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6 The Topology of Closed Surfaces

6.1 Affine Independence

Definition Points v0,v1, . . . ,vq in some Euclidean space Rk are said to be
affinely independent (or geometrically independent) if the only solution of the
linear system 

q∑
j=0

sjvj = 0,

q∑
j=0

sj = 0

is the trivial solution s0 = s1 = · · · = sq = 0.

Lemma 6.1 Let v0,v1, . . . ,vq be points of Euclidean space Rk of dimen-
sion k. Then the points v0,v1, . . . ,vq are affinely independent if and only if
the displacement vectors v1−v0,v2−v0, . . . ,vq−v0 are linearly independent.

Proof Suppose that the points v0,v1, . . . ,vq are affinely independent. Let
s1, s2, . . . , sq be real numbers which satisfy the equation

q∑
j=1

sj(vj − v0) = 0.

Then
q∑
j=0

sjvj = 0 and
q∑
j=0

sj = 0, where s0 = −
q∑
j=1

sj, and therefore

s0 = s1 = · · · = sq = 0.

It follows that the displacement vectors v1 − v0,v2 − v0, . . . ,vq − v0 are
linearly independent.

Conversely, suppose that these displacement vectors are linearly inde-
pendent. Let s0, s1, s2, . . . , sq be real numbers which satisfy the equations
q∑
j=0

sjvj = 0 and
q∑
j=0

sj = 0. Then s0 = −
q∑
j=1

sj, and therefore

0 =

q∑
j=0

sjvj = s0v0 +

q∑
j=1

sjvj =

q∑
j=1

sj(vj − v0).

It follows from the linear independence of the displacement vectors vj − v0

for j = 1, 2, . . . , q that

s1 = s2 = · · · = sq = 0.
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But then s0 = 0 also, because s0 = −
q∑
j=1

sj. It follows that the points

v0,v1, . . . ,vq are affinely independent, as required.

It follows from Lemma 6.1 that any set of affinely independent points
in Rk has at most k + 1 elements. Moreover if a set consists of affinely
independent points in Rk, then so does every subset of that set.

6.2 Simplices in Euclidean Spaces

Definition A q-simplex in Rk is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are affinely independent points of Rk. The points v0,v1, . . . ,vq
are referred to as the vertices of the simplex. The non-negative integer q is
referred to as the dimension of the simplex.

Example A 0-simplex in a Euclidean space Rk is a single point of that space.

Example A 1-simplex in a Euclidean space Rk of dimension at least one is
a line segment in that space. Indeed let λ be a 1-simplex in Rk with vertices
v and w. Then

λ = {sv + tw : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 and s+ t = 1}
= {(1− t)v + tw : 0 ≤ t ≤ 1},

and thus λ is a line segment in Rk with endpoints v and w.

Example A 2-simplex in a Euclidean space Rk of dimension at least two is
a triangle in that space. Indeed let τ be a 2-simplex in Rk with vertices u, v
and w. Then

τ = {r u + sv + tw : 0 ≤ r, s, t ≤ 1 and r + s+ t = 1}.

Let x ∈ τ . Then there exist r, s, t ∈ [0, 1] such that x = r u + sv + tw and
r + s+ t = 1. If r = 1 then x = u. Suppose that r < 1. Then

x = r u + (1− r)
(

(1− p)v + pw
)
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where p =
t

1− r
. Moreover 0 < r ≤ 1 and 0 ≤ p ≤ 1. Moreover the above

formula determines a point of the 2-simplex τ for each pair of real numbers
r and p satisfying 0 ≤ r ≤ 1 and 0 ≤ p ≤ 1. Thus

τ =
{
r u + (1− r)

(
(1− p)v + pw

)
: 0 ≤ p, r ≤ 1.

}
.

Now the point (1 − p)v + pw traverses the line segment v w from v to w
as p increases from 0 to 1. It follows that τ is the set of points that lie on
line segments with one endpoint at u and the other at some point of the line
segment v w. This set of points is thus a triangle with vertices u, v and w.

A 3-dimensional simplex is a tetrahedron. Higher-dimensional simplices
are the higher-dimensional analogues of points, line segments, triangles and
tetrahedra.

