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1 Results concerning Topological Spaces

1.1 Topological Spaces

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

1.2 Subsets of Euclidean Space

Let X be a subset of n-dimensional Euclidean space Rn. The Euclidean
distance |x− y| between two points x and y of X is defined as follows:

|x− y| =

√√√√ n∑
i=1

(xi − yi)2,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The Euclidean distances
between any three points x, y and z of X satisfy the Triangle Inequality :

|x− z| ≤ |x− y|+ |y − z|.

A subset V of X is said to be open in X if, given any point v of V , there
exists some positive real number δ such that

{x ∈ X : |x− v| < δ} ⊂ V.

The empty set is also considered to be open in X.
Both ∅ and X are open sets in X. Also it is not difficult to show that

any union of open sets in X is open in X, and that any finite intersection
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of open sets in X is open in X. (This will be proved in more generality for
open sets in metric spaces.) Thus the collection of open sets in a subset X
of a Euclidean space Rn satisfies the topological space axioms. Thus every
subset X of Rn is a topological space with these open sets. This topology on
a subset X of Rn is referred to as the usual topology on X, generated by the
Euclidean distance function.

In particular Rn is itself a topological space.

1.3 Open Sets in Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.

An n-dimensional Euclidean space Rn is a metric space with with respect
to the Euclidean distance function d, defined by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn defined above.

Definition Let (X, d) be a metric space. Given a point x of X and r ≥ 0,
the open ball BX(x, r) of radius r about x in X is defined by

BX(x, r) = {x′ ∈ X : d(x′, x) < r}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:
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• given any point v of V there exists some positive real number δ such
that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)

Lemma 1.1 Let X be a metric space with distance function d, and let x0 be
a point of X. Then, for any r > 0, the open ball BX(x0, r) of radius r about
x0 is an open set in X.

Proof Let x ∈ BX(x0, r). We must show that there exists some positive
real number δ such that BX(x, δ) ⊂ BX(x0, r). Now d(x, x0) < r, and hence
δ > 0, where δ = r − d(x, x0). Moreover if x′ ∈ BX(x, δ) then

d(x′, x0) ≤ d(x′, x) + d(x, x0) < δ + d(x, x0) = r,

by the Triangle Inequality, hence x′ ∈ BX(x0, r). Thus BX(x, δ) ⊂ BX(x0, r),
showing that BX(x0, r) is an open set, as required.

Proposition 1.2 Let X be a metric space. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself an open set.
Let x ∈ U . Then x ∈ V for some open set V belonging to the collection A.
Therefore there exists some positive real number δ such that BX(x, δ) ⊂ V .
But V ⊂ U , and thus BX(x, δ) ⊂ U . This shows that U is open. Thus (ii) is
satisfied.

Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in X, and let
V = V1 ∩ V2 ∩ · · · ∩ Vk. Let x ∈ V . Now x ∈ Vj for all j, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj
for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection
of open sets.) Moreover BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX(x, δ) ⊂ V . This shows that the intersection V of the open sets
V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.
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Any metric space may be regarded as a topological space. Indeed let X
be a metric space with distance function d. We recall that a subset V of X is
an open set if and only if, given any point v of V , there exists some positive
real number δ such that

{x ∈ X : d(x, v) < δ} ⊂ V.

Proposition 1.2 shows that the topological space axioms are satisfied by the
collection of open sets in any metric space. We refer to this collection of open
sets as the topology generated by the distance function d on X.

1.4 Further Examples of Topological Spaces

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set ∅ and the whole set X.

1.5 Closed Sets

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

We recall that the complement of the union of some collection of subsets
of some set X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X is the
union of the complements of those sets. The following result therefore follows
directly from the definition of a topological space.

Proposition 1.3 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.
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1.6 Neighbourhoods, Closures and Interiors

Definition Let X be a topological space, and let x be a point of X. Let
N be a subset of X which contains the point x. Then N is said to be a
neighbourhood of the point x if and only if there exists an open set W for
which x ∈ W and W ⊂ N .

Lemma 1.4 Let X be a topological space. A subset V of X is open in X if
and only if V is a neighbourhood of each point belonging to V .

Proof It follows directly from the definition of neighbourhoods that an open
set V is a neighbourhood of any point belonging to V . Conversely, suppose
that V is a subset of X which is a neighbourhood of each v ∈ V . Then, given
any point v of V , there exists an open set Wv such that v ∈ Wv and Wv ⊂ V .
Thus V is an open set, since it is the union of the open sets Wv as v ranges
over all points of V .

Definition Let X be a topological space and let A be a subset of X. The
interior A◦ of A in X is defined to be the union of all of the open subsets
of X that are subsets of A.

Let X be a topological space and let A be a subset of X. It follows from
the definition of a topological space that the union of open subsets of X is
itself a open subset of X. It follows directly from this that the interior A◦

of A in X is the subset of X uniquely characterized by the following two
properties:—

(i) the interior A◦ of A is an open set contained in A,

(ii) if W is any open set contained in A then W is contained in A◦.

Lemma 1.5 Let X be a topological space, let A be a subset of X, and let
p be a point of A. Then p belongs to the interior A◦ if and only if A is a
neighbourhood of the point p.

Proof It follows from the definition of interiors that the point p belongs to
the interior of A if and only if there exists an open set W such that p ∈ W
and W ⊂ A. It then follows from the definition of neighbourhoods that this
is the case if and only if the set A is a neighbourhood of the point p.

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A.
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Let X be a topological space and let A be a subset of X. Any intersection
of closed subsets of X is itself a closed subset of X (see Proposition 1.3). It
follows directly from this that the closure A of A in X is the subset of X
uniquely characterized by the following two properties:—

(i) the closure A of A is a closed set containing A,

(ii) if F is any closed set containing A then F contains A.

Lemma 1.6 Let X be a topological space, let A be a subset of X, let A be
the closure of A in X, and let V be an open set. Then V ∩A = ∅ if and only
if V ∩ A = ∅.

Proof Suppose that V ∩ A = ∅. Then A ⊂ X \ V . Now the complement
X \V of V is a closed set, and A is by definition the intersection of all closed
sets that contain the subset A. It follows that A ⊂ X \ V , and therefore
V ∩ A = ∅.

Conversely suppose that V ∩ A = ∅. Then V ∩ A = ∅, because A is a
subset of A. The result follows.

Proposition 1.7 Let X be a topological space, and let A be a subset of
X. Let A◦ and A denote the interior and closure respectively of A, and
let (X \ A)◦ and X \ A denote the interior and closure respectively of the
complement X \ A of A in X. Then

X \ A = (X \ A)◦ and X \ A◦ = X \ A

(i.e., the complement of the closure of A is the interior of the complement of
A, and the complement of the interior of A is the closure of the complement
of A).

Proof The interior (X \ A)◦ of X \ A is by definition the union of all open
subsets of X that are contained in X \A. But an open subset V is contained
in X \A if and only if V ∩A = ∅. It follows from Lemma 1.6 that V ⊂ X \A
if and only if V ⊂ X \A. We conclude from this that (X \A)◦ ⊂ X \A. But
X \A is itself an open set contained in X \A, and therefore X \A ⊂ (X \A)◦.
It follows that

(X \ A)◦ = X \ A.
Similarly (X \ B)◦ = X \ B, where B = X \ A, and thus A◦ = X \ B.

