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1. Results concerning Topological Spaces

1. Results concerning Topological Spaces

1.1. Topological Spaces

Definition

A topological space X consists of a set X together with a
collection of subsets, referred to as open sets, such that the
following conditions are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an
open set.

The collection consisting of all the open sets in a topological
space X is referred to as a topology on the set X .
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Remark
If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X , τ) the topological space whose
underlying set is X and whose topology is τ . However if no
confusion will arise then it is customary to denote this topological
space simply by X .
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1.2. Subsets of Euclidean Space

Let X be a subset of n-dimensional Euclidean space Rn. The
Euclidean distance |x− y| between two points x and y of X is
defined as follows:

|x− y| =

√√√√ n∑
i=1

(xi − yi )2,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Euclidean
distances between any three points x, y and z of X satisfy the
Triangle Inequality:

|x− z| ≤ |x− y|+ |y − z|.
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A subset V of X is said to be open in X if, given any point v of V ,
there exists some positive real number δ such that

{x ∈ X : |x− v| < δ} ⊂ V .

The empty set is also considered to be open in X .

Both ∅ and X are open sets in X . Also it is not difficult to show
that any union of open sets in X is open in X , and that any finite
intersection of open sets in X is open in X . (This will be proved in
more generality for open sets in metric spaces.) Thus the
collection of open sets in a subset X of a Euclidean space Rn

satisfies the topological space axioms. Thus every subset X of Rn

is a topological space with these open sets. This topology on a
subset X of Rn is referred to as the usual topology on X ,
generated by the Euclidean distance function.

In particular Rn is itself a topological space.
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1.3. Open Sets in Metric Spaces

Definition

A metric space (X , d) consists of a set X together with a distance
function d : X × X → [0,+∞) on X satisfying the following
axioms:

(i) d(x , y) ≥ 0 for all x , y ∈ X ,

(ii) d(x , y) = d(y , x) for all x , y ∈ X ,

(iii) d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ X ,

(iv) d(x , y) = 0 if and only if x = y .
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The quantity d(x , y) should be thought of as measuring the
distance between the points x and y . The inequality
d(x , z) ≤ d(x , y) + d(y , z) is referred to as the Triangle Inequality.
The elements of a metric space are usually referred to as points of
that metric space.

An n-dimensional Euclidean space Rn is a metric space with with
respect to the Euclidean distance function d , defined by

d(x, y) = |x− y| =

√√√√ n∑
i=1

(xi − yi )2

for all x, y ∈ Rn. Any subset X of Rn may be regarded as a metric
space whose distance function is the restriction to X of the
Euclidean distance function on Rn defined above.
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Definition

Let (X , d) be a metric space. Given a point x of X and r ≥ 0, the
open ball BX (x , r) of radius r about x in X is defined by

BX (x , r) = {x ′ ∈ X : d(x ′, x) < r}.

Definition

Let (X , d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:

given any point v of V there exists some positive real
number δ such that BX (v , δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset
of X . (The criterion given above is satisfied vacuously in this case.)
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Lemma 1.1

Let X be a metric space with distance function d , and let x0 be a
point of X . Then, for any r > 0, the open ball BX (x0, r) of
radius r about x0 is an open set in X .

Proof
Let x ∈ BX (x0, r). We must show that there exists some positive
real number δ such that BX (x , δ) ⊂ BX (x0, r). Now d(x , x0) < r ,
and hence δ > 0, where δ = r − d(x , x0). Moreover if
x ′ ∈ BX (x , δ) then

d(x ′, x0) ≤ d(x ′, x) + d(x , x0) < δ + d(x , x0) = r ,

by the Triangle Inequality, hence x ′ ∈ BX (x0, r). Thus
BX (x , δ) ⊂ BX (x0, r), showing that BX (x0, r) is an open set, as
required.
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Proposition 1.2

Let X be a metric space. The collection of open sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an
open set.

Proof
The empty set ∅ is an open set by convention. Moreover the
definition of an open set is satisfied trivially by the whole set X .
Thus (i) is satisfied.
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Let A be any collection of open sets in X , and let U denote the
union of all the open sets belonging to A. We must show that U is
itself an open set. Let x ∈ U. Then x ∈ V for some open set V
belonging to the collection A. Therefore there exists some positive
real number δ such that BX (x , δ) ⊂ V . But V ⊂ U, and thus
BX (x , δ) ⊂ U. This shows that U is open. Thus (ii) is satisfied.

Finally let V1,V2,V3, . . . ,Vk be a finite collection of open sets in
X , and let V = V1 ∩ V2 ∩ · · · ∩ Vk . Let x ∈ V . Now x ∈ Vj for all
j , and therefore there exist strictly positive real numbers
δ1, δ2, . . . , δk such that BX (x , δj) ⊂ Vj for j = 1, 2, . . . , k. Let δ be
the minimum of δ1, δ2, . . . , δk . Then δ > 0. (This is where we
need the fact that we are dealing with a finite collection of open
sets.) Moreover BX (x , δ) ⊂ BX (x , δj) ⊂ Vj for j = 1, 2, . . . , k , and
thus BX (x , δ) ⊂ V . This shows that the intersection V of the
open sets V1,V2, . . . ,Vk is itself open. Thus (iii) is satisfied.
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Any metric space may be regarded as a topological space. Indeed
let X be a metric space with distance function d . We recall that a
subset V of X is an open set if and only if, given any point v of V ,
there exists some positive real number δ such that

{x ∈ X : d(x , v) < δ} ⊂ V .