6.3 Faces of Simplices

Definition Let σ and τ be simplices in Rk. We say that τ is a face of σ if
the set of vertices of τ is a subset of the set of vertices of σ. A face of σ is
said to be a proper face if it is not equal to σ itself. An r-dimensional face
of σ is referred to as an r-face of σ. A 1-dimensional face of σ is referred to
as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and edges of
any simplex are by definition faces of the simplex.

6.4 Simplicial Complexes in Euclidean Spaces

Definition A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1 ∩ σ2 = ∅ or
else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of all
the simplices of K is a compact subset |K| of Rk referred to as the polyhedron
of K. (The polyhedron is compact since it is both closed and bounded in
Rk.)
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Example Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.

Lemma 6.2 Let K be a simplicial complex, and let X be a subset of some
Euclidean space. A function f : |K| → X is continuous on the polyhedron |K|
of K if and only if the restriction of f to each simplex of K is continuous on
that simplex.

Proof Each simplex of the simplicial complex K is a closed subset of the
polyhedron |K| of the simplicial complex K. The numbers of simplices be-
longing to the simplicial complex is finite. The result therefore follows from
a straightforward application of the Pasting Lemma (Lemma 1.24).

Lemma 6.3 Let K be a finite collection of triangles, edges and points in
some Euclidean space. Then K is a two-dimensional simplicial complex if
and only if the following conditions are all satisfied:—

(i) the edges and vertices of any triangle belonging to K themselves belong
to K;

(ii) the endpoints of any edge belonging to K are vertices belonging to K;

(iii) if two distinct triangles belonging to K have a non-empty intersection,
then that intersection is either a single common edge or a single com-
mon vertex of both triangles;

(iv) if a triangle belonging to K intersects an edge belonging to K then
either the edge is an edge of the triangle or else the intersection of the
triangle and edge is a vertex of the triangle that is an endpoint of the
edge;

(v) if two distinct edges belonging to K have a non-empty intersection then
that intersection is a common vertex (or endpoint) of both edges;

(vi) if a vertex belongs to a triangle then it is a vertex of that triangle, and
if a vertex belongs to an edge then it is an endpoint of that edge.

Proof Consider a finite collection K of simplices of dimension two in a Eu-
clidean space. The simplices belonging to K are points, line segments or
triangles. Conditions (i) and (ii) in the statement of the lemma are equiva-
lent to the condition that every face of a simplex belonging to the collection K
must itself belong to that collection. Similarly conditions (iii), (iv), (v) and
(vi) in the statement of the lemma are equivalent to the condition that any
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two simplices of K whose intersection is non-empty intersect in a common
face. The result therefore follows from the definition of a simplicial com-
plex, applied in the special case where the simplices of the complex are of
dimension at most two.

Let K be a two-dimensional simplicial complex in some Euclidean space.
The polyhedron |K| of K is the union of all the triangles, edges and vertices
belonging to the collection K.

Lemma 6.4 The polyhedron of a two-dimensional simplicial complex is a
compact Hausdorff space.

Proof The simplicial complex K is a finite collection of triangles, edges
and vertices in some ambient Euclidean space, and each triangle, edge and
vertex in the collection is a closed bounded subset of this ambient Euclidean
space. Now a subset of a Euclidean space is compact if and only if it is both
closed and bounded. It follows that each of the triangles, edges and vertices
belonging toK is a compact subset of the ambient Euclidean space. Moreover
it follows directly from the definition of compactness that any finite union of
compact topological spaces is itself compact. Therefore the polyhedron |K|
of K is a compact subset of the ambient Euclidean space. This ambient
Euclidean space is a Hausdorff space (as it is a metric space, and all metric
spaces are Hausdorff spaces), and any subset of a Hausdorff space is itself a
Hausdorff space (with the subspace topology). Therefore the polyhedron |K|
of K is a compact Hausdorff space, as required.

Definition Let p be a point of the polyhedron |K| of the two-dimensional
simplicial complex K. The star neighbourhood stK(p) of the point p in |K| is
defined to be the subset of |K| whose complement is the union of all triangles,
edges and vertices belonging to K that do not contain the point p.

Lemma 6.5 Let K be a two-dimensional simplicial complex, and let p be a
point of K. Then the star neighbourhood stK(p) of the point p of |K| is an
open subset of |K|, and moreover p ∈ stK(p).

