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5 Discontinuous Group Actions and Orbit Spaces

5.1 Discontinuous Group Actions

Definition Let G be a group, and let X be a set. The group G is said to act
on the set X (on the left) if each element g of G determines a corresponding
function θg:X → X from the set X to itself, where

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the function θe determined by the identity element e of G is the identity
function of X.

Let G be a group acting on a set X. Given any element x of X, the orbit
[x]G of x (under the group action) is defined to be the subset {θg(x) : g ∈ G}
of X, and the stabilizer of x is defined to the the subgroup {g ∈ G : θg(x) =
x} of the group G. Thus the orbit of an element x of X is the set consisting
of all points of X to which x gets mapped under the action of elements of the
group G. The stabilizer of x is the subgroup of G consisting of all elements
of this group that fix the point x. The group G is said to act freely on X if
θg(x) 6= x for all x ∈ X and g ∈ G satisfying g 6= e. Thus the group G acts
freely on X if and only if the stabilizer of every element of X is the trivial
subgroup of G.

Let e be the identity element of G. Then x = θe(x) for all x ∈ X, and
therefore x ∈ [x]G for all x ∈ X, where [x]G = {θg(x) : g ∈ G}.

Let x and y be elements of G for which [x]G ∩ [y]G is non-empty, and
let z ∈ [x]G ∩ [y]G. Then there exist elements h and k of G such that
z = θh(x) = θk(y). Then θg(z) = θgh(x) = θgk(y), θg(x) = θgh−1(z) and
θg(y) = θgk−1(z) for all g ∈ G, and therefore [x]G = [z]G = [y]G. It follows
from this that the group action partitions the set X into orbits, so that each
element of X determines an orbit which is the unique orbit for the action of
G on X to which it belongs. We denote by X/G the set of orbits for the
action of G on X.

Now suppose that the group G acts on a topological space X. Then
there is a surjective function q:X → X/G, where q(x) = [x]G for all x ∈ X.
This surjective function induces a quotient topology on the set of orbits: a
subset U of X/G is open in this quotient topology if and only if q−1(U) is
an open set in X (see Lemma 1.34). We define the orbit space X/G for the
action of G on X to be the topological space whose underlying set is the set
of orbits for the action of G on X, the topology on X/G being the quotient
topology induced by the function q:X → X/G. This function q:X → X/G
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is then an identification map: we shall refer to it as the quotient map from
X to X/G.

We shall be concerned here with situations in which a group action on a
topological space gives rise to a covering map. The relevant group actions
are those where the group acts freely and properly discontinuously on the
topological space.

Definition Let G be a group with identity element e, and let X be a topo-
logical space. The group G is said to act freely and properly discontinuously
on X if each element g of G determines a corresponding continuous map
θg:X → X, where the following conditions are satisfied:

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the continuous map θe determined by the identity element e of G is the
identity map of X;

(iii) given any point x of X, there exists an open set U in X such that
x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e.

Let G be a group which acts freely and properly discontinuously on a
topological space X. Given any element g of G, the corresponding continuous
function θg:X → X determined by X is a homeomorphism. Indeed it follows
from conditions (i) and (ii) in the above definition that θg−1 ◦ θg and θg ◦ θg−1

are both equal to the identity map of X, and therefore θg:X → X is a
homeomorphism with inverse θg−1 :X → X.

Remark The terminology ‘freely and properly discontinuously’ is tradi-
tional, but is hardly ideal. The adverb ‘freely’ refers to the requirement
that θg(x) 6= x for all x ∈ X and for all g ∈ G satisfying g 6= e. The adverb
‘discontinuously’ refers to the fact that, given any point x of G, the elements
of the orbit {θg(x) : g ∈ G} of x are separated; it does not signify that the
functions defining the action are in any way discontinuous or badly-behaved.
The adverb ‘properly’ refers to the fact that, given any compact subset K
of X, the number of elements of g for which K ∩ θg(K) 6= ∅ is finite. More-
over the definitions of properly discontinuous actions in textbooks and in
sources of reference are not always in agreement: some say that an action of
a group G on a topological space X (where each group element determines a
corresponding homeomorphism of the topological space) is properly discon-
tinuous if, given any x ∈ X, there exists an open set U in X such that the
number of elements g of the group for which g(U)∩U 6= ∅ is finite; others say
that the action is properly discontinuous if it satisfies the conditions given in
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the definition above for a group acting freely and properly discontinuously
on the set. William Fulton, in his textbook Algebraic topology: a first course
(Springer, 1995), introduced the term ‘evenly’ in place of ‘freely and prop-
erly discontinuously’, but this change in terminology does not appear to have
been generally adopted.