Taking complements, we find that

X \ A◦ = B = X \ A.

This completes the proof.
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1.7 Neighbourhoods and Closures in Metric Spaces

Lemma 1.8 Let X be a metric space with distance function d, let p be a point
of X and let N be a subset of X, where p ∈ N . Then N is a neighbourhood
of p in X if and only if there exists some positive real number δ for which

{x ∈ X : d(x, p) < δ} ⊂ N.

Proof Let BX(p, δ) = {x ∈ X : d(x, p) < δ} for all positive real numbers δ.
Then the open ball BX(p, δ) in X of radius δ about the point p is an open set
in X (see Lemma 1.1). It follows from the definition of neighbourhoods of
points in topological spaces that if there exists some positive real number δ
for which BX(p, δ) ⊂ N then N is a neighbourhood of p in X.

Conversely suppose that N is a neighbourhood of p in X. Then there ex-
ists an open set W in X such that p ∈ W and W ⊂ N . The definition of open
sets in metric spaces then ensures the existence of a positive real number δ
for which BX(p, δ) ⊂ W . Then BX(p, δ) ⊂ N . The result follows.

Lemma 1.9 Let X be a metric space with distance function d, let A be a
subset of X, and let p be a point of X. Then p belongs to the closure A of
A in X if and only if, given any positive real number δ, there exists some
element x of A that satisfies d(x, p) < δ.

Proof The complement of the closure A of A is the interior of the comple-
ment X \A of A (see Proposition 1.7). It follows that p ∈ A if and only if p
does not belong to the interior of X \ A. Now a point of X belongs to the
interior of X \ A if and only if X \ A is a neighbourhood of that point (see
Lemma 1.5). It follows that p ∈ A if and only if X \A is not a neighbourhood
of p in X. It then follows from Lemma 1.8 that p ∈ A if and only if, for all
positive real numbers δ, the open ball in X of radius δ about the point p
intersects A. The result follows.

1.8 Subspace Topologies

Lemma 1.10 Let X be a topological space with topology τ , and let A be a
subset of X. Let τA be the collection of all subsets of A that are of the form
V ∩ A for V ∈ τ . Then τA is a topology on the set A.

Proof The empty set ∅ belongs to τA, because ∅ is open in X and ∅ = A∩∅.
Also A ∈ τA, because X is open in itself and A = X ∩ A.

Let C be a collection of subsets of A, where W ∈ τA for all W ∈ C, and
let Y be the union of the subsets of A belonging to the collection C. Then
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for each W ∈ C there exists an open set VW in X for which W = A ∩ VW .
Let Z be the union of the open sets VW as W ranges over the collection C.
Then

Y =
⋃

W∈C
W =

⋃
W∈C

(A ∩ VW ) = A ∩
⋃

W∈C
VW = A ∩ Z.

Moreover Z is open in X. It follows that Y ∈ τA. Thus any union of subsets
of A belonging to τA must itself belong to τA.

Now let W1,W2, . . . ,Wm be subsets of A that each belong to the collec-
tion τA. Then there exist open sets V1, V2, . . . , Vm in X such that Wi = A∩Vi
for i = 1, 2, . . . ,m. Then

W1 ∩W2 ∩ · · · ∩Wr = A ∩ V,

where
V = V1 ∩ V2 ∩ · · · ∩ Vr.

Now V is a finite intersection of subsets of X that are open in X. It follows
that V is itself open in X, and therefore

W1 ∩W2 ∩ · · · ∩Wr ∈ τA.

We have thus shown that τA is a topology on A, as required.

Definition Let X be a topological space and let A be a subset of X. The
subspace topology on A is the topology on A whose open sets are characterized
by the following criterion:

A subset W of A is open with respect to the subspace topology
on A if and only if there exists some open set V in X for which
W = A ∩ V .

Proposition 1.11 Let X be a metric space with distance function d, let A
be a subset of X, let p be a point of A and let N be a subset of A for which
p ∈ N . Then N is a neighbourhood of p with respect to the subspace topology
on A if and only if there exists some positive real number δ such that

{x ∈ A : d(x, p) < δ} ⊂ N.

Proof Let
BA(p, δ) = {x ∈ A : d(x, p) < δ}

and
BX(p, δ) = {x ∈ X : d(x, p) < δ}
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for all positive real numbers δ. Suppose that there exists some positive real
number δ for which BA(p, δ) ⊂ N . We must show that N is a neighbourhood
of p with respect to the subspace topology onA. NowBA(p, δ) = A∩BX(p, δ),
where BX(p, δ) is the open ball in X of radius δ about the point p. Moreover
BX(p, δ) is open in X (Lemma 1.1) and A ∩ BX(p, δ) ⊂ N . It follows that
N is a neighbourhood of p in A with respect to the subspace topology on A.

Conversely suppose that N is a neighbourhood of p with respect to the
subspace topology on A. We must show that there exists some positive real
number δ for which BA(p, δ) ⊂ N . Now the definitions of neighbourhoods
and the subspace topology together ensure the existence of an open set V
in X for which p ∈ V and A ∩ V ⊂ N . It then follows from the definition
of open sets in metric spaces that there exists some positive real number δ
for which BX(p, δ) ⊂ V . Then BA(p, δ) ⊂ A ∩ V ⊂ N . This completes the
proof.

Corollary 1.12 Let X be a metric space with distance function d, and let
A be a subset of X. A subset W of A is open with respect to the subspace
topology on A if and only if, given any point w of W , there exists some
positive real number δ for which

{a ∈ A : d(a, w) < δ} ⊂ W.

Thus the subspace topology on A coincides with the topology on A obtained
on regarding A as a metric space whose distance function is the restriction
to A of the distance function d on X.

Proof The subset W is open in A with respect to a given topology on A
if and only if it is a neighbourhood of all of its points with respect to that
given topology (see Lemma 1.4). The required result therefore follows from
Proposition 1.11.

Example Let X be any subset of n-dimensional Euclidean space Rn. Then
the subspace topology on X coincides with the topology on X generated by
the Euclidean distance function on X. We refer to this topology as the usual
topology on X.

Lemma 1.13 Let X be a topological space, let A be a subset of X, and let
B be a subset of A. Then B is closed in A (relative to the subspace topology
on A) if and only if B = A ∩ F for some closed subset F of X.

Proof Suppose that B = A ∩ F for some closed subset F of X. Let V =
X \ F . Then V is an open set in X, and

A \B = A \ (A ∩ F ) = A ∩ (X \ F ) = A ∩ V.
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Moreover the definition of the subpace topology on A ensures that A ∩ V is
open in A. Thus the complement A\B of B in A is open in A, and therefore
the subset B of A is itself closed in A.

Conversely suppose that B is closed in A. Then A \ B is open in the
subspace topology on A, and therefore there exists some open set V in X
such that A \B = A ∩ V . Let F = X \ V . Then F is closed in X, and

A ∩ F = A ∩ (X \ V ) = A \ (A ∩ V ) = A \ (A \B) = B.

The result follows.

Lemma 1.14 Let X be a topological space, let V be an open set in X, and
let W be a subset of V . Then W is open in V if and only if W is open in X.

