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1. Results concerning Topological Spaces (continued)

1.10. Continuous Maps between Topological Spaces

Definition

A function f : X → Y from a topological space X to a topological
space Y is said to be continuous if f −1(V ) is an open set in X for
every open set V in Y , where

f −1(V ) = {x ∈ X : f (x) ∈ V }.

A continuous function from X to Y is often referred to as a map
from X to Y .



1. Results concerning Topological Spaces (continued)

Lemma 1.18

Let X , Y and Z be topological spaces, and let f : X → Y and
g : Y → Z be continuous functions. Then the composition
g ◦ f : X → Z of the functions f and g is continuous.

Proof
Let V be an open set in Z . Then g−1(V ) is open in Y (because g
is continuous), and then f −1(g−1(V )) is open in X (because f is
continuous). But f −1(g−1(V )) = (g ◦ f )−1(V ). Thus the
composition function g ◦ f is continuous.



1. Results concerning Topological Spaces (continued)

Lemma 1.19

Let X and Y be topological spaces, and let f : X → Y be a
function from X to Y . The function f is continuous if and only if
f −1(G ) is closed in X for every closed subset G of Y .

Proof
If G is any subset of Y then X \ f −1(G ) = f −1(Y \ G ) (i.e., the
complement of the preimage of G is the preimage of the
complement of G ). The result therefore follows immediately from
the definitions of continuity and closed sets.



1. Results concerning Topological Spaces (continued)

Definition

Let X and Y be topological spaces, let f : X → Y be a function
from X to Y and let p be a point of X . The function f is said to
be continuous at p if f −1(N) is a neighbourhood of p in X for all
neighbourhoods N of f (p) in Y .

Proposition 1.20

Let X and Y be topological spaces and let f : X → Y be a
function from X to Y . Then the function f is continuous on X if
and only if it is continuous at each point of X .



1. Results concerning Topological Spaces (continued)

Proof
Suppose that f : X → Y be continuous on X . Let p be a point of
X and let N be a neighbourhood of f (p). Then there exists an
open set V in Y for which f (p) ∈ V and V ⊂ N. The continuity
of f ensures that f −1(V ) is open in X . Moreover p ∈ f −1(V ) and
f −1(V ) ⊂ f −1(N). It follows that f −1(N) is a neighbourhood of p
in X . This shows that f : X → Y is continuous at each point p of
X .

Conversely suppose that f : X → Y is continuous at each point of
X . Let V be an open set in Y . Then, given any point p of
f −1(V ), there exists an open set Wp for which p ∈Wp and
Wp ⊂ f −1(V ), because the function f is continuous at p. Then
f −1(V ) =

⋃
p∈f −1(V )Wp. Thus f −1(V ) is a union of open subsets

of X , and is therefore itself open in X . We conclude that
f : X → Y is continuous on X .



1. Results concerning Topological Spaces (continued)

Lemma 1.21

Let X and Y be topological spaces, let f : X → Y be a function
from X to Y and let p be a point of X . Then f : X → Y is
continuous at p if and only if, given any neighbourhood N of f (p),
there exists a neighbourhood M of p for which f (M) ⊂ N.

Proof
Let N be a neighbourhood of f (p) in Y . Suppose that there exists
a neighbourhood M of p in X for which f (M) ⊂ N. The definition
of neighbourhoods of points in topological spaces then ensures
that there exists an open set W in X for which p ∈W and
W ⊂ M. Then f (W ) ⊂ N and therefore W ⊂ f −1(N). It follows
that f −1(N) is a neighbourhood of p in X , and thus the function f
is continuous at p.



1. Results concerning Topological Spaces (continued)

Conversely suppose that the function f is continuous at p. Let N
be a neighbourhood of f (p) in Y , and let M = f −1(N). Then M
is a neighbourhood of p in X , because the function f is continuous
at p, and f (M) ⊂ N. The result follows.



1. Results concerning Topological Spaces (continued)

Lemma 1.22

Let X , Y and Z be topological spaces, let f : X → Y and
g : Y → Z be functions, and let p be a point of X . Suppose that
f : X → Y is continuous at p and that g : Y → Z is continuous at
f (p). Then the composition g ◦ f : X → Z of the functions f
and g is continuous at p.

Proof
Let N be a neighbourhood of g(f (p)) in Z . Then g−1(N) is a
neighbourhood of f (p) in Y (because g is continuous), and then
f −1(g−1(N)) is a neighbourhood of p in X (because f is
continuous). But f −1(g−1(N)) = (g ◦ f )−1(N). Thus the
composition function g ◦ f is continuous at p.



