 × X2 × · · · × Xn is open with respect to the product
topology if and only if, given any point (x1, x2, . . . , xn) of
W , there exist open sets Vi in Xi for i = 1, 2, . . . , n such
that xi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂W .
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The following result follows directly from the definition of the
product topology.

Lemma 1.28

Let X1,X2, . . . ,Xn be topological spaces, let p be a point of
X1 × X2 × · · · × Xn, and let N be a subset of X1 × X2 × · · · × Xn

for which p ∈ N. Then N is a neighbourhood of p in X if and only
if there exist open sets Vi in Xi for i = 1, 2, . . . , n for which
p ∈ V1 × V2 · · · × Vn and V1 × V2 × · · · × Vn ⊂ N.
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Lemma 1.29

Let X1,X2, . . . ,Xn and Z be topological spaces. Then a function
f : X1 × X2 × · · · × Xn → Z is continuous at a point p of
X1 × X2 × · · · × Xn if and only if, and given any open set W in Z
containing f (p), there exist open sets Vi in Xi for i = 1, 2, . . . , n
for which p ∈ V1 × V2 · · · × Vn and f (V1 × V2 × · · · × Vn) ⊂W.

Proof
Given any neighbourhood N of f (p), there exists an open set W in
Y such that f (p) ∈W and W ⊂ N. It follows from this that the
function f is continuous at p if and only if f −1(W ) is a
neighbourhood of p in X for all open sets W in Y for which
f (p) ∈W . The result therefore follows on applying
Lemma 1.28.
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Let X1,X2, . . . ,Xn be topological spaces, and let Vi be an open set
in Xi for i = 1, 2, . . . , n. It follows directly from the definition of
the product topology that V1 × V2 × · · · × Vn is open in
X1 × X2 × · · · × Xn.

Proposition 1.30

Let X = X1 × X2 × · · · × Xn, where X1,X2, . . . ,Xn are topological
spaces and X is given the product topology, and for each i , let
pi : X → Xi denote the projection function which sends
(x1, x2, . . . , xn) ∈ X to xi . Let f : Z → X mapping a topological
space Z into X and let z be a point of Z . Then f : Z → X is
continuous at z if and only if pi ◦ f : Z → Xi is continuous at z for
i = 1, 2, . . . , n.
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Proof
Let V be an open set in Xi . Then

p−1i (V ) = X1 × · · · × Xi−1 × V × Xi+1 × · · · × Xn,

and therefore p−1i (V ) is open in X . Thus pi : X → Xi is
continuous for all i . It follows that if the function f : Z → X is
continuous at a point z of Z then the composition functions pi ◦ f
are also continuous at z for i = 1, 2, . . . , n (see Lemma 1.22).
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Conversely suppose that f : Z → X is a function with the property
that pi ◦ f is continuous at z for i = 1, 2, . . . , n, where z ∈ Z . Let
N be a neighbourhood of f (z) in X . Then there exist
V1,V2, . . . ,Vn, where Vi is open in Xi for i = 1, 2, . . . , n, such that
f (z) ∈ V1 × V2 × · · · × Vn and V1 × V2 × · · · × Vn ⊂ N (see
Lemma 1.28). Let

Wz = f −11 (V1) ∩ f −12 (V2) ∩ · · · ∩ f −1n (Vn),

where fi = pi ◦ f for i = 1, 2, . . . , n. Then z ∈Wz , and the
continuity of f1, f2, . . . , fn ensures that Wz is an open set in Z .
Moreover f (z ′) ∈ V1 ×V2 × · · · ×Vn for all z ′ ∈Wz , and therefore
Wz ⊂ f −1(N). We have thus shown that f −1(N) is a
neighbourhood of z for all neighbourhoods N of f (z). It follows
that f : Z → X is continuous at z , as required.
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Proposition 1.31

The usual topology on Rn coincides with the product topology on
Rn obtained on regarding Rn as the Cartesian product
R× R× · · · × R of n copies of the real line R.

Proof
We must show that a subset W of Rn is open with respect to the
usual topology if and only if it is open with respect to the product
topology.
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Let W be a subset of Rn that is open with respect to the usual
topology, and let q ∈W . Then there exists some positive real
number δ such that B(q, δ) ⊂W , where

B(q, δ) = {x ∈ Rn : |x− q| < δ}.

Let J1, J2, . . . , Jn be the open intervals in R defined by

Ji =

{
t ∈ R : qi −

δ√
n
< t < qi +

δ√
n

}
(i = 1, 2, . . . , n),

Then J1, J2, . . . , Jn are open sets in R. Moreover

{q} ⊂ J1 × J2 × · · · × Jn ⊂ B(q, δ) ⊂W ,

since

|x− q|2 =
n∑

i=1

(xi − qi )
2 < n

(
δ√
n

)2

= δ2

for all x ∈ J1 × J2 × · · · × Jn. This shows that any subset W of Rn

that is open with respect to the usual topology on Rn is also open
with respect to the product topology on Rn.
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Conversely suppose that W is a subset of Rn that is open with
respect to the product topology on Rn, and let q ∈W . Then there
exist open sets V1,V2, . . . ,Vn in R containing q1, q2, . . . , qn
respectively such that V1 × V2 × · · · × Vn ⊂W . Now we can find
δ1, δ2, . . . , δn such that δi > 0 and (qi − δi , qi + δi ) ⊂ Vi for all i .
Let δ be the minimum of δ1, δ2, . . . , . . . , δn. Then δ > 0, and

B(q, δ) ⊂ V1 × V2 × · · · × Vn ⊂W ,

for if x ∈ B(q, δ) then |xi − qi | < δi for i = 1, 2, . . . , n. This shows
that any subset W of Rn that is open with respect to the product
topology on Rn is also open with respect to the usual topology
on Rn.
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The following result is now an immediate corollary of
Proposition 1.31 and Proposition 1.30.