5.2 Orbit Spaces

Example The cyclic group C2 of order 2 consists of a set {e, a} with two
elements e and a, together with a group multiplication operation defined so
that e2 = a2 = e and ea = ae = a. The identity element of C2 is thus e.

Let us represent the n-dimensional sphere Sn as the unit sphere in Rn+1

centred on the origin. Let θe:S
n → Sn be the identity map of Sn and let

θa:S
n → Sn be the antipodal map of Sn, defined such that θa(x) = −x for

all x ∈ Sn. Then the group C2 acts on Sn (on the left) so that elements a
and e of Sn correspond under this action to the homeomorphisms θe and θa
respectively. Points x and y are said to be antipodal to one another if and
only if y = −x. Each orbit for the action of C2 on Sn thus consists of a pair
of antipodal points on Sn.

Let p be an element of Sn, and let

U = {x ∈ Sn : x . p > 0}.

Then U is open in Sn and p ∈ U . Also

θa(U) = {x ∈ Sn : x . p < 0},

and therefore U ∩ θa(U) = ∅. It follows that the group C2 acts freely and
properly discontinuously on Sn.

Distinct points of Sn belong to the same orbit under the action of C2 on
Sn if and only if the line in Rn+1 passing through those points also passes
through the origin. It follows that lines in Rn+1 that pass through the ori-
gin are in one-to-one correspondence with orbits for the action of C2 on Sn.
The orbit space Sn/C2 thus represents the set of lines through the origin in
Rn+1. We define n-dimensional real projective space RP n to be the topolog-
ical space whose elements are the lines in Rn+1 passing through the origin,
with the topology obtained on identifying RP n with the orbit space Sn/C2.
The quotient map q:Sn → RP n then sends each point x of Sn to the orbit
consisting of the two points x and −x. Thus each pair of antipodal points on
the n-dimenionsional sphere Sn determines a single point of n-dimensional
real projective space RP n.
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Proposition 5.1 Let G be a group acting freely and properly discontinuously
on a topological space X, let X/G denote the resulting orbit space, and let
q:X → X/G be the quotient map that sends each element of X to its orbit
under the action of the group G. Let p:X → Y be a continuous surjective
map from X to a topological space Y . Suppose that elements x and x′ of X
satisfy p(x) = p(x′) if and only if q(x) = q(x′). Suppose also p(V ) is open in
Y for every open set V in X. Then the surjective continuous map p:X → Y
induces a homeomorphism h:X/G → Y between the topological spaces X/G
and Y , where h(q(x)) = p(x) for all x ∈ X.

Proof The function h:X/G → Y is continuous because p:X → Y is con-
tinuous and q:X → Y is a quotient map (see Lemma 1.35). Moreover it
is surjective because p:X → Y is a surjection, and it is injective because
elements x and x′ satisfy p(x) = p(x′) if and only if q(x) = q(x′). It follows
that h:X/G→ Y is a bijection.

Let W be an open set in X/G. It follows from the definition of the
quotient topology that q−1(W ) is open in X. The map p maps open sets to
open sets. Therefore p(q−1(W )) is open in Y . But p(q−1(W )) = h(W ). Thus
h(W ) is open in Y for every open set W in X, and therefore h−1:Y → X/W is
continuous. Thus the continuous bijection h:X/G→ Y is a homeomorphism,
as required.