Proof If W is open in X then W = V ∩W and therefore W is open in V .
Conversely suppose that the set W is open in V . It then follows from the

definition of subspace topologies that W = V ∩ E for some open set E in
X. But then W is an intersection of two open sets, and is thus itself open in
X.

Lemma 1.15 Let X be a topological space, let F be a closed set in X, and
let G be a subset of F . Then G is closed in F if and only if G is closed in
X.

Proof If G is closed in X then G = F ∩G and therefore G is closed in F .
Conversely suppose that the set G is closed in F . It then follows from

Lemma 1.13 that G = F ∩ H for some closed set H in X. But then G is
an intersection of two closed sets, and is thus itself closed in X (see Propo-
sition 1.3).

1.9 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Lemma 1.16 Any subset of a Hausdorff space is itself a Hausdorff space
(with respect to the subspace topology).
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Proof Let A be a subset of a Hausdorff space X and let x and y be distinct
points of A. Then there exist open sets U and V in X such that x ∈ U ,
y ∈ V and U ∩ V = ∅. Let UA = A ∩ U and VA = A ∩ V . Then UA and
VA are subsets of A that are open in the subspace topology on A. Moreover
x ∈ UA, y ∈ VA and UA ∩ VA = ∅. The result follows.

Lemma 1.17 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and y be
points of X, where x 6= y. Let ε = 1

2
d(x, y). Then the open balls BX(x, ε)

and BX(y, ε) of radius ε centred on the points x and y are open sets (see
Lemma 1.1). If BX(x, ε) ∩ BX(y, ε) were non-empty then there would exist
z ∈ X satisfying d(x, z) < ε and d(z, y) < ε. But this is impossible, since it
would then follow from the Triangle Inequality that d(x, y) < 2ε, contrary to
the choice of ε. Thus x ∈ BX(x, ε), y ∈ BX(y, ε), BX(x, ε) ∩ BX(y, ε) = ∅.
This shows that the metric space X is a Hausdorff space.

We now give an example of a topological space which is not a Hausdorff
space.

Example Let X be an infinite set. The cofinite topology on X is defined as
follows: a subset U of X is open (with respect to the cofinite topology) if and
only if either U = ∅ or else X \U is finite. It is a straightforward exercise to
verify that the topological space axioms are satisfied, so that the set X is a
topological space with respect to this cofinite topology. Now the intersection
of any two non-empty open sets in this topology is always non-empty. (Indeed
if U and V are non-empty open sets then U = X \F1 and V = X \F2, where
F1 and F2 are finite subsets of X. But then U ∩ V = X \ (F1 ∪ F2), which is
non-empty, since F1 ∪ F2 is finite and X is infinite.) It follows immediately
from this that an infinite set X is not a Hausdorff space with respect to the
the cofinite topology on X.

1.10 Continuous Maps between Topological Spaces

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) = {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .
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Lemma 1.18 Let X, Y and Z be topological spaces, and let f :X → Y and
g:Y → Z be continuous functions. Then the composition g ◦ f :X → Z of
the functions f and g is continuous.

Proof Let V be an open set in Z. Then g−1(V ) is open in Y (because g is
continuous), and then f−1(g−1(V )) is open in X (because f is continuous).
But f−1(g−1(V )) = (g ◦ f)−1(V ). Thus the composition function g ◦ f is
continuous.

Lemma 1.19 Let X and Y be topological spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(G)
is closed in X for every closed subset G of Y .

Proof If G is any subset of Y then X \ f−1(G) = f−1(Y \ G) (i.e., the
complement of the preimage of G is the preimage of the complement of G).
The result therefore follows immediately from the definitions of continuity
and closed sets.

Definition Let X and Y be topological spaces, let f :X → Y be a function
from X to Y and let p be a point of X. The function f is said to be continuous
at p if f−1(N) is a neighbourhood of p in X for all neighbourhoods N of f(p)
in Y .

Proposition 1.20 Let X and Y be topological spaces and let f :X → Y be
a function from X to Y . Then the function f is continuous on X if and only
if it is continuous at each point of X.

Proof Suppose that f :X → Y be continuous on X. Let p be a point of X
and let N be a neighbourhood of f(p). Then there exists an open set V in
Y for which f(p) ∈ V and V ⊂ N . The continuity of f ensures that f−1(V )
is open in X. Moreover p ∈ f−1(V ) and f−1(V ) ⊂ f−1(N). It follows
that f−1(N) is a neighbourhood of p in X. This shows that f :X → Y is
continuous at each point p of X.

Conversely suppose that f :X → Y is continuous at each point of X. Let
V be an open set in Y . Then, given any point p of f−1(V ), there exists an
open set Wp for which p ∈ Wp and Wp ⊂ f−1(V ), because the function f
is continuous at p. Then f−1(V ) =

⋃
p∈f−1(V )Wp. Thus f−1(V ) is a union

of open subsets of X, and is therefore itself open in X. We conclude that
f :X → Y is continuous on X.

Lemma 1.21 Let X and Y be topological spaces, let f :X → Y be a function
from X to Y and let p be a point of X. Then f :X → Y is continuous at p
if and only if, given any neighbourhood N of f(p), there exists a neighbour-
hood M of p for which f(M) ⊂ N .

12



Proof Let N be a neighbourhood of f(p) in Y . Suppose that there exists
a neighbourhood M of p in X for which f(M) ⊂ N . The definition of
neighbourhoods of points in topological spaces then ensures that there exists
an open set W in X for which p ∈ W and W ⊂ M . Then f(W ) ⊂ N and
therefore W ⊂ f−1(N). It follows that f−1(N) is a neighbourhood of p in
X, and thus the function f is continuous at p.

Conversely suppose that the function f is continuous at p. Let N be a
neighbourhood of f(p) in Y , and let M = f−1(N). Then M is a neighbour-
hood of p in X, because the function f is continuous at p, and f(M) ⊂ N .
The result follows.

Lemma 1.22 Let X, Y and Z be topological spaces, let f :X → Y and
g:Y → Z be functions, and let p be a point of X. Suppose that f :X → Y
is continuous at p and that g:Y → Z is continuous at f(p). Then the
composition g ◦ f :X → Z of the functions f and g is continuous at p.

Proof Let N be a neighbourhood of g(f(p)) in Z. Then g−1(N) is a neigh-
bourhood of f(p) in Y (because g is continuous), and then f−1(g−1(N)) is
a neighbourhood of p in X (because f is continuous). But f−1(g−1(N)) =
(g ◦ f)−1(N). Thus the composition function g ◦ f is continuous at p.

Proposition 1.23 Let X and Y be topological spaces and let f :X → Y be
a function from X to Y . Then f :X → Y is continuous if and only if, given
any point p of X, there exists some open set W in X such that p ∈ W and
the restriction f |W :W → Y of the function f to W is continuous on W .

Proof Suppose that f :X → Y is continuous. Let W be an open set in X,
and let V be an open set in Y . Then the preimage f−1(V ) of V is open in
X. Now (f |W )−1(V ) = f−1(V ) ∩W . It follows that (f |W )−1(V ) is open
with respect to the subspace topology on W .