1. Results concerning Topological Spaces (continued)

Proposition 1.23

Let X and Y be topological spaces and let f : X → Y be a
function from X to Y . Then f : X → Y is continuous if and only
if, given any point p of X , there exists some open set W in X such
that p ∈W and the restriction f |W : W → Y of the function f to
W is continuous on W .

Proof
Suppose that f : X → Y is continuous. Let W be an open set in
X , and let V be an open set in Y . Then the preimage f −1(V ) of
V is open in X . Now (f |W )−1(V ) = f −1(V ) ∩W . It follows that
(f |W )−1(V ) is open with respect to the subspace topology on W .



1. Results concerning Topological Spaces (continued)

Conversely suppose that, given any point p of X , there exists an
open set W in X such that p ∈W and f |W : W → Y is
continuous. Let p be a point of X and let W be an open set in X
for which p ∈W and f |W : : W → Y is continuous. Let N be a
neighbourhood of f (p) in Y . Then (f |W )−1(N) is a
neighbourhood of p in W . It follows from the definition of the
subspace topology on W that there exists an open set E in X for
which p ∈ E and f (E ∩W ) ⊂ N. But then E ∩W is an open set
in X , because both E and W are open sets in X . It follows that
f −1(N) is an open neighbourhood of p in X . We have thus shown
that the function f is continuous at p. It then follows from
Proposition 1.20 that f : X → Y is continuous, as required.



1. Results concerning Topological Spaces (continued)

1.11. The Pasting Lemma

We now show that, if a topological space X is the union of a finite
collection of closed sets, and if a function from X to some
topological space is continuous on each of these closed sets, then
that function is continuous on X . The names Pasting Lemma and
Gluing Lemma are both used to refer to this result.

Lemma 1.24 (Pasting Lemma)

Let X and Y be topological spaces, let f : X → Y be a function
from X to Y , and let X = A1 ∪ A2 ∪ · · · ∪ Ak , where
A1,A2, . . . ,Ak are closed sets in X . Suppose that the restriction of
f to the closed set Ai is continuous for i = 1, 2, . . . , k. Then
f : X → Y is continuous.



1. Results concerning Topological Spaces (continued)

Proof
Let p be a point of X , and let N be a neighbourhood of f (p). The
continuity of the restriction of f to each closed set Ai ensures the
existence of open sets Wi for i = 1, 2, . . . , k such that Wi ∩ Ai = ∅
whenever p 6∈ Ai and f (Wi ∩ Ai ) ⊂ N whenever p ∈ Ai . Let

W = W1 ∩W2 ∩ · · · ∩Wk

Then W is an open set in X , and p ∈W . Moreover if x ∈W then
there exists some integer i between 1 and k for which x ∈ Ai and
p ∈ Ai . Then x ∈Wi ∩ Ai , and therefore f (x) ∈ N. We conclude
from this that the function f is continuous at each point p of X . It
follows that the function f is continuous on X (see
Proposition 1.20).



1. Results concerning Topological Spaces (continued)

Alternative Proof
A function f : X → Y is continuous if and only if f −1(G ) is closed
in X for every closed set G in Y (Lemma 1.19). Let G be an
closed set in Y . Then f −1(G ) ∩ Ai is closed in the subspace
topology on Ai for i = 1, 2, . . . , k , because the restriction of f to
Ai is continuous for each i . But Ai is closed in X , and therefore a
subset of Ai is closed in Ai if and only if it is closed in X (see
Lemma 1.15). Therefore f −1(G ) ∩ Ai is closed in X for
i = 1, 2, . . . , k . Now f −1(G ) is the union of the sets f −1(G ) ∩ Ai

for i = 1, 2, . . . , k . It follows that f −1(G ), being a finite union of
closed sets, is itself closed in X . It now follows from Lemma 1.19
that f : X → Y is continuous.



1. Results concerning Topological Spaces (continued)

Example
Let Y be a topological space, and let α : [0, 1]→ Y and
β : [0, 1]→ Y be continuous functions defined on the interval
[0, 1], where α(1) = β(0). Let γ : [0, 1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2 ;
β(2t − 1) if 1

2 ≤ t ≤ 1.

Now γ|[0, 12 ] = α ◦ ρ where ρ : [0, 12 ]→ [0, 1] is the continuous
function defined by ρ(t) = 2t for all t ∈ [0, 12 ]. Thus γ|[0, 12 ] is
continuous, being a composition of two continuous functions.
Similarly γ|[12 , 1] is continuous. The subintervals [0, 12 ] and [12 , 1]
are closed in [0, 1], and [0, 1] is the union of these two subintervals.
It follows from Lemma 1.24 that γ : [0, 1]→ Y is continuous.