Proof A two-dimensional simplicial complex is a finite collection of triangles,
edges and vertices in some ambient Euclidean space. Each of those triangles,
edges and vertices is a closed subset of the ambient Euclidean space, and
therefore the union of any finite collection of such triangles, edges and vertices
is a closed subset of the ambient Euclidean space.

Now, given any point p of |K|, the complement |K| \ stK(p) of the star
neighbourhood stK(p) of p in |K| is by definition the union of all triangles,
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edges and vertices belonging to K that do not contain the point p. It follows
that |K| \ stK(p) is closed in |K|, and p 6∈ |K| \ stK(p). Therefore stK(p) is
open in |K|, and p ∈ stK(p), as required.

6.5 Triangulated Closed Surfaces

Definition A topological closed surface is a compact Hausdorff space that
may be covered by open sets, where each of these open sets is homeomorphic
to a open set in the Euclidean plane.

An open set in the Euclidean plane is a union of open disks in that plane.
It follows that a compact Hausdorff space is a topological closed surface if
and only if it can be covered by open sets, where each of these open sets is
homeomorphic to a open disk in the Euclidean plane.

Proposition 6.6 Let K be a two-dimensional simplicial complex which sat-
isfies the following two conditions:—

(i) every edge belonging to K is an edge of exactly two triangles belonging
to K;

(ii) given any vertex v belonging to K, the triangles that have v as vertex
can be listed as a finite sequence T1, T2, . . . , Tm, where m > 1, where Ti
and Ti−1 intersect along a common edge when 1 < i ≤ m, and where
Tm and T1 also intersect along a common edge.

Then the polyhedron |K| of K is a topological closed surface.

Proof The polyhedron |K| of the two-dimensional simplicial complex K is
a compact Hausdorff space. We shall prove that the star neighbourhood of
each point of |K| is homeomorphic to an open disk.

Now suppose that the point p belongs to a triangle T of K with vertices
u, v and w but does not lie on any edge of that triangle. Then the triangle
T is the only member of the collection K of triangles, edges and vertices that
contains the point p. It follows that the star neighbourhood stK(p) consists
of all points of the triangle T that do not lie on any edge of T . Thus stK(p)
is homeomorphic to the interior of a triangle in the Euclidean plane.

Next suppose that the point p belongs to an edge of K with vertices v
and w but is not an endpoint of that edge. The edge is an edge of exactly two
triangles belonging to K, because K represents a triangulated closed surface.
Let these two triangles be v w x and v w y. The conditions in the definition
of two-dimensional complex ensure that the only members of the collection K

99



that contain the point p are the edge v w and the two triangles v w x and
v w y. It follows that the star neighbourhood stK(p) of the point p in |K|
consists of all points of the union of these two triangles that do not lie on
any of the edges v x, x w, w y and y v. It follows from this that stK(p) is
homeomorphic to the interior of a quadrilateral in the Euclidean plane.

Finally suppose that v is a vertex belonging to K. Then the triangles that
have v as vertex can be listed as a finite sequence T1, T2, . . . , Tm, wherem > 1,
where Ti and Ti−1 intersect along a common edge when 1 < i ≤ m, and where
Tm and T1 also intersect along a common edge. Let w1,w2, . . . ,wm be the
vertices of these triangles distinct from v, ordered so that the triangles Tm
and T1 intersect along the edge v w1 and the triangles Ti and Ti−1 intersect
along the edge v wi for i < i ≤ m. Then Ti is the triangle v wi wi+1 for
i = 1, 2, . . . ,m − 1, and Tm is the triangle v wm w1. The triangles of K
that have v as a vertex are thus in the configuration depicted in Figure 1.
The union of these triangles T1, T2, . . . , Tm is then homeomorphic to a convex

Figure 1

polygon in the Euclidean plane. The union of those edges

wm w1, w1 w2, · · · wm−1 wm

of these triangles that do not have v as one endpoint corresponds under this
homeomorphism to the boundary of the convex polygon, and therefore the
star neighbourhood stK(v) of v in |K| is homeomorphic to the interior of a
convex polygon in the Euclidean plane.