Conversely suppose that, given any point p of X, there exists an open
set W in X such that p ∈ W and f |W :W → Y is continuous. Let p be a
point of X and let W be an open set in X for which p ∈ W and f |W : :W → Y
is continuous. Let N be a neighbourhood of f(p) in Y . Then (f |W )−1(N)
is a neighbourhood of p in W . It follows from the definition of the subspace
topology on W that there exists an open set E in X for which p ∈ E and
f(E ∩W ) ⊂ N . But then E ∩W is an open set in X, because both E and
W are open sets in X. It follows that f−1(N) is an open neighbourhood of
p in X. We have thus shown that the function f is continuous at p. It then
follows from Proposition 1.20 that f :X → Y is continuous, as required.
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1.11 The Pasting Lemma

We now show that, if a topological space X is the union of a finite collection of
closed sets, and if a function from X to some topological space is continuous
on each of these closed sets, then that function is continuous on X. The
names Pasting Lemma and Gluing Lemma are both used to refer to this
result.

Lemma 1.24 (Pasting Lemma) Let X and Y be topological spaces, let
f :X → Y be a function from X to Y , and let X = A1 ∪A2 ∪ · · · ∪Ak, where
A1, A2, . . . , Ak are closed sets in X. Suppose that the restriction of f to the
closed set Ai is continuous for i = 1, 2, . . . , k. Then f :X → Y is continuous.

Proof Let p be a point of X, and let N be a neighbourhood of f(p). The
continuity of the restriction of f to each closed set Ai ensures the existence
of open sets Wi for i = 1, 2, . . . , k such that Wi ∩ Ai = ∅ whenever p 6∈ Ai
and f(Wi ∩ Ai) ⊂ N whenever p ∈ Ai. Let

W = W1 ∩W2 ∩ · · · ∩Wk

Then W is an open set in X, and p ∈ W . Moreover if x ∈ W then there
exists some integer i between 1 and k for which x ∈ Ai and p ∈ Ai. Then
x ∈ Wi ∩ Ai, and therefore f(x) ∈ N . We conclude from this that the
function f is continuous at each point p of X. It follows that the function f
is continuous on X (see Proposition 1.20).

Alternative Proof A function f :X → Y is continuous if and only if f−1(G)
is closed in X for every closed set G in Y (Lemma 1.19). Let G be an closed
set in Y . Then f−1(G) ∩ Ai is closed in the subspace topology on Ai for
i = 1, 2, . . . , k, because the restriction of f to Ai is continuous for each i.
But Ai is closed in X, and therefore a subset of Ai is closed in Ai if and
only if it is closed in X (see Lemma 1.15). Therefore f−1(G) ∩ Ai is closed
in X for i = 1, 2, . . . , k. Now f−1(G) is the union of the sets f−1(G) ∩ Ai
for i = 1, 2, . . . , k. It follows that f−1(G), being a finite union of closed sets,
is itself closed in X. It now follows from Lemma 1.19 that f :X → Y is
continuous.

Example Let Y be a topological space, and let α: [0, 1]→ Y and β: [0, 1]→
Y be continuous functions defined on the interval [0, 1], where α(1) = β(0).
Let γ: [0, 1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

14



Now γ|[0, 1
2
] = α ◦ ρ where ρ: [0, 1

2
]→ [0, 1] is the continuous function defined

by ρ(t) = 2t for all t ∈ [0, 1
2
]. Thus γ|[0, 1

2
] is continuous, being a composition

of two continuous functions. Similarly γ|[1
2
, 1] is continuous. The subinter-

vals [0, 1
2
] and [1

2
, 1] are closed in [0, 1], and [0, 1] is the union of these two

subintervals. It follows from Lemma 1.24 that γ: [0, 1]→ Y is continuous.

Example Let X be the surface of a closed cube in R3 and let f :X → Y be
a function mapping X into a topological space Y . The topological space X
is the union of the six square faces of the cube, and each of these faces is
a closed subset of X. The Pasting Lemma Lemma 1.24 ensures that the
function f is continuous if and only if its restrictions to each of the six faces
of the cube is continuous on that face.

We now present a couple of examples to show that the conclusions of the
Pasting Lemma (Lemma 1.24) do not follow when the conditions stated in
that lemma are relaxed.

Example Let f :R→ R be defined so that

f(x) =

{
0 if x ≤ 0,
1 if x > 0,

and let A1 = {x ∈ R : x ≤ 0} and A2 = {x ∈ R : x > 0}. The restriction
of the function f to each of the subsets A1 and A2 of R is continuous on
that subset, but the function f itself is not continuous on R. This does not
contradict the Pasting Lemma because the subset A2 of R is not closed in R.

Example Let

X = {0} ∪
{

1

n
: n ∈ Z and n > 0

}
,

and let f :X → R be defined so that f(0) = 0 and f(1/n) = n for all
positive integers n. For each x ∈ X, the set {x} is a closed subset of X,
and the restriction of f to each of these one-point subsets is continuous on
that subset. But the function f itself is not continuous on X. This does not
contradict the Pasting Lemma because the number of these one-point closed
subsets of X is infinite.

1.12 Continuous Functions between Metric Spaces

The following proposition shows that the definition of continuity for func-
tions between topological spaces is consistent with the standard definition of
continuity for functions between metric spaces that is expressed directly in
terms of distance functions on those metric spaces.
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Proposition 1.25 Let X and Y be metric spaces with distance functions dX
and dY respectively, let f :X → Y be a function from X to Y , and let p be a
point of X. Then the following two conditions are equivalent:

(i) given any neighbourhood N of f(p) in Y , there exists a neighbour-
hood M of p in X for which f(M) ⊂ N ;

(ii) given any positive real number ε, there exists some positive real num-
ber δ such that dY (f(x), f(p)) < ε for all points x of X for which
d(x, p) < δ.

(iii) the function f :X → Y is continuous at p.

Proof Suppose that, given any neighbourhood N of f(p) in Y , there exists
a neighbourhood M of p for which f(M) ⊂ N . Let some positive real
number ε be given. Then the open ball BY (f(p), ε) of radius ε about the
point f(p) is a neighbourhood of f(p) in Y . It follows that there exists a
neighbourhood M of p for which f(M) ⊂ BY (f(p), ε). There then exists
some positive real number δ such that BX(p, δ) ⊂ M (see Lemma 1.8). If
x ∈ X satisfies dX(x, p) < δ then x ∈ M and therefore f(x) ∈ BY (f(p), ε).
But then dY (f(x), f(p)) < ε. Thus (i) implies (ii).

Conversely suppose that, given any positive real number ε, there exists
some positive real number δ such that dY (f(x), f(p)) < ε for all points x of X
for which d(x, p) < δ. Let N be a neighbourhood of f(p). Then there exists
some positive real number ε for which BY (f(p), ε) ⊂ N , where BY (f(p), ε)
denotes the open ball of radius ε about the point f(p). There then exists some
positive real number δ for which f(BX(p, δ)) ⊂ BY (f(p), ε), where BX(p, δ)
denotes the open ball of radius δ about the point p. Let M = BX(p, δ). Then
M is a neighbourhood of p in X and f(M) ⊂ N . Thus (ii) implies (i).

The equivalence of (i) and (iii), for functions between general topological
spaces, was proved in Lemma 1.21. This completes the proof.