1. Results concerning Topological Spaces (continued)

Example
Let X be the surface of a closed cube in R3 and let f : X → Y be
a function mapping X into a topological space Y . The topological
space X is the union of the six square faces of the cube, and each
of these faces is a closed subset of X . The Pasting Lemma
Lemma 1.24 ensures that the function f is continuous if and only if
its restrictions to each of the six faces of the cube is continuous on
that face.



1. Results concerning Topological Spaces (continued)

We now present a couple of examples to show that the conclusions
of the Pasting Lemma (Lemma 1.24) do not follow when the
conditions stated in that lemma are relaxed.

Example
Let f : R→ R be defined so that

f (x) =

{
0 if x ≤ 0,
1 if x > 0,

and let A1 = {x ∈ R : x ≤ 0} and A2 = {x ∈ R : x > 0}. The
restriction of the function f to each of the subsets A1 and A2 of R
is continuous on that subset, but the function f itself is not
continuous on R. This does not contradict the Pasting Lemma
because the subset A2 of R is not closed in R.



1. Results concerning Topological Spaces (continued)

Example
Let

X = {0} ∪
{

1

n
: n ∈ Z and n > 0

}
,

and let f : X → R be defined so that f (0) = 0 and f (1/n) = n for
all positive integers n. For each x ∈ X , the set {x} is a closed
subset of X , and the restriction of f to each of these one-point
subsets is continuous on that subset. But the function f itself is
not continuous on X . This does not contradict the Pasting Lemma
because the number of these one-point closed subsets of X is
infinite.



1. Results concerning Topological Spaces (continued)

1.12. Continuous Functions between Metric Spaces

The following proposition shows that the definition of continuity
for functions between topological spaces is consistent with the
standard definition of continuity for functions between metric
spaces that is expressed directly in terms of distance functions on
those metric spaces.



1. Results concerning Topological Spaces (continued)

Proposition 1.25

Let X and Y be metric spaces with distance functions dX and dY
respectively, let f : X → Y be a function from X to Y , and let p
be a point of X . Then the following two conditions are equivalent:

(i) given any neighbourhood N of f (p) in Y , there exists a
neighbourhood M of p in X for which f (M) ⊂ N;

(ii) given any positive real number ε, there exists some positive
real number δ such that dY (f (x), f (p)) < ε for all points x of
X for which d(x , p) < δ.

(iii) the function f : X → Y is continuous at p.



1. Results concerning Topological Spaces (continued)

Proof
Suppose that, given any neighbourhood N of f (p) in Y , there
exists a neighbourhood M of p for which f (M) ⊂ N. Let some
positive real number ε be given. Then the open ball BY (f (p), ε) of
radius ε about the point f (p) is a neighbourhood of f (p) in Y . It
follows that there exists a neighbourhood M of p for which
f (M) ⊂ BY (f (p), ε). There then exists some positive real
number δ such that BX (p, δ) ⊂ M (see Lemma 1.8). If x ∈ X
satisfies dX (x , p) < δ then x ∈ M and therefore
f (x) ∈ BY (f (p), ε). But then dY (f (x), f (p)) < ε. Thus (i) implies
(ii).



1. Results concerning Topological Spaces (continued)

Conversely suppose that, given any positive real number ε, there
exists some positive real number δ such that dY (f (x), f (p)) < ε
for all points x of X for which d(x , p) < δ. Let N be a
neighbourhood of f (p). Then there exists some positive real
number ε for which BY (f (p), ε) ⊂ N, where BY (f (p), ε) denotes
the open ball of radius ε about the point f (p). There then exists
some positive real number δ for which f (BX (p, δ)) ⊂ BY (f (p), ε),
where BX (p, δ) denotes the open ball of radius δ about the
point p. Let M = BX (p, δ). Then M is a neighbourhood of p in X
and f (M) ⊂ N. Thus (ii) implies (i).

The equivalence of (i) and (iii), for functions between general
topological spaces, was proved in Lemma 1.21. This completes the
proof.



1. Results concerning Topological Spaces (continued)

1.13. Homeomorphisms

Definition

Let X and Y be topological spaces. A function h : X → Y is said
to be a homeomorphism if and only if the following conditions are
satisfied:

the function h : X → Y is both injective and surjective (so
that the function h : X → Y has a well-defined inverse
h−1 : Y → X ),

the function h : X → Y and its inverse h−1 : Y → X are both
continuous.

Two topological spaces X and Y are said to be homeomorphic if
there exists a homeomorphism h : X → Y from X to Y .



1. Results concerning Topological Spaces (continued)

If h : X → Y is a homeomorphism between topological spaces X
and Y then h induces a one-to-one correspondence between the
open sets of X and the open sets of Y . Thus the topological
spaces X and Y can be regarded as being identical as topological
spaces.
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