MA342R—Covering Spaces and
Fundamental Groups

School of Mathematics, Trinity College
Hilary Term 2017
Lecture 3 (January 20, 2017)

David R. Wilkins



1. Results concerning Topological Spaces (continued)

1.7. Neighbourhoods and Closures in Metric Spaces

Lemma 1.8

Let X be a metric space with distance function d, let p be a point
of X and let N be a subset of X, where p € N. Then N is a
neighbourhood of p in X if and only if there exists some positive
real number § for which

{xe X :d(x,p) <d} CN.

Proof

Let Bx(p,0) = {x € X : d(x, p) < &} for all positive real
numbers . Then the open ball Bx(p,d) in X of radius § about
the point p is an open set in X (see Lemma 1.1). It follows from
the definition of neighbourhoods of points in topological spaces
that if there exists some positive real number § for which
Bx(p,d) C N then N is a neighbourhood of p in X.



1. Results concerning Topological Spaces (continued)

Conversely suppose that N is a neighbourhood of p in X. Then
there exists an open set W in X such that pe W and W C N.
The definition of open sets in metric spaces then ensures the
existence of a positive real number ¢ for which Bx(p,d) C W.
Then Bx(p,d) C N. The result follows. |}



1. Results concerning Topological Spaces (continued)

Let X be a metric space with distance function d, let A be a subset
of X, and let p be a point of X. Then p belongs to the closure A
of A in X if and only if, given any positive real number 6, there
exists some element x of A that satisfies d(x, p) < 0.

Proof

The complement of the closure A of A is the interior of the
complement X \ A of A (see Proposition 1.7). It follows that

p € A if and only if p does not belong to the interior of X \ A.
Now a point of X belongs to the interior of X \ A if and only if
X\ Ais a neighbourhood of that point (see Lemma 1.5). It follows
that p € A if and only if X \ A is not a neighbourhood of p in X.
It then follows from Lemma 1.8 that p € A if and only if, for all
positive real numbers ¢, the open ball in X of radius § about the
point p intersects A. The result follows. |



1. Results concerning Topological Spaces (continued)

1.8. Subspace Topologies

Let X be a topological space with topology T, and let A be a
subset of X. Let T4 be the collection of all subsets of A that are of
the form V N A for V € 7. Then 74 is a topology on the set A.

Proof
The empty set () belongs to T4, because () is open in X and
0= AN0. Also A € 74, because X is open in itself and A = X N A.
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Let C be a collection of subsets of A, where W & 74 for all W € C,
and let Y be the union of the subsets of A belonging to the
collection C. Then for each W € C there exists an open set V)y in
X for which W = AN Vyy. Let Z be the union of the open sets
Vw as W ranges over the collection C. Then

Y:UWGCW:UWEC(AO VW):AHUWEC Vw =ANZ.

Moreover Z is open in X. It follows that Y € 74. Thus any union
of subsets of A belonging to 74 must itself belong to 74.
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Now let Wy, Wh, ..., W, be subsets of A that each belong to the
collection 74. Then there exist open sets Vi, Vo, ..., Vy, in X such
that W, = ANV fori=1,2,...,m. Then

WwinWw,n---nW,=AnV,

where
V=vinVon---NV,.

Now V is a finite intersection of subsets of X that are open in X.
It follows that V is itself open in X, and therefore

WinW,n---NW, € ra.

We have thus shown that 74 is a topology on A, as required. |}



1. Results concerning Topological Spaces (continued)

Definition
Let X be a topological space and let A be a subset of X. The
subspace topology on A is the topology on A whose open sets are
characterized by the following criterion:
A subset W of A is open with respect to the subspace
topology on A if and only if there exists some open set V
in X for which W = AN V.
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Proposition 1.11

Let X be a metric space with distance function d, let A be a
subset of X, let p be a point of A and let N be a subset of A for
which p € N. Then N is a neighbourhood of p with respect to the
subspace topology on A if and only if there exists some positive
real number § such that

{xe A:d(x,p) <d} CN.

Proof
Let
Ba(p,d) = {x € A:d(x,p) <}

and
Bx(p,0) ={x€ X :d(x,p) < d}

for all positive real numbers §.
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Suppose that there exists some positive real number § for which
Ba(p,0) C N. We must show that N is a neighbourhood of p with
respect to the subspace topology on A. Now

Ba(p,d) = AN Bx(p, ), where Bx(p, d) is the open ball in X of
radius § about the point p. Moreover Bx(p, d) is open in X
(Lemma 1.1) and AN Bx(p,d) C N. It follows that N is a
neighbourhood of p in A with respect to the subspace topology on
A.