1.13 Homeomorphisms

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse h−1:Y → X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .
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If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

1.14 Bases for Topologies

Proposition 1.26 Let X be a set, let β be a collection of subsets of X, and
let τ be the collection consisting of the empty set, together with all subsets of
X that are unions of sets belonging to the collection β. Then τ is a topology
on X if and only if the following conditions are satisfied:—

(i) the set X is the union of the subsets belonging to the collection β;

(ii) given subsets B1, B2 ∈ β, and given any point p of B1∩B2, there exists
some B ∈ β such that p ∈ B and B ⊂ B1 ∩B2.

Proof First suppose that τ is a topology on X. Then X ∈ τ . But any
subset of X that belongs to τ is a union of sets belonging to β. Therefore X
is a union of subsets belonging to the collection β, and thus condition (i) is
satisfied.

Moreover the intersection of any two open subsets of a topological space
is required to be open. Thus if τ is a topology on X, and if B1, B2 ∈ β, then
B1, B2 ∈ τ and therefore B1 ∩ B2 ∈ τ . It follows that B1 ∩ B2 is a union of
subsets of X that belong to β, and therefore, given any p ∈ B1 ∩ B2, there
exists B ∈ β such that p ∈ B and B ⊂ B1 ∩ B2. Thus condition (ii) is
satisfied.

Conversely we must prove that if the collection β of subsets of a set X
satisfies conditions (i) and (ii) then the collection τ of unions of sets belonging
to β is a topology on X.

The empty set belongs to τ . Condition (i) ensures that the whole set X
belongs to τ . It follows directly from the definition of τ that any union of sets
belonging to τ is a union of sets belonging to β, and therefore itself belongs
to τ .

It therefore only remains to show that the intersection of any finite col-
lection of sets belonging to τ belongs to τ . It suffices to prove that the
intersection of two sets belonging to τ belongs to τ . Let V1, V2 ∈ τ , and let
p ∈ V1 ∩ V2. Then V1 and V2 are union of sets belonging to β, and therefore
there exist B1, B2 ∈ β such that p ∈ B1, p ∈ B2, B1 ⊂ V1, and B2 ⊂ V2.
Now condition (ii) ensures the existence of Bp ∈ β such that p ∈ Bp and
Bp ⊂ B1∩B2. Then Bp ⊂ V1∩V2. It follows that the set V1∩V2 is the union
of all subsets B of V1∩V2 that belong to β, and therefore V1∩V2 itself belongs
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to τ . It then follows by induction on the number of sets involved that the
intersection of any finite number of subsets of X belonging to τ must itself
belong to τ . Thus τ is a topology on the set X, as required.

Definition Let X be a set. A collection β of subsets of X is said to be a
base for a topology on X if the following conditions are satisfied:—

(i) the set X is the union of the subsets belonging to the collection β;

(ii) given subsets B1, B2 ∈ β, and given any point p of B1∩B2, there exists
some B ∈ β such that p ∈ B and B ⊂ B1 ∩B2.

If β is a base for a topology on X then the topology generated by β is the
topology whose open sets are those subsets of X that are unions of sets
belonging to the base β.

Lemma 1.27 Let X be a set, and let β be a base for a topology on X. A
non-empty subset V is open in X with respect to the topology generated by β
if and only if, given any point v of V , there exists B ∈ β such that v ∈ B
and B ⊂ V .

Proof This result follows directly from the fact that the non-empty open
sets in X are those subsets of X that are unions of sets belonging to the
base β.

Example Let X be a metric space. Then the collection of all open balls
of positive radius centred on points of X is a base for the topology on X
generated by the distance function on X.

1.15 Product Topologies

The Cartesian product X1 ×X2 × · · · ×Xn of sets X1, X2, . . . , Xn is defined
to be the set of all ordered n-tuples (x1, x2, . . . , xn), where xi ∈ Xi for i =
1, 2, . . . , n.

The sets R2 and R3 are the Cartesian products R × R and R × R × R
respectively.

Let X1, X2, X3, . . . , Xn be topological spaces, and let Vi and Wi be open
sets in Xi for i = 1, 2, . . . , n. Then

(V1 × V2 × · · · × Vn) ∩ (W1 ×W2 × · · · ×Wn) = E1 × E2 × · · · × En,

where Ei = Vi ∩Wi for i = 1, 2, . . . , n. The intersection of two open sets in
a topological space is always itself open. Therefore Ei is an open set in Xi
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for i = 1, 2, . . . , n. It follows from this that if β is the collection of subsets of
X1×X2×· · ·×Xn that are of the form V1×V2×· · ·×Vn, where Vi is open in
Xi for i = 1, 2, . . . , n, then β is the base for a topology on X1×X2×· · ·×Xn.
This topology is the product topology on this Cartesian product of topological
spaces. Lemma 1.27 ensures that a non-empty subset W of X1×X2×· · ·×Xn

is open in X1×X2×· · ·×Xn with respect to this product topology if and only
if, given any point (x1, x2, . . . , xn) of W , there exist open sets V1, V2, . . . , Vn
such that xi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂ W.

The definition of the product topology is then encapsulated in the follow-
ing formal definition.

Definition Let X1, X2, . . . , Xn be topological spaces. The product topology
on the Cartesian product X1 ×X2 × · · · ×Xn is the unique topology on this
Cartesian product of sets that satisfies the following criterion:

a non-empty subset W of the Cartesian product X1×X2×· · ·×Xn

is open with respect to the product topology if and only if, given
any point (x1, x2, . . . , xn) of W , there exist open sets Vi in Xi for
i = 1, 2, . . . , n such that xi ∈ Vi for i = 1, 2, . . . , n and

V1 × V2 × · · · × Vn ⊂ W.

The following result follows directly from the definition of the product
topology.

Lemma 1.28 Let X1, X2, . . . , Xn be topological spaces, let p be a point of
X1 ×X2 × · · · ×Xn, and let N be a subset of X1 ×X2 × · · · ×Xn for which
p ∈ N . Then N is a neighbourhood of p in X if and only if there exist
open sets Vi in Xi for i = 1, 2, . . . , n for which p ∈ V1 × V2 · · · × Vn and
V1 × V2 × · · · × Vn ⊂ N .

Lemma 1.29 Let X1, X2, . . . , Xn and Z be topological spaces. Then a func-
tion f :X1×X2×· · ·×Xn → Z is continuous at a point p of X1×X2×· · ·×Xn

if and only if, and given any open set W in Z containing f(p), there exist
open sets Vi in Xi for i = 1, 2, . . . , n for which p ∈ V1 × V2 · · · × Vn and
f(V1 × V2 × · · · × Vn) ⊂ W .

Proof Given any neighbourhood N of f(p), there exists an open set W in
Y such that f(p) ∈ W and W ⊂ N . It follows from this that the function f
is continuous at p if and only if f−1(W ) is a neighbourhood of p in X for
all open sets W in Y for which f(p) ∈ W . The result therefore follows on
applying Lemma 1.28.
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Let X1, X2, . . . , Xn be topological spaces, and let Vi be an open set in
Xi for i = 1, 2, . . . , n. It follows directly from the definition of the product
topology that V1 × V2 × · · · × Vn is open in X1 ×X2 × · · · ×Xn.