Corollary 5.2 Let the group Z act on the real line R by translation, where
the action sends each integer n to the translation θn:R→ R defined such that
θn(t) = t + n for all real numbers t. Let R/Z denote the orbit space for this
action, and let q:R→ R/Z be the quotient map that sends each real number
to its orbit under the action of the group Z. Let S1 denote the unit circle
centred on the origin in R2, let p:R→ S1 be defined such that

p(t) = (cos 2πt, sin 2πt)

for all real numbers t, and let h:R/Z → S1 be the map defined such that
h(q(t)) = p(t) for all real numbers t. Then h:R/Z → S1 is a homeomor-
phism.

Proof The map p:R→ S1 maps open sets to open sets. The result therefore
follows directly on applying Proposition 5.1.

Corollary 5.3 Let the group Z act by translation on the complex plane C,
where the action sends each integer n to the translation θn:C → C defined
such that θn(z) = z + n for all complex numbers z, where i2 = −1. Let C/Z
denote the orbit space for this action, and let q:C → C/Z be the quotient

85



map that sends each complex number to its orbit under the action of the
group Z. Let p:C → C \ {0} be defined such that p(z) = exp(2πiz) for all
complex numbers z, and let h:C/Z → C \ {0} be the map defined such that
h(q(z)) = p(z) for all complex numbers z. Then h:C/Z → C \ {0} is a
homeomorphism.

Proof We show that the map p:C → C \ {0} maps open sets to open sets.
Let V be an open set in C, and let u and v be real numbers for which
u + iv ∈ V . Then there exist real numbers θ1, θ2 and positive real numbers
r1 and r2 satisfying the inequalities

θ1 < 2πu < θ2 and log r1 < −2πv < log r2

where θ1 and θ2 are close enough to 2πu and log r1 and log r2 are close enough
to −2πv to ensure that s + it ∈ V for all real numbers s and t that satisfy
the inequalities

θ1 < 2πs < θ2 and log r1 < −2πt < log r2.

It then follows that u+ iv ∈ N and N ⊂ p(V ), where

N = {reiθ : r1 < r < r2 and θ1 < θ < θ2}.

Now N is an open set in C\{0}. It follows that p(V ) is a neighbourhood of
p(u+iv). We have now shown that the set p(V ) is a neighbourhood of each of
its points. It follows that p(V ) is open in C\{0}. We conclude therefore that
the map p:C \ C \ {0} maps open sets to open sets. It then follows directly
from Proposition 5.1 that h:C/Z→ C \ {0} is a homeomorphism.

Proposition 5.4 Let G be a group acting freely and properly discontinuously
on a topological space X, let X/G denote the resulting orbit space, and let
q:X → X/G be the quotient map that sends each element of X to its orbit
under the action of the group G. Let p:X → Y be a continuous surjective
map from X to a Hausdorff topological space Y . Suppose that elements x
and x′ of X satisfy p(x) = p(x′) if and only if q(x) = q(x′). Suppose also
that there exists a compact subset K of X that intersects every orbit for the
action of G on X. Then the surjective continuous map p:X → Y induces
a homeomorphism h:X/G → Y between the topological spaces X/G and Y ,
where h(q(x)) = p(x) for all x ∈ X.

Proof The function h:X/G → Y is continuous because X is continuous
and q:X → Y is a quotient map (see Lemma 1.35). Moreover it is surjective
because p:X → Y is a surjection, and it is injective because elements x and
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x′ satisfy p(x) = p(x′) if and only if q(x) = q(x′). It follows that h:X/G→ Y
is a bijection.

The orbit space X/G is compact, because it is the image q(K) of the
compact set K under the continuous map q:X → X/G. (see Lemma 1.39).
Thus h:X/G → Y is a continuous bijection from a compact topological
space to a Hausdorff space. This map is therefore a homeomorphism (see
Theorem 1.45).

Example Let the group Z of integers under addition act by translation
on the real line R by translation so that, under this action, an integer n
corresponds to the homeomorphism θn:R→ R defined such that θn(t) = t+n
for all real numbers t. Let q:R → R/Z be the quotient map onto the orbit
space, and let p:R→ S1 be defined such that

p(t) = (cos 2πt, sin 2πt)

for all real numbers t, and let h:R/Z → S1 be the map defined such that
h(q(t)) = p(t) for all real numbers t.