We have thus shown that, given any point p of the polyhedron of K, the
star neighbourhood of the point p is an open set in |K| which is homeomor-
phic to the interior of a convex polygon in the Euclidean plane. The interior
of such a polygon is homeomorphic to a disk. The result follows.

Lemma 6.7 Let K be a two-dimensional simplicial complex which satisfies
the two conditions listed in the statement of Proposition 6.6 that ensure that
the polyhedron |K| of K is a topological closed surface. Then this polyhedron
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is a connected topological space if and only if, given any two triangles σ and
τ of K, we can find a sequence σ1, σ2, . . . , σk of triangles of K with σ = σ1
and τ = σk, where σi−1 and σi intersect in a common edge for i = 2, 3, . . . , k.

Figure 2

Proof Let σ0 be a triangle in K, and let F be the subset of the polyhe-
dron |K| of K which is the union of all triangles that can be joined to σ0
by a finite sequence of triangles belonging to K, where successive triangles
in this sequence intersect along a common edge. Then F is a finite union
of triangles, and those trianges are closed subsets of |K|, and therefore F is
itself a closed subset of |K|.

Let p be a point of F . If p does not lie on any edge belonging to K then
the star neighbourhood stK(p) belongs to just one triangle belonging to K,
and moreover this triangle must then be a subset of F (or else the point p
would not belong to F ). Thus if p ∈ F does not like on any edge belonging
to K then stK(p) ⊂ F .

Next suppose that the point p of F lies on some edge belonging to K
but is not an endpoint of that edge. Then the point p belongs to exactly
two triangles of K that intersect along a common edge (because the two-
dimensional simplicial complex represents a closed surface). At least one of
these triangles must be contained in the set F (since p ∈ F ) and therefore
both triangles are contained in F . But the star neighbourhood of the point p
is contained in the union of those two triangles. Therefore stK(p) ⊂ F in
this case also.

Finally suppose that the point p is a vertex of K. Then the require-
ment that the two-dimensional simplicial complex K represent a triangulated
closed surface ensures that if at least one of the triangles belonging to K with
a vertex at p is contained in F then every triangle belonging to K with a
vertex at v must be contained in F . It follows that stK(p) ⊂ F .

We have now shown that, given any point p of F , the star neighbourhood
stK(p) of p in |K| is a subset of F . But this star neighbourhood is an
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open subset of |K| (see Lemma 6.5). Therefore the subset F of |K| is both
open and closed in |K|. Thus if the topological space |K| is connected then
F = |K|.

Every point of a topological space belongs to unique connected compo-
nent which is the union of all connected subsets of the topological space that
contain the given point. It follows that every triangle belonging to K is con-
tained in a some connected component of |K|, and if two triangles belonging
to K intersect along a common edge, or at a common vertex, then both
belong to the same connected component of |K|. It follows that the set F
is contained in some connected component of |K|. Thus if the topological
space |K| is not connected then F is a proper subset of |K|. We deduce
that F = |K| if and only if |K| is a connected topological space. The result
follows.

Lemma 6.8 Let K be a triangulated closed surface whose polyhedron |K| is
a connected topological space. Then |K| is homeomorphic to the topological
space obtained from a filled polygon with an even number of edges by identi-
fying edges in pairs (i.e., given any edge with endpoints a and b, there exists
exactly one other edge with endpoints c and d such that (1 − t)a + tb is
identified with (1− t)c + td for all t ∈ [0, 1]).

Proof Suppose that we have constructed some subcomplex L of K whose
polyhedron is homeomorphic to the identification space obtained from a filled
polygon PL by identifying some of the edges of that polygon in pairs. Let
qL:PL → |L| denote the identification map.

Suppose that e is an edge of PL that is not identified to any other edge
of L. Then e corresponds under the identification map to some edge e′

of L. Moreover only one of the two triangles in K adjoining the edge e′

belongs to L. Thus there is some triangle σ of K \ L which has e′ as one
of its edges. Let M be the subcomplex of K obtained on adjoining to L
the triangle σ, together with all its edges and vertices. We now extend
the polygon PL by attaching a triangle T along the free edge e to obtain a
filled polygon PM , where PM = PL ∪ T and PL ∩ T = e. We also extend
the identification map qL:PL → |L| over this attached triangle to obtain an
identification map qM :PM → |M |, where qM |PL = qL and qM |T is a simplicial
homeomorphism mapping the triangle T onto σ. Then the new identification
map qM :PM → |M | also identifies some of the edges of the polygon PM in
pairs.

