MA342R—Covering Spaces and Fundamental Groups School of Mathematics, Trinity College Hilary Term 2017 Lecture 2 (January 19, 2017)

David R. Wilkins

1. Results concerning Topological Spaces

1.1. Topological Spaces

Definition

A topological space X consists of a set X together with a collection of subsets, referred to as *open sets*, such that the following conditions are satisfied:—

- (i) the empty set \emptyset and the whole set X are open sets,
- (ii) the union of any collection of open sets is itself an open set,
- (iii) the intersection of any *finite* collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is referred to as a *topology* on the set X.

Remark

If it is necessary to specify explicitly the topology on a topological space then one denotes by (X, τ) the topological space whose underlying set is X and whose topology is τ . However if no confusion will arise then it is customary to denote this topological space simply by X.

1.2. Subsets of Euclidean Space

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n . The *Euclidean distance* $|\mathbf{x} - \mathbf{y}|$ between two points \mathbf{x} and \mathbf{y} of X is defined as follows:

$$|\mathbf{x}-\mathbf{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2},$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$. The Euclidean distances between any three points \mathbf{x} , \mathbf{y} and \mathbf{z} of X satisfy the *Triangle Inequality*:

$$|\mathbf{x} - \mathbf{z}| \le |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{z}|.$$

A subset V of X is said to be *open* in X if, given any point **v** of V, there exists some positive real number δ such that

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{v}| < \delta\} \subset V.$$

The empty set is also considered to be open in X.

Both \emptyset and X are open sets in X. Also it is not difficult to show that any union of open sets in X is open in X, and that any finite intersection of open sets in X is open in X. (This will be proved in more generality for open sets in metric spaces.) Thus the collection of open sets in a subset X of a Euclidean space \mathbb{R}^n satisfies the topological space axioms. Thus every subset X of \mathbb{R}^n is a topological space with these open sets. This topology on a subset X of \mathbb{R}^n is referred to as the *usual topology* on X, generated by the Euclidean distance function.

In particular \mathbb{R}^n is itself a topological space.

1.3. Open Sets in Metric Spaces

Definition

A metric space (X, d) consists of a set X together with a distance function $d: X \times X \rightarrow [0, +\infty)$ on X satisfying the following axioms:

The quantity d(x, y) should be thought of as measuring the *distance* between the points x and y. The inequality $d(x, z) \le d(x, y) + d(y, z)$ is referred to as the *Triangle Inequality*. The elements of a metric space are usually referred to as *points* of that metric space.

An *n*-dimensional Euclidean space \mathbb{R}^n is a metric space with with respect to the *Euclidean distance function d*, defined by

$$d(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Any subset X of \mathbb{R}^n may be regarded as a metric space whose distance function is the restriction to X of the Euclidean distance function on \mathbb{R}^n defined above.

Definition

Let (X, d) be a metric space. Given a point x of X and $r \ge 0$, the open ball $B_X(x, r)$ of radius r about x in X is defined by

$$B_X(x,r) = \{x' \in X : d(x',x) < r\}.$$

Definition

Let (X, d) be a metric space. A subset V of X is said to be an *open set* if and only if the following condition is satisfied:

 given any point v of V there exists some positive real number δ such that B_X(v, δ) ⊂ V.

By convention, we regard the empty set \emptyset as being an open subset of X. (The criterion given above is satisfied vacuously in this case.)

Lemma 1.1

Let X be a metric space with distance function d, and let x_0 be a point of X. Then, for any r > 0, the open ball $B_X(x_0, r)$ of radius r about x_0 is an open set in X.

Proof

Let $x \in B_X(x_0, r)$. We must show that there exists some positive real number δ such that $B_X(x, \delta) \subset B_X(x_0, r)$. Now $d(x, x_0) < r$, and hence $\delta > 0$, where $\delta = r - d(x, x_0)$. Moreover if $x' \in B_X(x, \delta)$ then

$$d(x', x_0) \leq d(x', x) + d(x, x_0) < \delta + d(x, x_0) = r,$$

by the Triangle Inequality, hence $x' \in B_X(x_0, r)$. Thus $B_X(x, \delta) \subset B_X(x_0, r)$, showing that $B_X(x_0, r)$ is an open set, as required.

Proposition 1.2

Let X be a metric space. The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open sets;
- (ii) the union of any collection of open sets is itself an open set;
- (iii) the intersection of any finite collection of open sets is itself an open set.

Proof

The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let \mathcal{A} be any collection of open sets in X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself an open set. Let $x \in U$. Then $x \in V$ for some open set V belonging to the collection \mathcal{A} . Therefore there exists some positive real number δ such that $B_X(x, \delta) \subset V$. But $V \subset U$, and thus $B_X(x, \delta) \subset U$. This shows that U is open. Thus (ii) is satisfied.

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of open sets in X, and let $V = V_1 \cap V_2 \cap \cdots \cap V_k$. Let $x \in V$. Now $x \in V_j$ for all j, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \ldots, \delta_k$ such that $B_X(x, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of open sets.) Moreover $B_X(x, \delta) \subset B_X(x, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$, and thus $B_X(x, \delta) \subset V$. This shows that the intersection V of the open sets V_1, V_2, \ldots, V_k is itself open. Thus (iii) is satisfied.

Any metric space may be regarded as a topological space. Indeed let X be a metric space with distance function d. We recall that a subset V of X is an *open set* if and only if, given any point v of V, there exists some positive real number δ such that

$$\{x \in X : d(x, v) < \delta\} \subset V.$$

Proposition 1.2 shows that the topological space axioms are satisfied by the collection of open sets in any metric space. We refer to this collection of open sets as the *topology* generated by the distance function d on X.