Conversely suppose that N is a neighbourhood of p with respect to
the subspace topology on A. We must show that there exists some
positive real number § for which Ba(p,d) C N. Now the
definitions of neighbourhoods and the subspace topology together
ensure the existence of an open set V in X for which p € V and
ANV C N. It then follows from the definition of open sets in
metric spaces that there exists some positive real number § for
which Bx(p,0) C V. Then Ba(p,d) C ANV C N. This
completes the proof. |}



1. Results concerning Topological Spaces (continued)

Corollary 1.12

Let X be a metric space with distance function d, and let A be a
subset of X. A subset W of A is open with respect to the
subspace topology on A if and only if, given any point w of W,
there exists some positive real number § for which

{aceA:d(a,w) <o} C W.

Thus the subspace topology on A coincides with the topology on A
obtained on regarding A as a metric space whose distance function
is the restriction to A of the distance function d on X.

v

Proof

The subset W is open in A with respect to a given topology on A
if and only if it is a neighbourhood of all of its points with respect
to that given topology (see Lemma 1.4). The required result
therefore follows from Proposition 1.11. |



1. Results concerning Topological Spaces (continued)

Example

Let X be any subset of n-dimensional Euclidean space R". Then
the subspace topology on X coincides with the topology on X
generated by the Euclidean distance function on X. We refer to
this topology as the usual topology on X.

Let X be a topological space, let A be a subset of X, and let B be
a subset of A. Then B is closed in A (relative to the subspace
topology on A) if and only if B = AN F for some closed subset F
of X.
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Proof
Suppose that B = AN F for some closed subset F of X. Let
V =X\ F. Then V is an open set in X, and

A\B=A\(ANF)=AN(X\F)=ANV.

Moreover the definition of the subpace topology on A ensures that
ANV isopenin A. Thus the complement A\ B of B in A is open
in A, and therefore the subset B of A is itself closed in A.

Conversely suppose that B is closed in A. Then A\ B is open in

the subspace topology on A, and therefore there exists some open
set V in X such that AA\B=ANV. Let F=X\ V. Then F is
closed in X, and

ANF=AN(X\V)=A\(ANV)=A\(A\B)=B.

The result follows. |}



1. Results concerning Topological Spaces (continued)

Let X be a topological space, let V' be an open set in X, and let
W be a subset of V. Then W is open in V if and only if W is
open in X.

Proof
If W is open in X then W = VN W and therefore W is open in V.

Conversely suppose that the set W is open in V. It then follows
from the definition of subspace topologies that W = V N E for
some open set E in X. But then W is an intersection of two open
sets, and is thus itself open in X. |}
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Let X be a topological space, let F be a closed set in X, and let G
be a subset of F. Then G is closed in F if and only if G is closed
in X.

Proof
If G is closed in X then G = F N G and therefore G is closed in F.

Conversely suppose that the set G is closed in F. It then follows
from Lemma 1.13 that G = F N H for some closed set H in X.
But then G is an intersection of two closed sets, and is thus itself
closed in X (see Proposition 1.3). |}
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1.9. Hausdorff Spaces

Definition

A topological space X is said to be a Hausdorff space if and only if
it satisfies the following Hausdorff Axiom:

@ if x and y are distinct points of X then there exist open sets
Uand Vsuchthatxe U,y e Vand UNV =10.




1. Results concerning Topological Spaces (continued)

Any subset of a Hausdorff space is itself a Hausdorff space (with
respect to the subspace topology).

Proof

Let A be a subset of a Hausdorff space X and let x and y be
distinct points of A. Then there exist open sets U and V in X
suchthat xe U,y e Vand UNV =0. Let Uy = AN U and
Va=ANYV. Then Uy and V, are subsets of A that are open in
the subspace topology on A. Moreover x € Up, y € V4 and
Uan Vi =10. The result follows. |}
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All metric spaces are Hausdorff spaces.

Proof

Let X be a metric space with distance function d, and let x and y
be points of X, where x #£ y. Let ¢ = %d(x,y). Then the open
balls Bx(x,e) and Bx(y,¢) of radius £ centred on the points x
and y are open sets (see Lemma 1.1). If Bx(x,e) N Bx(y,¢) were
non-empty then there would exist z € X satisfying d(x, z) < € and
d(z,y) < e. But this is impossible, since it would then follow from
the Triangle Inequality that d(x, y) < 2¢, contrary to the choice
of e. Thus x € Bx(x,¢), y € Bx(y,¢), Bx(x,g) N Bx(y,e) = 0.
This shows that the metric space X is a Hausdorff space. |}
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We now give an example of a topological space which is not a
Hausdorff space.

Example

Let X be an infinite set. The cofinite topology on X is defined as
follows: a subset U of X is open (with respect to the cofinite
topology) if and only if either U = () or else X \ U is finite. It is a
straightforward exercise to verify that the topological space axioms
are satisfied, so that the set X is a topological space with respect
to this cofinite topology. Now the intersection of any two
non-empty open sets in this topology is always non-empty. (Indeed
if U and V are non-empty open sets then U = X \ F; and

V = X\ F,, where F; and F, are finite subsets of X. But then
UNnV =X\ (F1LUF,), which is non-empty, since F; U F; is finite
and X is infinite.) It follows immediately from this that an infinite
set X is not a Hausdorff space with respect to the the cofinite
topology on X.
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