Now S1 is a Hausdorff space, as it is a subset of the metric space R2. Also
the map p:R→ S1 is surjective. Real numbers t1 and t2 satisfy p(t1) = p(t2)
if and only if t1 = t2 + n for some integer n. It follows that p(t1) = p(t2)
if and only if q(t1) = q(t2). The compact subset [0, 1] of R intersects every
orbit for the action of Z on R. It therefore follows from Proposition 5.4 that
h:R/Z → S1 is a homeomorphism. (This result was also shown to follow
from the fact that p:R→ S1 maps open sets to open sets: see Corollary 5.2.)

Example Let f :R2 → R3 be defined so that

f(s, t) = ((2 + cos 2πt) cos 2πs, (2 + cos 2πt) sin 2πs, sin 2πt)

for all (s, t) ∈ R2, and let Y = f(R2). Then Y is a torus in R3 that bounds
the ‘solid doughnut’ consisting of those points of R3 whose distance from the
circle in the plane z = 0 of radius 2 centred on the origin is less than one.
Points (s1, t1) and (s2, t2) of R2 satisfy f(s1, t1) = f(s2, t2) if and only if s1−t1
and s2 − t2 are integers. Let the group Z2 act on R2 by translation, so that,
under this action, an element (m,n) of Z2 corresponds to the homeomorphism
θ(m,n):R2 → R2 from R2 to itself defined so that θ(m,n)(s, t) = (s+m, t+ n)
for all (s, t) ∈ R2.

Let δ be a real number satisfying 0 < δ ≤ 1
2
, and, for all (s, t) ∈ R2, let

B((s, t), δ) denote the open disk in R2 of radius δ centred on the point (s, t).
Then

B((s+m, t+ n), δ) ∩B((s, t), δ) = ∅
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for all integers m and n for which (m,n) 6= (0, 0). It follows that the group Z2

acts freely and properly discontinuously on R2 by translation. Let R2/Z2 be
the orbit space determined by this action, let q:R→ R2/Z2 be the quotient
map sending each point of R2 to its orbit under the action of Z2, and let
h:R2/Z2 → Y be the function from R2/Z2 to the surface Y defined so that
h(q(s, t)) = f(s, t)) for all (s, t) ∈ R2.

Now the unit square [0, 1]× [0, 1] is a compact subset of R2 that intersects
every orbit for the action of Z2 on R2. It follows directly from Proposition 5.4
that h:R2/Z2 → Y is a homeomorphism. Thus the quotient space R2/Z2

represents a 2-dimensional torus.

Proposition 5.5 Let G be a group acting freely and properly discontinuously
on a topological space X. Then the quotient map q:X → X/G from X to
the corresponding orbit space X/G is a covering map.

Proof The quotient map q:X → X/G is surjective. Let V be an open set
in X. Then q−1(q(V )) is the union

⋃
g∈G θg(V ) of the open sets θg(V ) as g

ranges over the group G, since q−1(q(V )) is the subset of X consisting of all
elements of X that belong to the orbit of some element of V . But any union
of open sets in a topological space is an open set. We conclude therefore that
if V is an open set in X then q(V ) is an open set in X/G.

Let x be a point of X. Then there exists an open set U in X such that
x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e. Now q−1(q(U)) =⋃
g∈G θg(U). We claim that the sets θg(U) are disjoint. Let g and h be

elements of G. Suppose that θg(U)∩ θh(U) 6= ∅. Then θh−1(θg(U)∩ θh(U)) 6=
∅. But θh−1 :X → X is a bijection, and therefore

θh−1(θg(U) ∩ θh(U)) = θh−1(θg(U)) ∩ θh−1(θh(U)) = θh−1g(U) ∩ U,

and therefore θh−1g(U) ∩ U 6= ∅. It follows that h−1g = e, where e denotes
the identity element of G, and therefore g = h. Thus if g and h are elements
of g, and if g 6= h, then θg(U) ∩ θh(U) = ∅. We conclude therefore that the
preimage q−1(q(U)) of q(U) is the disjoint union of the sets θg(U) as g ranges
over the group G. Moreover each these sets θg(U) is an open set in X.