Proposition 1.30 Let X = X1 ×X2 × · · · ×Xn, where X1, X2, . . . , Xn are
topological spaces and X is given the product topology, and for each i, let
pi:X → Xi denote the projection function which sends (x1, x2, . . . , xn) ∈ X
to xi. Let f :Z → X mapping a topological space Z into X and let z be a
point of Z. Then f :Z → X is continuous at z if and only if pi ◦ f :Z → Xi

is continuous at z for i = 1, 2, . . . , n.

Proof Let V be an open set in Xi. Then

p−1i (V ) = X1 × · · · ×Xi−1 × V ×Xi+1 × · · · ×Xn,

and therefore p−1i (V ) is open in X. Thus pi:X → Xi is continuous for all i.
It follows that if the function f :Z → X is continuous at a point z of Z then
the composition functions pi ◦ f are also continuous at z for i = 1, 2, . . . , n
(see Lemma 1.22).

Conversely suppose that f :Z → X is a function with the property that
pi ◦ f is continuous at z for i = 1, 2, . . . , n, where z ∈ Z. Let N be a
neighbourhood of f(z) in X. Then there exist V1, V2, . . . , Vn, where Vi is
open in Xi for i = 1, 2, . . . , n, such that f(z) ∈ V1 × V2 × · · · × Vn and
V1 × V2 × · · · × Vn ⊂ N (see Lemma 1.28). Let

Wz = f−11 (V1) ∩ f−12 (V2) ∩ · · · ∩ f−1n (Vn),

where fi = pi ◦ f for i = 1, 2, . . . , n. Then z ∈ Wz, and the continuity
of f1, f2, . . . , fn ensures that Wz is an open set in Z. Moreover f(z′) ∈
V1 × V2 × · · · × Vn for all z′ ∈ Wz, and therefore Wz ⊂ f−1(N). We have
thus shown that f−1(N) is a neighbourhood of z for all neighbourhoods N
of f(z). It follows that f :Z → X is continuous at z, as required.

Proposition 1.31 The usual topology on Rn coincides with the product
topology on Rn obtained on regarding Rn as the Cartesian product R × R ×
· · · × R of n copies of the real line R.

Proof We must show that a subset W of Rn is open with respect to the
usual topology if and only if it is open with respect to the product topology.

Let W be a subset of Rn that is open with respect to the usual topology,
and let q ∈ W . Then there exists some positive real number δ such that
B(q, δ) ⊂ W , where

B(q, δ) = {x ∈ Rn : |x− q| < δ}.
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Let J1, J2, . . . , Jn be the open intervals in R defined by

Ji =

{
t ∈ R : qi −

δ√
n
< t < qi +

δ√
n

}
(i = 1, 2, . . . , n),

Then J1, J2, . . . , Jn are open sets in R. Moreover

{q} ⊂ J1 × J2 × · · · × Jn ⊂ B(q, δ) ⊂ W,

since

|x− q|2 =
n∑
i=1

(xi − qi)2 < n

(
δ√
n

)2

= δ2

for all x ∈ J1 × J2 × · · · × Jn. This shows that any subset W of Rn that is
open with respect to the usual topology on Rn is also open with respect to
the product topology on Rn.

Conversely suppose that W is a subset of Rn that is open with respect
to the product topology on Rn, and let q ∈ W . Then there exist open
sets V1, V2, . . . , Vn in R containing q1, q2, . . . , qn respectively such that V1 ×
V2 × · · · × Vn ⊂ W . Now we can find δ1, δ2, . . . , δn such that δi > 0 and
(qi − δi, qi + δi) ⊂ Vi for all i. Let δ be the minimum of δ1, δ2, . . . , . . . , δn.
Then δ > 0, and

B(q, δ) ⊂ V1 × V2 × · · · × Vn ⊂ W,

for if x ∈ B(q, δ) then |xi − qi| < δi for i = 1, 2, . . . , n. This shows that any
subset W of Rn that is open with respect to the product topology on Rn is
also open with respect to the usual topology on Rn.

The following result is now an immediate corollary of Proposition 1.31
and Proposition 1.30.

Corollary 1.32 Let X be a topological space and let f :X → Rn be a function
from X to Rn. Let us write

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components f1, f2, . . . , fn of f are functions from X
to R. The function f is continuous if and only if its components f1, f2, . . . , fn
are all continuous.

Let f :X → R and g:X → R be continuous real-valued functions on some
topological space X. We claim that f+g, f−g and f.g are continuous. Now
it is a straightforward exercise to verify that the sum and product functions
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s:R2 → R and p:R2 → R defined by s(x, y) = x + y and p(x, y) = xy
are continuous, and f + g = s ◦ h and f.g = p ◦ h, where h:X → R2 is
defined by h(x) = (f(x), g(x)). Moreover it follows from Corollary 1.32 that
the function h is continuous, and compositions of continuous functions are
continuous. Therefore f + g and f.g are continuous, as claimed. Also −g
is continuous, and f − g = f + (−g), and therefore f − g is continuous. If
in addition the continuous function g is non-zero everywhere on X then 1/g
is continuous (since 1/g is the composition of g with the reciprocal function
t 7→ 1/t), and therefore f/g is continuous.

Lemma 1.33 The Cartesian product X1 ×X2 × . . . Xn of Hausdorff spaces
X1, X2, . . . , Xn is Hausdorff.

Proof Let X = X1 ×X2 × . . . , Xn, and let u and v be distinct points of X,
where u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn). Then xi 6= yi for some
integer i between 1 and n. But then there exist open sets U and V in Xi

such that xi ∈ U , yi ∈ V and U ∩ V = ∅ (since Xi is a Hausdorff space).
Let pi:X → Xi denote the projection function. Then p−1i (U) and p−1i (V ) are
open sets in X, since pi is continuous. Moreover u ∈ p−1i (U), v ∈ p−1i (V ),
and p−1i (U) ∩ p−1i (V ) = ∅. Thus X is Hausdorff, as required.

1.16 Identification Maps and Quotient Topologies

Definition Let X and Y be topological spaces and let q:X → Y be a
function from X to Y . The function q is said to be an identification map if
and only if the following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open in X.

It follows directly from the definition that any identification map is con-
tinuous. Moreover, in order to show that a continuous surjection q:X → Y
is an identification map, it suffices to prove that if V is a subset of Y with
the property that q−1(V ) is open in X then V is open in Y .

Lemma 1.34 Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. Then there is a unique topology on Y for which the function
q:X → Y is an identification map.

Proof Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and
Y ∈ τ .
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Let {Vα : α ∈ A} be a collection of subsets of Y indexed by a set A. Then
it is a straightforward exercise to verify that⋃

α∈A
q−1(Vα) = q−1

(⋃
α∈A

Vα

)
,

and ⋂
α∈A

q−1(Vα) = q−1
(⋂

α∈A
Vα

)
(i.e., given any collection of subsets of Y , the union of the preimages of the
sets is the preimage of the union of those sets, and the intersection of the
preimages of the sets is the preimage of the intersection of those sets). It
follows easily from this that unions and finite intersections of sets belonging
to τ must themselves belong to τ . Thus τ is a topology on Y , and the
function q:X → Y is an identification map with respect to the topology τ .
Clearly τ is the unique topology on Y for which the function q:X → Y is an
identification map.

Definition Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. The unique topology on Y for which the function q is an
identification map is referred to as the quotient topology (or identification
topology) on Y .

