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1. Results concerning Topological Spaces (continued)

1.7. Neighbourhoods and Closures in Metric Spaces

Lemma 1.8

Let X be a metric space with distance function d, let p be a point
of X and let N be a subset of X , where p ∈ N. Then N is a
neighbourhood of p in X if and only if there exists some positive
real number δ for which

{x ∈ X : d(x , p) < δ} ⊂ N.

Proof
Let BX (p, δ) = {x ∈ X : d(x , p) < δ} for all positive real
numbers δ. Then the open ball BX (p, δ) in X of radius δ about
the point p is an open set in X (see Lemma 1.1). It follows from
the definition of neighbourhoods of points in topological spaces
that if there exists some positive real number δ for which
BX (p, δ) ⊂ N then N is a neighbourhood of p in X .
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Conversely suppose that N is a neighbourhood of p in X . Then
there exists an open set W in X such that p ∈W and W ⊂ N.
The definition of open sets in metric spaces then ensures the
existence of a positive real number δ for which BX (p, δ) ⊂W .
Then BX (p, δ) ⊂ N. The result follows.
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Lemma 1.9

Let X be a metric space with distance function d, let A be a subset
of X , and let p be a point of X . Then p belongs to the closure A
of A in X if and only if, given any positive real number δ, there
exists some element x of A that satisfies d(x , p) < δ.

Proof
The complement of the closure A of A is the interior of the
complement X \ A of A (see Proposition 1.7). It follows that
p ∈ A if and only if p does not belong to the interior of X \ A.
Now a point of X belongs to the interior of X \ A if and only if
X \A is a neighbourhood of that point (see Lemma 1.5). It follows
that p ∈ A if and only if X \ A is not a neighbourhood of p in X .
It then follows from Lemma 1.8 that p ∈ A if and only if, for all
positive real numbers δ, the open ball in X of radius δ about the
point p intersects A. The result follows.
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1.8. Subspace Topologies

Lemma 1.10

Let X be a topological space with topology τ , and let A be a
subset of X . Let τA be the collection of all subsets of A that are of
the form V ∩ A for V ∈ τ . Then τA is a topology on the set A.

Proof
The empty set ∅ belongs to τA, because ∅ is open in X and
∅ = A∩∅. Also A ∈ τA, because X is open in itself and A = X ∩A.
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Let C be a collection of subsets of A, where W ∈ τA for all W ∈ C,
and let Y be the union of the subsets of A belonging to the
collection C. Then for each W ∈ C there exists an open set VW in
X for which W = A ∩ VW . Let Z be the union of the open sets
VW as W ranges over the collection C. Then

Y =
⋃

W∈C
W =

⋃
W∈C

(A ∩ VW ) = A ∩
⋃

W∈C
VW = A ∩ Z .

Moreover Z is open in X . It follows that Y ∈ τA. Thus any union
of subsets of A belonging to τA must itself belong to τA.
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Now let W1,W2, . . . ,Wm be subsets of A that each belong to the
collection τA. Then there exist open sets V1,V2, . . . ,Vm in X such
that Wi = A ∩ Vi for i = 1, 2, . . . ,m. Then

W1 ∩W2 ∩ · · · ∩Wr = A ∩ V ,

where
V = V1 ∩ V2 ∩ · · · ∩ Vr .

Now V is a finite intersection of subsets of X that are open in X .
It follows that V is itself open in X , and therefore

W1 ∩W2 ∩ · · · ∩Wr ∈ τA.

We have thus shown that τA is a topology on A, as required.
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Definition

Let X be a topological space and let A be a subset of X . The
subspace topology on A is the topology on A whose open sets are
characterized by the following criterion:

A subset W of A is open with respect to the subspace
topology on A if and only if there exists some open set V
in X for which W = A ∩ V .
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Proposition 1.11

Let X be a metric space with distance function d, let A be a
subset of X , let p be a point of A and let N be a subset of A for
which p ∈ N. Then N is a neighbourhood of p with respect to the
subspace topology on A if and only if there exists some positive
real number δ such that

{x ∈ A : d(x , p) < δ} ⊂ N.

Proof
Let

BA(p, δ) = {x ∈ A : d(x , p) < δ}

and
BX (p, δ) = {x ∈ X : d(x , p) < δ}

for all positive real numbers δ.
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Suppose that there exists some positive real number δ for which
BA(p, δ) ⊂ N. We must show that N is a neighbourhood of p with
respect to the subspace topology on A. Now
BA(p, δ) = A ∩ BX (p, δ), where BX (p, δ) is the open ball in X of
radius δ about the point p. Moreover BX (p, δ) is open in X
(Lemma 1.1) and A ∩ BX (p, δ) ⊂ N. It follows that N is a
neighbourhood of p in A with respect to the subspace topology on
A.

Conversely suppose that N is a neighbourhood of p with respect to
the subspace topology on A. We must show that there exists some
positive real number δ for which BA(p, δ) ⊂ N. Now the
definitions of neighbourhoods and the subspace topology together
ensure the existence of an open set V in X for which p ∈ V and
A ∩ V ⊂ N. It then follows from the definition of open sets in
metric spaces that there exists some positive real number δ for
which BX (p, δ) ⊂ V . Then BA(p, δ) ⊂ A ∩ V ⊂ N. This
completes the proof.
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Corollary 1.12

Let X be a metric space with distance function d, and let A be a
subset of X . A subset W of A is open with respect to the
subspace topology on A if and only if, given any point w of W ,
there exists some positive real number δ for which

{a ∈ A : d(a,w) < δ} ⊂W .