Now U ∩ [u]G = {u} for all u ∈ U , since [u]G = {θg(u) : g ∈ G} and
U ∩ θg(U) = ∅ when g 6= e. Thus if u and v are elements of U , and if q(u) =
q(v) then [u]G = [v]G and therefore u = v. It follows that the restriction
q|U :U → X/G of the quotient map q to U is injective, and therefore q
maps U bijectively onto q(U). But q maps open sets onto open sets, and any
continuous bijection that maps open sets onto open sets is a homeomorphism.
We conclude therefore that the restriction of q:X → X/G to the open set U
maps U homeomorphically onto q(U). Moreover, given any element g of G,
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the quotient map q satisfies q = q ◦ θg−1 , and the homeomorphism θg−1 maps
θg(U) homeomorphically onto U . It follows that the quotient map q maps
θg(U) homeomorphically onto q(U) for all g ∈ U . We conclude therefore that
q(U) is an evenly covered open set in X/G whose preimage q−1(q(U)) is the
disjoint union of the open sets θg(U) as g ranges over the group G. It follows
that the quotient map q:X → X/G is a covering map, as required.

5.3 Fundamental Groups of Orbit Spaces

Theorem 5.6 Let G be a group acting freely and properly discontinuously
on a path-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then there
exists a surjective homomorphism λ: π1(X/G, q(x0)) → G with the property
that γ̃(1) = θλ([γ])(x0) for any loop γ in X/G based at q(x0), where γ̃ denotes
the unique path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ. The kernel of this
homomorphism is the subgroup q#(π1(X, x0)) of π1(X/G, q(x0)).

Proof Let γ: [0, 1] → X/G be a loop in the orbit space with γ(0) = γ(1) =
q(x0). It follows from the Path Lifting Theorem for covering maps (Theo-
rem 4.5) that there exists a unique path γ̃: [0, 1] → X for which γ̃(0) = x0
and q ◦ γ̃ = γ. Now γ̃(0) and γ̃(1) must belong to the same orbit, since
q(γ̃(0)) = γ(0) = γ(1) = q(γ̃(1)). Therefore there exists some element g of
G such that γ̃(1) = θg(x0). This element g is uniquely determined, since
the group G acts freely on X. Moreover the value of g is determined by
the based homotopy class [γ] of γ in π1(X/G, q(x0)). Indeed it follows from
Proposition 4.7 that if σ is a loop in X/G based at q(x0), if σ̃ is the lift
of σ starting at x0 (so that q ◦ σ̃ = σ and σ̃(0) = x0), and if [γ] = [σ] in
π1(X/G, q(x0)) (so that γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We conclude
therefore that there exists a well-defined function

λ: π1(X/G, q(x0))→ G,

which is characterized by the property that γ̃(1) = θλ([γ])(x0) for any loop γ
in X/G based at q(x0), where γ̃ denotes the unique path in X for which
γ̃(0) = x0 and q ◦ γ̃ = γ.

Now let α: [0, 1] → X/G and β: [0, 1] → X/G be loops in X/G based
at q(x0), and let α̃: [0, 1] → X and β̃: [0, 1] → X be the lifts of α and β
respectively starting at x0, so that q◦ α̃ = α, q◦ β̃ = β and α̃(0) = β̃(0) = x0.
Then α̃(1) = θλ([α])(x0) and β̃(1) = θλ([β])(x0). Then the path θλ([α]) ◦ β̃ is
also a lift of the loop β, and is the unique lift of β starting at α̃(1). Let α.β
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be the concatenation of the loops α and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Then the unique lift of α.β to X starting at x0 is the path σ: [0, 1] → X,
where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

θλ([α])(β̃(2t− 1)) if 1
2
≤ t ≤ 1.