Proposition 1.2 shows that the topological space axioms are
satisfied by the collection of open sets in any metric space. We
refer to this collection of open sets as the topology generated by
the distance function d on X .
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1.4. Further Examples of Topological Spaces

Example
Given any set X , one can define a topology on X where every
subset of X is an open set. This topology is referred to as the
discrete topology on X .

Example
Given any set X , one can define a topology on X in which the only
open sets are the empty set ∅ and the whole set X .
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1.5. Closed Sets

Definition

Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

We recall that the complement of the union of some collection of
subsets of some set X is the intersection of the complements of
those sets, and the complement of the intersection of some
collection of subsets of X is the union of the complements of those
sets. The following result therefore follows directly from the
definition of a topological space.
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Proposition 1.3

Let X be a topological space. Then the collection of closed sets
of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a
closed set,

(iii) the union of any finite collection of closed sets is itself a
closed set.
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1.6. Neighbourhoods, Closures and Interiors

Definition

Let X be a topological space, and let x be a point of X . Let N be
a subset of X which contains the point x . Then N is said to be a
neighbourhood of the point x if and only if there exists an open
set W for which x ∈W and W ⊂ N.
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Lemma 1.4

Let X be a topological space. A subset V of X is open in X if and
only if V is a neighbourhood of each point belonging to V .

Proof
It follows directly from the definition of neighbourhoods that an
open set V is a neighbourhood of any point belonging to V .
Conversely, suppose that V is a subset of X which is a
neighbourhood of each v ∈ V . Then, given any point v of V ,
there exists an open set Wv such that v ∈Wv and Wv ⊂ V . Thus
V is an open set, since it is the union of the open sets Wv as v
ranges over all points of V .
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Definition

Let X be a topological space and let A be a subset of X . The
interior A◦ of A in X is defined to be the union of all of the open
subsets of X that are subsets of A.

Let X be a topological space and let A be a subset of X . It follows
from the definition of a topological space that the union of open
subsets of X is itself a open subset of X . It follows directly from
this that the interior A◦ of A in X is the subset of X uniquely
characterized by the following two properties:—

(i) the interior A◦ of A is an open set contained in A,

(ii) if W is any open set contained in A then W is contained in
A◦.
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Lemma 1.5

Let X be a topological space, let A be a subset of X , and let p be
a point of A. Then p belongs to the interior A◦ if and only if A is a
neighbourhood of the point p.

Proof
It follows from the definition of interiors that the point p belongs
to the interior of A if and only if there exists an open set W such
that p ∈W and W ⊂ A. It then follows from the definition of
neighbourhoods that this is the case if and only if the set A is a
neighbourhood of the point p.
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Definition

Let X be a topological space and let A be a subset of X . The
closure A of A in X is defined to be the intersection of all of the
closed subsets of X that contain A.

Let X be a topological space and let A be a subset of X . Any
intersection of closed subsets of X is itself a closed subset of X
(see Proposition 1.3). It follows directly from this that the
closure A of A in X is the subset of X uniquely characterized by
the following two properties:—

(i) the closure A of A is a closed set containing A,

(ii) if F is any closed set containing A then F contains A.
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Lemma 1.6

Let X be a topological space, let A be a subset of X , let A be the
closure of A in X , and let V be an open set. Then V ∩ A = ∅ if
and only if V ∩ A = ∅.

Proof
Suppose that V ∩ A = ∅. Then A ⊂ X \ V . Now the complement
X \ V of V is a closed set, and A is by definition the intersection
of all closed sets that contain the subset A. It follows that
A ⊂ X \ V , and therefore V ∩ A = ∅.

Conversely suppose that V ∩ A = ∅. Then V ∩ A = ∅, because A
is a subset of A. The result follows.
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Proposition 1.7

Let X be a topological space, and let A be a subset of X . Let A◦

and A denote the interior and closure respectively of A, and let
(X \ A)◦ and X \ A denote the interior and closure respectively of
the complement X \ A of A in X . Then

X \ A = (X \ A)◦ and X \ A◦ = X \ A

(i.e., the complement of the closure of A is the interior of the
complement of A, and the complement of the interior of A is the
closure of the complement of A).
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Proof
The interior (X \ A)◦ of X \ A is by definition the union of all open
subsets of X that are contained in X \ A. But an open subset V is
contained in X \ A if and only if V ∩ A = ∅. It follows from
Lemma 1.6 that V ⊂ X \ A if and only if V ⊂ X \ A. We conclude
from this that (X \ A)◦ ⊂ X \ A. But X \ A is itself an open set
contained in X \ A, and therefore X \ A ⊂ (X \ A)◦. It follows that

(X \ A)◦ = X \ A.

Similarly (X \ B)◦ = X \ B, where B = X \ A, and thus
A◦ = X \ B. Taking complements, we find that

X \ A◦ = B = X \ A.

This completes the proof.
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