Thus the subspace topology on A coincides with the topology on A
obtained on regarding A as a metric space whose distance function
is the restriction to A of the distance function d on X .

Proof
The subset W is open in A with respect to a given topology on A
if and only if it is a neighbourhood of all of its points with respect
to that given topology (see Lemma 1.4). The required result
therefore follows from Proposition 1.11.
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Example
Let X be any subset of n-dimensional Euclidean space Rn. Then
the subspace topology on X coincides with the topology on X
generated by the Euclidean distance function on X . We refer to
this topology as the usual topology on X .

Lemma 1.13

Let X be a topological space, let A be a subset of X , and let B be
a subset of A. Then B is closed in A (relative to the subspace
topology on A) if and only if B = A ∩ F for some closed subset F
of X .



1. Results concerning Topological Spaces (continued)

Proof
Suppose that B = A ∩ F for some closed subset F of X . Let
V = X \ F . Then V is an open set in X , and

A \ B = A \ (A ∩ F ) = A ∩ (X \ F ) = A ∩ V .

Moreover the definition of the subpace topology on A ensures that
A ∩ V is open in A. Thus the complement A \ B of B in A is open
in A, and therefore the subset B of A is itself closed in A.

Conversely suppose that B is closed in A. Then A \ B is open in
the subspace topology on A, and therefore there exists some open
set V in X such that A \ B = A ∩ V . Let F = X \ V . Then F is
closed in X , and

A ∩ F = A ∩ (X \ V ) = A \ (A ∩ V ) = A \ (A \ B) = B.

The result follows.
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Lemma 1.14

Let X be a topological space, let V be an open set in X , and let
W be a subset of V . Then W is open in V if and only if W is
open in X .

Proof
If W is open in X then W = V ∩W and therefore W is open in V .

Conversely suppose that the set W is open in V . It then follows
from the definition of subspace topologies that W = V ∩ E for
some open set E in X . But then W is an intersection of two open
sets, and is thus itself open in X .
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Lemma 1.15

Let X be a topological space, let F be a closed set in X , and let G
be a subset of F . Then G is closed in F if and only if G is closed
in X .

Proof
If G is closed in X then G = F ∩ G and therefore G is closed in F .

Conversely suppose that the set G is closed in F . It then follows
from Lemma 1.13 that G = F ∩ H for some closed set H in X .
But then G is an intersection of two closed sets, and is thus itself
closed in X (see Proposition 1.3).
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1.9. Hausdorff Spaces

Definition

A topological space X is said to be a Hausdorff space if and only if
it satisfies the following Hausdorff Axiom:

if x and y are distinct points of X then there exist open sets
U and V such that x ∈ U, y ∈ V and U ∩ V = ∅.
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Lemma 1.16

Any subset of a Hausdorff space is itself a Hausdorff space (with
respect to the subspace topology).

Proof
Let A be a subset of a Hausdorff space X and let x and y be
distinct points of A. Then there exist open sets U and V in X
such that x ∈ U, y ∈ V and U ∩ V = ∅. Let UA = A ∩ U and
VA = A ∩ V . Then UA and VA are subsets of A that are open in
the subspace topology on A. Moreover x ∈ UA, y ∈ VA and
UA ∩ VA = ∅. The result follows.
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Lemma 1.17

All metric spaces are Hausdorff spaces.

Proof
Let X be a metric space with distance function d , and let x and y
be points of X , where x 6= y . Let ε = 1

2d(x , y). Then the open
balls BX (x , ε) and BX (y , ε) of radius ε centred on the points x
and y are open sets (see Lemma 1.1). If BX (x , ε) ∩ BX (y , ε) were
non-empty then there would exist z ∈ X satisfying d(x , z) < ε and
d(z , y) < ε. But this is impossible, since it would then follow from
the Triangle Inequality that d(x , y) < 2ε, contrary to the choice
of ε. Thus x ∈ BX (x , ε), y ∈ BX (y , ε), BX (x , ε) ∩ BX (y , ε) = ∅.
This shows that the metric space X is a Hausdorff space.



1. Results concerning Topological Spaces (continued)

We now give an example of a topological space which is not a
Hausdorff space.

Example
Let X be an infinite set. The cofinite topology on X is defined as
follows: a subset U of X is open (with respect to the cofinite
topology) if and only if either U = ∅ or else X \ U is finite. It is a
straightforward exercise to verify that the topological space axioms
are satisfied, so that the set X is a topological space with respect
to this cofinite topology. Now the intersection of any two
non-empty open sets in this topology is always non-empty. (Indeed
if U and V are non-empty open sets then U = X \ F1 and
V = X \ F2, where F1 and F2 are finite subsets of X . But then
U ∩ V = X \ (F1 ∪ F2), which is non-empty, since F1 ∪ F2 is finite
and X is infinite.) It follows immediately from this that an infinite
set X is not a Hausdorff space with respect to the the cofinite
topology on X .
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