Lemma 1.35 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let Z be a topological space, and let f :Y → Z be a
function from Y to Z. Then the function f is continuous if and only if the
composition function f ◦ q:X → Z is continuous.

Proof Suppose that f is continuous. Then the composition function f ◦ q is
a composition of continuous functions and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open set in Z.
Then q−1(f−1(U)) is open in X (since f ◦ q is continuous), and hence f−1(U)
is open in Y (since the function q is an identification map). Therefore the
function f is continuous, as required.

Example Let S1 be the unit circle in R2, and let q: [0, 1] → S1 be the
map that sends t ∈ [0, 1] to (cos 2πt, sin 2πt). Then q: [0, 1] → S1 is an
identification map, and therefore a function f :S1 → Z from S1 to some
topological space Z is continuous if and only if f ◦q: [0, 1]→ Z is continuous.

Example Let Sn be the n-sphere, consisting of all points x in Rn+1 satisfying
|x| = 1. Let RP n be the set of all lines in Rn+1 passing through the origin
(i.e., RP n is the set of all one-dimensional vector subspaces of Rn+1). Let
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q:Sn → RP n denote the function which sends a point x of Sn to the element
of RP n represented by the line in Rn+1 that passes through both x and the
origin. Note that each element of RP n is the image (under q) of exactly two
antipodal points x and −x of Sn. The function q induces a corresponding
quotient topology on RP n such that q:Sn → RP n is an identification map.
The set RP n, with this topology, is referred to as real projective n-dimensional
space. In particular RP 2 is referred to as the real projective plane. It follows
from Lemma 1.35 that a function f :RP n → Z from RP n to any topological
space Z is continuous if and only if the composition function f ◦ q:Sn → Z
is continuous.

1.17 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If V andW are open covers of some topological space X thenW is said to
be a subcover of V if and only if every open set belonging to W also belongs
to V .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 1.36 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection V
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to V such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the Least Upper Bound Principle which states that, given any non-
empty set S of real numbers which is bounded above, there exists a least
upper bound (or supremum) supS for the set S.

Theorem 1.37 (Heine-Borel Theorem in One Dimension) Let a and
b be real numbers satisfying a < b. Then the closed bounded interval [a, b] is
a compact subset of R.
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Proof Let V be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to V , and let s = supS. Now
s ∈ W for some open set W belonging to V . Moreover W is open in R, and
therefore there exists some positive real number δ such that (s−δ, s+δ) ⊂ W .
Moreover s− δ is not an upper bound for the set S, hence there exists some
τ ∈ S satisfying τ > s − δ. It follows from the definition of S that [a, τ ] is
covered by some finite collection V1, V2, . . . , Vr of open sets belonging to V .

Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to V , as required.

Lemma 1.38 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let V be any collection of open sets in X covering A. On adjoining
the open set X \ A to V , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection V that belong to this finite subcover. It
follows from Lemma 1.36 that A is compact, as required.

Lemma 1.39 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

Lemma 1.40 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.
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Proof Let Vj = {x ∈ X : −j < f(x) < j} for all positive integers j.
For each integer j the subset Vj of X is the preimage under the continuous
map f of the open interval (−j, j), and moreover (−j, j) is open in R. It
follows from the continuity of f that Vj is an open set in X for all positive
integers j. Moreover the compact topological space X is covered by these
open sets. It follows from the compactness of X that there exist positive
integers j1, j2, . . . , jk such that

X = Vj1 ∪ Vj2 ∪ · · · ∪ Vjk .

Let N be the largest of the positive integers j1, j2, . . . , jk. Then −N < f(x) <
N for all x ∈ X. The result follows.

Proposition 1.41 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof The function f :X → R is bounded on X (Lemma 1.40). Let m =
inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. For each positive integer j
let Vj = {x ∈ X : f(x) < M − 1/j}. Then the set Vj is an open set in X,
being the preimage of an open interval in R under the continuous map f . If
j1, j2, . . . , jk are positive integers then

Vj1 ∪ Vj2 ∪ · · · ∪ Vjk = VN

where N is the largest of the positive integers j1, j2, . . . , jk. Moreover VN is a
proper subset of X, because M−1/N is not an upper bound on the values of
the function f on X. It follows that X cannot covered by any finite collection
of sets from the collection (Vj : j ∈ N). It then follows from the compactness
of X that (Vj : j ∈ N) is not an open cover of X, and therefore there exists
v ∈ X for which f(v) = M . Applying this argument with f replaced by
−f , we conclude that there also exists u ∈ X for which f(u) = m. Then
f(u) ≤ f(x) ≤ f(v) for all x ∈ X, as required.

1.18 Compact Subsets of Hausdorff Spaces

Proposition 1.42 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point y ∈ K there exist open sets Vx,y and Wx,y such that
x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But
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then there exists a finite set {y1, y2, . . . , yr} of points of K such that K is
contained in Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr , since K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then V and W are open sets, x ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 1.43 A compact subset of a Hausdorff topological space is closed.

Proof Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 1.42 that, for each x ∈ X \ K, there
exists an open set Vx such that x ∈ Vx and Vx ∩K = ∅. But then X \K is
equal to the union of the open sets Vx as x ranges over all points of X \K,
and any set that is a union of open sets is itself an open set. We conclude
that X \K is open, and thus K is closed.

Lemma 1.44 Let f :X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then f(K) is closed in Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 1.38), and
therefore f(K) is compact (Lemma 1.39). But any compact subset of a
Hausdorff space is closed (Corollary 1.43). Thus f(K) is closed in Y , as
required.

Theorem 1.45 A continuous bijection f :X → Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof Let g:Y → X be the inverse of the bijection f :X → Y . If U is
open in X then X \ U is closed in X, and hence f(X \ U) is closed in Y
(see Lemma 1.44). But f(X \ U) = g−1(X \ U) = Y \ g−1(U). It follows
that g−1(U) is open in Y for every open set U in X. Therefore g:Y → X is
continuous, and thus f :X → Y is a homeomorphism.

Proposition 1.46 A continuous surjection f :X → Y from a compact topo-
logical space X to a Hausdorff space Y is an identification map.

Proof Let U be a subset of Y . We claim that Y \ U = f(K), where K =
X \ f−1(U). Clearly f(K) ⊂ Y \ U . Also, given any y ∈ Y \ U , there exists
x ∈ X satisfying y = f(x), since f :X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if and only if f−1(U) is open
in X. First suppose that f−1(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y , by Lemma 1.44. It follows that U is open in Y .
Conversely if U is open in Y then f−1(U) is open in X, since f :X → Y is
continuous. Thus the surjection f :X → Y is an identification map.
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Example Let S1 be the unit circle in R2, defined by S1 = {(x, y) ∈ R2 :
x2 + y2 = 1}, and let q: [0, 1] → S1 be defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. It has been shown that the map q is an identification map.
This also follows directly from the fact that q: [0, 1] → S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.

1.19 The Lebesgue Lemma and Uniform Continuity

Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Lemma 1.47 (Lebesgue Lemma) Let (X, d) be a compact metric space
and let V be an open cover of X. Then there exists a positive real number δ
such that every subset of X whose diameter is less than δ is contained wholly
within one of the open sets belonging to the open cover V.