1.4. Further Examples of Topological Spaces

Example

Given any set X, one can define a topology on X where every subset of X is an open set. This topology is referred to as the *discrete topology* on X.

Example

Given any set X, one can define a topology on X in which the only open sets are the empty set \emptyset and the whole set X.

1. Results concerning Topological Spaces (continued)

1.5. Closed Sets

Definition

Let X be a topological space. A subset F of X is said to be a *closed set* if and only if its complement $X \setminus F$ is an open set.

We recall that the complement of the union of some collection of subsets of some set X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets. The following result therefore follows directly from the definition of a topological space.

Proposition 1.3

Let X be a topological space. Then the collection of closed sets of X has the following properties:—

- (i) the empty set \emptyset and the whole set X are closed sets,
- (ii) the intersection of any collection of closed sets is itself a closed set,
- (iii) the union of any finite collection of closed sets is itself a closed set.

1. Results concerning Topological Spaces (continued)

1.6. Neighbourhoods, Closures and Interiors

Definition

Let X be a topological space, and let x be a point of X. Let N be a subset of X which contains the point x. Then N is said to be a *neighbourhood* of the point x if and only if there exists an open set W for which $x \in W$ and $W \subset N$.

Lemma 1.4

Let X be a topological space. A subset V of X is open in X if and only if V is a neighbourhood of each point belonging to V.

Proof

It follows directly from the definition of neighbourhoods that an open set V is a neighbourhood of any point belonging to V. Conversely, suppose that V is a subset of X which is a neighbourhood of each $v \in V$. Then, given any point v of V, there exists an open set W_v such that $v \in W_v$ and $W_v \subset V$. Thus V is an open set, since it is the union of the open sets W_v as v ranges over all points of V.

Definition

Let X be a topological space and let A be a subset of X. The *interior* A° of A in X is defined to be the union of all of the open subsets of X that are subsets of A.

Let X be a topological space and let A be a subset of X. It follows from the definition of a topological space that the union of open subsets of X is itself a open subset of X. It follows directly from this that the interior A° of A in X is the subset of X uniquely characterized by the following two properties:—

(i) the interior A° of A is an open set contained in A,

(ii) if W is any open set contained in A then W is contained in A° .

Lemma 1.5

Let X be a topological space, let A be a subset of X, and let p be a point of A. Then p belongs to the interior A° if and only if A is a neighbourhood of the point p.

Proof

It follows from the definition of interiors that the point p belongs to the interior of A if and only if there exists an open set W such that $p \in W$ and $W \subset A$. It then follows from the definition of neighbourhoods that this is the case if and only if the set A is a neighbourhood of the point p.

Definition

Let X be a topological space and let A be a subset of X. The closure \overline{A} of A in X is defined to be the intersection of all of the closed subsets of X that contain A.

Let X be a topological space and let A be a subset of X. Any intersection of closed subsets of X is itself a closed subset of X (see Proposition 1.3). It follows directly from this that the closure \overline{A} of A in X is the subset of X uniquely characterized by the following two properties:—

- (i) the closure \overline{A} of A is a closed set containing A,
- (ii) if F is any closed set containing A then F contains \overline{A} .

Lemma 1.6

Let X be a topological space, let A be a subset of X, let \overline{A} be the closure of A in X, and let V be an open set. Then $V \cap A = \emptyset$ if and only if $V \cap \overline{A} = \emptyset$.

Proof

Suppose that $V \cap A = \emptyset$. Then $A \subset X \setminus V$. Now the complement $X \setminus V$ of V is a closed set, and \overline{A} is by definition the intersection of all closed sets that contain the subset A. It follows that $\overline{A} \subset X \setminus V$, and therefore $V \cap \overline{A} = \emptyset$.

Conversely suppose that $V \cap \overline{A} = \emptyset$. Then $V \cap A = \emptyset$, because A is a subset of \overline{A} . The result follows.

Proposition 1.7

Let X be a topological space, and let A be a subset of X. Let A° and \overline{A} denote the interior and closure respectively of A, and let $(X \setminus A)^{\circ}$ and $\overline{X \setminus A}$ denote the interior and closure respectively of the complement $X \setminus A$ of A in X. Then

$$X \setminus \overline{A} = (X \setminus A)^{\circ}$$
 and $X \setminus A^{\circ} = \overline{X \setminus A}$

(i.e., the complement of the closure of A is the interior of the complement of A, and the complement of the interior of A is the closure of the complement of A).

Proof

The interior $(X \setminus A)^{\circ}$ of $X \setminus A$ is by definition the union of all open subsets of X that are contained in $X \setminus A$. But an open subset V is contained in $X \setminus A$ if and only if $V \cap A = \emptyset$. It follows from Lemma 1.6 that $V \subset X \setminus A$ if and only if $V \subset X \setminus \overline{A}$. We conclude from this that $(X \setminus A)^{\circ} \subset X \setminus \overline{A}$. But $X \setminus \overline{A}$ is itself an open set contained in $X \setminus A$, and therefore $X \setminus \overline{A} \subset (X \setminus A)^{\circ}$. It follows that

$$(X \setminus A)^\circ = X \setminus \overline{A}.$$

Similarly $(X \setminus B)^{\circ} = X \setminus \overline{B}$, where $B = X \setminus A$, and thus $A^{\circ} = X \setminus \overline{B}$. Taking complements, we find that

$$X \setminus A^\circ = \overline{B} = \overline{X \setminus A}.$$

This completes the proof.