It follows that

θλ([α][β])(x0) = θλ([α.β])(x0) = σ(1) = θλ([α])(β̃(1))

= θλ([α])(θλ([β])(x0)) = θλ([α])λ([β])(x0)

and therefore λ([α][β]) = λ([α])λ([β]). Therefore the function

λ: π1(X/G, q(x0))→ G

is a homomorphism.
Let g ∈ G. Then there exists a path α in X from x0 to θg(x0), since the

space X is path-connected. Then q ◦ α is a loop in X/G based at q(x0), and
g = λ([q ◦ α]). This shows that the homomorphism λ is surjective.

Let γ: [0, 1] → X/G be a loop in X/G based at q(x0). Suppose that
[γ] ∈ kerλ. Then γ̃(1) = θe(x0) = x0, and therefore γ̃ is a loop in X based
at x0. Moreover [γ] = q#[γ̃], and therefore [γ] ∈ q#(π1(X, x0)). On the other
hand, if [γ] ∈ q#(π1(X, x0)) then γ = q ◦ γ̃ for some loop γ̃ in X based at
x0 (see Proposition 4.9). But then x0 = γ̃(1) = θλ([γ])(x0), and therefore
λ([γ]) = e, where e is the identity element of G. Thus kerλ = q#(π1(X, x0)),
as required.

Corollary 5.7 Let G be a group acting freely and properly discontinuously
on a path-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then
q#(π1(X, x0)) is a normal subgroup of the fundamental group π1(X/G, q(x0))
of the orbit space, and

π1(X/G, q(x0))

q#(π1(X, x0))
∼= G.

Proof The subgroup q#(π1(X, x0)) is the kernel of the homomorphism

λ: π1(X/G, q(x0))→ G

described in the statement of Theorem 5.6. It is therefore a normal sub-
group of π1(X/G, q(x0)), since the kernel of any homomorphism is a normal
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subgroup. The homomorphism λ is surjective, and the image of any group
homomorphism is isomorphism of the quotient of its domain by its kernel.
The result follows.

Corollary 5.8 Let G be a group acting freely and properly discontinuously
on a simply-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then
π1(X/G, q(x0)) ∼= G.

Proof This is a special case of Corollary 5.7.

Example The group Z of integers under addition acts freely and properly
discontinuously on the real line R. Indeed each integer n determines a cor-
responding homeomorphism θn:R → R, where θn(x) = x + n for all x ∈ R.
Moreover θm ◦ θn = θm+n for all m,n ∈ Z, and θ0 is the identity map of R.
If U = (−1

2
, 1
2
) then θn(U) ∩ U = ∅ for all non-zero integers n.

The real line R is simply-connected. It therefore follows from Corollary 5.8
that π1(R/Z, b) ∼= Z for any point b of R/Z.

Let q:R → R/Z be the quotient map from the real line R to the orbit
space R/Z that sends each real number to its orbit under the action of the
group of integers, let p:R→ S1 be defined such that

p(t) = (cos 2πt, sin 2πt)

for all t ∈ R. Then p(t1) = p(t2) for all real numbers t1 and t2 satisfying
q(t1) = q(t2). Thus there is a well-defined function h:R/Z → S1 character-
ized by the property that h(q(t)) = p(t) for all real numbers t.

The continuous map h:R/Z → S1 is a homeomorphism (see Corol-
lary 5.2). It follows that

π1(S
1, h(b)) ∼= π1(R/Z, b) ∼= Z

for all b ∈ R/Z. This shows that Theorem 3.9 concerning the fundamental
group of the circle can be obtained as a special case of the more general
result Corollary 5.8 concerning fundamental groups of orbit spaces obtained
via discontinuous group actions on simply-connected topological spaces.