Corollary 1.32

Let X be a topological space and let f : X → Rn be a function
from X to Rn. Let us write

f (x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components f1, f2, . . . , fn of f are
functions from X to R. The function f is continuous if and only if
its components f1, f2, . . . , fn are all continuous.
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Let f : X → R and g : X → R be continuous real-valued functions
on some topological space X . We claim that f + g , f − g and f .g
are continuous. Now it is a straightforward exercise to verify that
the sum and product functions s : R2 → R and p : R2 → R defined
by s(x , y) = x + y and p(x , y) = xy are continuous, and
f + g = s ◦ h and f .g = p ◦ h, where h : X → R2 is defined by
h(x) = (f (x), g(x)). Moreover it follows from Corollary 1.32 that
the function h is continuous, and compositions of continuous
functions are continuous. Therefore f + g and f .g are continuous,
as claimed. Also −g is continuous, and f − g = f + (−g), and
therefore f − g is continuous. If in addition the continuous
function g is non-zero everywhere on X then 1/g is continuous
(since 1/g is the composition of g with the reciprocal function
t 7→ 1/t), and therefore f /g is continuous.
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Lemma 1.33

The Cartesian product X1 × X2 × . . .Xn of Hausdorff spaces
X1,X2, . . . ,Xn is Hausdorff.

Proof
Let X = X1 × X2 × . . . ,Xn, and let u and v be distinct points of
X , where u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn). Then
xi 6= yi for some integer i between 1 and n. But then there exist
open sets U and V in Xi such that xi ∈ U, yi ∈ V and U ∩ V = ∅
(since Xi is a Hausdorff space). Let pi : X → Xi denote the
projection function. Then p−1i (U) and p−1i (V ) are open sets in X ,
since pi is continuous. Moreover u ∈ p−1i (U), v ∈ p−1i (V ), and
p−1i (U) ∩ p−1i (V ) = ∅. Thus X is Hausdorff, as required.
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1.16. Identification Maps and Quotient Topologies

Definition

Let X and Y be topological spaces and let q : X → Y be a
function from X to Y . The function q is said to be an
identification map if and only if the following conditions are
satisfied:

the function q : X → Y is surjective,

a subset U of Y is open in Y if and only if q−1(U) is open
in X .



1. Results concerning Topological Spaces (continued)

It follows directly from the definition that any identification map is
continuous. Moreover, in order to show that a continuous
surjection q : X → Y is an identification map, it suffices to prove
that if V is a subset of Y with the property that q−1(V ) is open in
X then V is open in Y .

Lemma 1.34

Let X be a topological space, let Y be a set, and let q : X → Y be
a surjection. Then there is a unique topology on Y for which the
function q : X → Y is an identification map.

Proof
Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X . Now q−1(∅) = ∅, and q−1(Y ) = X , so that
∅ ∈ τ and Y ∈ τ .
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Let {Vα : α ∈ A} be a collection of subsets of Y indexed by a
set A. Then it is a straightforward exercise to verify that⋃

α∈A
q−1(Vα) = q−1

(⋃
α∈A

Vα

)
,

and ⋂
α∈A

q−1(Vα) = q−1
(⋂

α∈A
Vα

)
(i.e., given any collection of subsets of Y , the union of the
preimages of the sets is the preimage of the union of those sets,
and the intersection of the preimages of the sets is the preimage of
the intersection of those sets). It follows easily from this that
unions and finite intersections of sets belonging to τ must
themselves belong to τ . Thus τ is a topology on Y , and the
function q : X → Y is an identification map with respect to the
topology τ . Clearly τ is the unique topology on Y for which the
function q : X → Y is an identification map.
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Definition

Let X be a topological space, let Y be a set, and let q : X → Y be
a surjection. The unique topology on Y for which the function q is
an identification map is referred to as the quotient topology (or
identification topology) on Y .
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Lemma 1.35

Let X and Y be topological spaces and let q : X → Y be an
identification map. Let Z be a topological space, and let
f : Y → Z be a function from Y to Z. Then the function f is
continuous if and only if the composition function f ◦ q : X → Z is
continuous.

Proof
Suppose that f is continuous. Then the composition function f ◦ q
is a composition of continuous functions and hence is itself
continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open set
in Z . Then q−1(f −1(U)) is open in X (since f ◦ q is continuous),
and hence f −1(U) is open in Y (since the function q is an
identification map). Therefore the function f is continuous, as
required.
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Example
Let S1 be the unit circle in R2, and let q : [0, 1]→ S1 be the map
that sends t ∈ [0, 1] to (cos 2πt, sin 2πt). Then q : [0, 1]→ S1 is
an identification map, and therefore a function f : S1 → Z from S1

to some topological space Z is continuous if and only if
f ◦ q : [0, 1]→ Z is continuous.
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Example
Let Sn be the n-sphere, consisting of all points x in Rn+1 satisfying
|x| = 1. Let RPn be the set of all lines in Rn+1 passing through
the origin (i.e., RPn is the set of all one-dimensional vector
subspaces of Rn+1). Let q : Sn → RPn denote the function which
sends a point x of Sn to the element of RPn represented by the
line in Rn+1 that passes through both x and the origin. Note that
each element of RPn is the image (under q) of exactly two
antipodal points x and −x of Sn. The function q induces a
corresponding quotient topology on RPn such that q : Sn → RPn

is an identification map. The set RPn, with this topology, is
referred to as real projective n-dimensional space. In particular
RP2 is referred to as the real projective plane. It follows from
Lemma 1.35 that a function f : RPn → Z from RPn to any
topological space Z is continuous if and only if the composition
function f ◦ q : Sn → Z is continuous.
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