If we successively add triangles to build up a polygon in this fashion, we
eventually obtain a subcomplex L of K whose polyhedron is homeomorphic
to the identification space obtained from a filled polygon on identifying all
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of the edges of that polygon in pairs. But then, given any two triangles of K
that intersect along a common edge, either both triangles belong to L, or else
neither triangle belongs to L. It now follows from Lemma 6.7 that L = K,
and thus the polyhedron of K is an identification space of the prescribed
type.

6.6 The Topological Classification of Closed Surfaces

We wish to classify up to homeomorphism the identification spaces obtained
from polygons by identifying edges in pairs.

Suppose that we are given a polygon with its edges identified in pairs.
Choose an orientation (i.e., a ‘direction’) on each edge of the polygon in
such a way that, for each pair of identified edges, the orientations on those
edges correspond under the identification of these edges. Denote each pair
of identified edges by some letter a, b, c, . . .. Suppose that we travel round
the boundary of the polygon in the anticlockwise direction, starting at some
chosen vertex. We obtain a surface symbol consisting of a sequence of symbols
taken from a, a−1, b, b−1, c, c−1, ordered so as to represent the order in which
the corresponding edges of the polygon are traversed (on travelling round
the polygon in the anticlockwise direction), and where an edge represented
by some letter x occurs in the surface symbol as ‘x’ if the chosen orientation
on the edge agrees with the anticlockise orientation, or as ‘x−1’ if the chosen
orientation on the edge is opposite to the anticlockwise orientation. For
example, the surface symbol xyx−1y−1 represents the torus (see Figure 3),
and the surface symbol xy−1xy−1 represents the real projective plane (see
Figure 4).

Figure 3: Torus Figure 4: Real projective plane

Lemma 6.8 shows that any connected triangulated closed surface can be
described by such a surface symbol. This is a finite sequence of symbols of
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the form a, a−1, b, b−1, c, c−1, . . ., a, b, c, . . . representing some suitable list of
‘letters’ that label the pairs of identified edges of the polygon representing
the surface. Each ‘letter’ x present occurs exactly twice in the surface sym-
bol, either as ‘x’ or as ‘x−1’. Conversely any surface symbol of this form
determines a scheme for identifying in pairs the edges of a suitable polygon
to obtain a closed surface. We wish to determine necessary and sufficient
conditions for determining whether or not the surfaces obtained in this way
from two such surface symbols are homeomorphic.

Let us use capital letters A,B,C, . . . to denote (possibly empty) sequences
of symbols taken from the list a, a−1, b, b−1, c, c−1, . . . . Also if A is such a
sequence of symbols, given by A = a1a2 · · · an, then we write A−1 for the
sequence a−1n a−1n−1 · · · a−11 (where (x−1)−1 ≡ x for any letter x.) Using these
conventions, we now state three rules which enable one to transform one
surface symbol into another in such a way that the two surface symbols
represent surfaces that are homeomorphic.

• Rule 1. cyclically permute the symbols occurring in the surface sym-
bol,

• Rule 2. Replace ABxCDxE by AyDB−1yC−1E (where y represents
some letter not occurring in the first surface symbol).

• Rule 3. Replace ABxCDx−1E by AyDCy−1BE.

• Rule 4. Replace Axx−1B or Ax−1xB by AB, provided that AB con-
tains at least two letters (each occurring twice).

Lemma 6.9 The application of Rules 1–4 to a surface symbol gives a new
surface symbol such that the surfaces determined by the two surface symbols
are homeomorphic.

Proof Rule 1 corresponds to traversing the boundary of the polygon starting
from a different vertex. Rules 2–4 are justified by the simple ‘cut and paste’
operations depicted in Figures 5, 6 and 7.