Example The group Zn of ordered n-tuples of integers under addition acts
freely and properly discontinuously on Rn, where

θ(m1,m2,...,mn)(x1, x2, . . . , xn) = (x1 +m1, x2 +m2, . . . , xn +mn)

for all (m1,m2, . . . ,mn) ∈ Zn and (x1, x2, . . . , xn) ∈ Rn. The orbit space
Rn/Zn is an n-dimensional torus, homeomorphic to the product of n cir-
cles. It follows from Corollary 5.8 that the fundamental group of this n-
dimensional torus is isomorphic to the group Zn.
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Example Let Sn be the unit sphere in Rn+1 centred on the origin, and let
C2 denote the cyclic group of order 2. Then C2 = {e, a}, where e2 = a2 = e
and ea = ae = a. The group C2 acts freely and discontinuously on Sn,
where e acts as the identity map of Sn and a acts as the antipodal map
sending x to −x for all x ∈ Rn. The orbit space Sn/C2 is homeomorphic to
real projective n-dimensional space RP n. Now the n-dimensional sphere is
simply-connected if n > 1. It follows from Corollary 5.8 that the fundamental
group of RP n is isomorphic to the cyclic group C2 when n > 1.

Note that S0 is a pair of points, and RP 0 is a single point. Also S1 is a
circle (which is not simply-connected) and RP 1 is homeomorphic to a circle.
Moreover, for any b ∈ S1, the homomorphism q#: π1(S

1, b) → π1(RP 1, q(b))
corresponds to the homomorphism from Z to Z that sends each integer n to
2n. This is consistent with the conclusions of Corollary 5.7 in this example.

Example Given a pair (m,n) of integers, let θm,n:R2 → R2 be the homeo-
morphism of the plane R2 defined such that

θm,n(x, y) = (x+m, (−1)my + n)

for all (x, y) ∈ R2. Let (m1, n1) and (m2, n2) be ordered pairs of integers.
Then

θm1,n1 ◦ θm2,n2 = θm1+m2,n1+(−1)m1n2 .

Let Γ be the group whose elements are represented as ordered pairs of inte-
gers, where the group operation # on Γ is defined such that

(m1, n1)#(m2, n2) = (m1 +m2, n1 + (−1)m1n2)

for all (m1, n1), (m2, n2) ∈ Γ. The group Γ is non-Abelian, and its identity
element is (0, 0). This group acts on the plane R2: given (m,n) ∈ Γ the
corresponding symmetry θm,n is a translation if m is even, and is a glide
reflection if m is odd.

Given a pair (m,n) of integers, the corresponding homeomorphism θm,n
maps an open disk about the point (x, y) onto an open disk of the same radius
about the point θ(m,n)(x, y). It follows that if D is the open disk of radius 1

2

about the point (x, y), and if D∩ θm,n(D) is non-empty, then (m,n) = (0, 0).
Thus the group Γ maps freely and properly discontinuously on the plane R2.

Now each orbit intersects the closed unit square S, where S = [0, 1] ×
[0, 1]. If 0 < x < 1 and 0 < y < 1 then the orbit of (x, y) intersects
the square S in one point, namely the point (x, y). If 0 < x < 1, then
the orbit of (x, 0) intersects the square in two points (x, 0) and (x, 1). If
0 < y < 1 then the orbit of (0, y) intersects the square S in the two points
(0, y) and (1, 1 − y). (Note that (1, 1 − y) = θ1,1(0, y).) And the orbit
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of any corner of the square S intersects the square in the four corners of
the square. The restriction q|S of the quotient map q:R2 → R2/Γ to the
square S is a continuous surjection defined on the square: one can readily
verify that it is an identification map. It follows that the orbit space R2/Γ is
homeomorphic to the identification space obtained from the closed square S
by identifying together the points (x, 0) and (x, 1) where the real number x
satisfies 0 < x < 1, identifying together the points (0, y) and (1, 1− y) where
the real number y satisfies 0 < y < 1, and identifying together the four
corners of the square. The identification space obtained in this fashion is
a closed non-orientable surface, first described by Felix Klein in 1882, and
now known as the Klein bottle. Apparently the surface was initially referred
to as the Kleinsche Fläche (Klein’s Surface), but this name was incorrectly
translated into English, and, as a result the surface is now referred to as the
Klein Bottle (Kleinsche Flasche).

The plane R2 is simply-connected. It follows from Corollary 5.8 that the
fundamental group of the Klein bottle is isomorphic to the group Γ defined
above.
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