Rules 1–4 allow the reduction of surface symbols to certain standard
forms. Now each letter x in a surface symbol occurs exactly twice; if the
letter x either occurs both times as ‘x’ or else occurs both times as ‘x−1’,
then we call the occurrence of the letter x in the surface symbol a similar pair ;
otherwise we call the occurrence of this letter a reversed pair. Two reversed
pairs in some given surface symbol are said to interlock if they occur in the
order · · · y · · · z · · · y−1 · · · z−1 · · · (after interchanging y and y−1, or z and z−1,
if necessary).
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Figure 5: Rule 2

Figure 6: Rule 3

Figure 7: Rule 4
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Proposition 6.10 Any surface symbol can be reduced, by suitable applica-
tions of the transformations described in Rules 1–4 above and their inverses,
to one of the following canonical forms:—

x1y1x
−1
1 y−11 · · ·xgygx−1g y−1g (g ≥ 1),

x1x1x2x2 · · ·xhxh (h ≥ 2),

xx−1yy−1, xxyy−1.

Proof First we note that if C is any sequence of the form x1x1x2x2 . . ., then
a sequence of transformations

CDxExF → CyD−1yE−1F → CzzDE−1F

of the type specified by Rule 2 will transform any surface symbol CDxExF
with a similar pair to one of the form CzzDE−1. Repeated applications of
this procedure reduce any surface symbol to one of the form AB, where A is
of the form form x1x1x2x2 · · ·xrxr and B contains only reversed pairs (where
either A or B may be empty).

One can now use Rule 3 in order to reduce a surface symbol of the form
AB to one of the form ACD, where C is of the form

y1z1y
−1
1 z−11 · · · yszsy−1s z−1s ,

and D contains only non-interlocking reversed pairs. Indeed if E is any sur-
face symbol of the required form, then successive applications of Rule 3 show
that any surface symbol of the form EFaGbHa−1Ib−1J can be transformed
to Eefe−1f−1FIHGJ by the following sequence of transformations:

EFaGbHa−1Ib−1J → EcGbHc−1FIb−1J

→ EcGdFIHc−1d−1J

→ EeFIHGde−1d−1J

→ Eefe−1f−1FIHGJ.

The stated reduction of AB to ACD now follows by induction on the number
of interlocking reversed pairs.

If A is non-empty then one can reduce a surface symbol of the form
ACD (where A, C and D are as above) to one of the form ED, where E
is of the form x1x1x2x2 · · · and D contains only non-interlocking reversed
pairs. This follows from successive applications of the following sequence of
transformations (which are inverses of transformations of the type specified
by Rule 2):

Fxxaba−1b−1G→ Fyb−1a−1ya−1b−1G→ Fyay−1accG← FyyddccG.

106



Now consider D, which consists only of non-interlocking reversed pairs.
Let · · ·x · · · x−1 · · · be the closest reversed pair occurring in D. Then x and
x−1 must be adjacent (since otherwise D would contain two interlocking
reversed pairs). We can therefore ‘cancel’ xx−1, by Rule 4, provided that
the resultant symbol always contains at least two letters. It follows that any
surface symbol with more than two letters can be reduced to one or other of
the first two canonical forms specified (with g ≥ 1 or h ≥ 2).

Finally consider surface symbols with two letters occurring. The proce-
dures described above reduce such a surface symbol to one of the following
forms: xyx−1y−1, xxyy, xxyy−1, xx−1yy−1, xyy−1x−1. The first four of these
are included in the list of canonical forms. The symbol xyy−1x−1 reduces
to zz−1yy−1 on cyclically permuting the symbol (according to Rule 1) and
replacing x−1 and x by z and z−1 respectively, as required.

Let Mg (g ≥ 1) be the space obtained from a regular 4g-sided polygon
by identifying the edges according to the sequence x1y1x

−1
1 y−11 · · ·xgygx−1g y−1g

(see Figure 8), and let Nh (h ≥ 2) be defined similarly using x1x1 · · ·xhxh
(see Figure 9). Also let M0 and N1 be surfaces whose surface symbols are
xx−1yy−1 and xxyy−1 respectively. We have so far proved that the polyhe-
dron of any connected triangulated closed surface is homeomorphic to one of
the spaces Mg (g ≥ 0) or Nh (h ≥ 1).

Figure 8: The surface Mg (g = 3) Figure 9: The surface Nh (h = 4)
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