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover V . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover V . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δ be the minimum of δ1, δ2, . . . , δr.
Then δ > 0. Suppose that A is a subset of X whose diameter is less than δ.
Let u be a point of A. Then u belongs to B(xi, δi) for some integer i between
1 and r. But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover V . Thus A is contained wholly within one of the open sets
belonging to V , as required.

Let V be an open cover of a compact metric space X. A Lebesgue number
for the open cover V is a positive real number δ such that every subset of X
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whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover V . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

Definition Let X and Y be metric spaces with distance functions dX and dY
respectively, and let f :X → Y be a function from X to Y . The function f is
said to be uniformly continuous on X if and only if, given ε > 0, there exists
some positive real number δ such that dY (f(x), f(x′)) < ε for all points x
and x′ of X satisfying dX(x, x′) < δ. (The value of δ should be independent
of both x and x′.)

Theorem 1.48 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X.
It follows from the Lebesgue Lemma (Lemma 1.47) that there exists some
positive real number δ such that every subset of X whose diameter is less
than δ is a subset of some set Vy. Let x and x′ be points of X satisfying
dX(x, x′) < δ. The diameter of the set {x, x′} is dX(x, x′), which is less than
δ. Therefore there exists some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But
then dY (f(x), y) < 1

2
ε and dY (f(x′), y) < 1

2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

1.20 Finite Cartesian Products of Compact Spaces

Theorem 1.49 A Cartesian product of a finite number of compact spaces is
itself compact.
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Proof It suffices to prove that the product of two compact topological spaces
X and Y is compact, since the general result then follows easily by induction
on the number of compact spaces in the product.

Let V be an open cover of X × Y . Then for each x ∈ X and y ∈ Y there
exists an open set Vx,y in X × Y belonging to the open cover V for which
(x, y) ∈ Vx,y. It then follows from the definition of the product topology on
X×Y that there exist an open set Dx,y in X and an open set Ex,y in Y such
that x ∈ Dx,y, y ∈ Ex,y and Dx,y × Ex,y ⊂ Vx,y.

Now the compactness of the topological space Y ensures that for each
x ∈ X there exists a finite subset B(x) of Y for which

⋃
y∈B(x)Ex,y = Y . Let

Wx =
⋂
y∈B(x)Dx,y. Then Wx is the intersection of a finite number of open

sets in X, and is therefore itself an open set in X. Moreover

Wx × Y ⊂
⋃

y∈B(x)
(Wx × Ex,y) ⊂

⋃
y∈B(x)

(Dx,y × Ex,y)

⊂
⋃

y∈B(x)
Vx,y.

It then follows from the compactness of the topological space X that there
exists a finite subset A of X for which

⋃
x∈AWx = X. Let

C = {(x, y) : x ∈ A and y ∈ B(x)},

and, for each (x, y) ∈ C, let Vx,y be an open set in X × Y belonging to the
open cover V for which Dx,y × Ex,y ⊂ Vx,y. Now C is a finite set, and

X × Y =
⋃

x∈A
(Wx × Y ) ⊂

⋃
x∈A

⋃
y∈B(x)

Vx,y

=
⋃

(x,y)∈C
Vx,y.

Thus (Vx,y : (x, y) ∈ C) is an open cover of X × Y . Moreover it is a finite
subcover of the open cover V . We have thus shown that X × Y is compact,
as required.

Theorem 1.50 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 1.43). For
each natural number m, let Bm be the open ball of radius m about the origin,
given by Bm = {x ∈ Rn : |x| < m}. Then {Bm : m ∈ N} is an open cover of
Rn. It follows from the compactness of K that there exist natural numbers
m1,m2, . . . ,mk such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk

. But then K ⊂ BM ,
where M is the maximum of m1,m2, . . . ,mk, and thus K is bounded.
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Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem 1.37), and C is the Cartesian product of n copies of the com-
pact set [−L,L]. It follows from Theorem 1.49 that C is compact. But K is
a closed subset of C, and a closed subset of a compact topological space is
itself compact, by Lemma 1.38. Thus K is compact, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 1.48
and Theorem 1.50 that any continuous function f :K → Rk is uniformly
continuous.

1.21 Connected Topological Spaces

Definition A topological space X is said to be connected if the empty set ∅
and the whole space X are the only subsets of X that are both open and
closed.

Lemma 1.51 A topological space X is connected if and only if there do not
exist non-empty open subsets V and W of X for which both V ∪W = X and
V ∩W = ∅.

Proof Suppose that X is connected. Let V and W be open subsets of X.
If V ∪W = X and V ∩W = ∅ then V = X \W , and thus the subset V
of X is both open and closed. It follows from the connectedness of X that
either V = ∅ or else V = X. Moreover W = X in the case when V = ∅, and
W = ∅ in the case when V = X. Thus the sets V and W cannot both be
non-empty. We conclude that if the topological space X is connected then
there cannot exist non-empty open sets V and W for which both V ∩W = X
and V ∩W = ∅.

Conversely let X be a topological space that does not contain non-empty
open sets V and W with the property that both V ∪W = X and V ∩W = ∅.
Let V be a subset of X that is both open and closed, and let W = X \ V .
Then the sets V and W are both open in X, V ∪W = X and V ∩W = ∅. It
follows that the open sets V and W cannot both be non-empty, and therefore
either V = ∅ or else W = ∅, in which case V = X. This shows that X is
connected, as required.

The following two lemmas are immediate consequences of Lemma 1.51
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Lemma 1.52 A topological space X is connected if and only if it has the
following property: if U and V are non-empty open sets in X such that
U ∪ V = X, then U ∩ V is non-empty.

Lemma 1.53 A topological space X is connected if and only if it has the
following property: if U and V are non-empty open sets in X such that
U ∩ V = ∅, then U ∪ V is a proper subset of X.

Definition A topological space D is discrete if every subset of D is open in
D.

Example The set Z integers with the usual topology is an example of a
discrete topological space. Indeed, given any integer n, the set {n} is open
in Z, because it is the intersection of Z with the open ball in R of radius
1
2

about n. Any non-empty subset S of Z is the union of the sets {n} as n
ranges over the elements of S. Therefore every subset of Z is open in Z, and
thus Z, with the usual topology, is a discrete topological space.

Proposition 1.54 Let X be a topological space, and let D be a discrete
topological space with at least two elements. Then X is connected if and only
if every continuous function from X to D is constant.

Proof Suppose that X is connected. Let f :X → D be a continuous function
from X to D, let d ∈ f(X), and let Z = f−1({d}). Now {d} is both open and
closed in D. It follows from the continuity of f :X → D that Z is both open
and closed in X. Moreover Z is non-empty. It follows from the connectedness
of X that Z = X, and thus f :X → D is constant.

Now suppose that X is not connected. Then there exists a non-empty
proper subset Z of X that is both open and closed in X. Let d1 and d2 be
elements of D, where d1 6= d2, and let f :X → D be defined so that

f(x) =

{
d1 if x ∈ Z;
d2 if x ∈ X \ Z.

If V is a subset of D then f−1(V ) is one of the following four sets: ∅, Z, X\Z,
X. It follows that f−1(V ) is open in X for all subsets V of D. Therefore
f :X → D is continuous. But the function f :X → D is not constant, because
Z is a non-empty proper subset of X. The result follows.

The following results follow immediately from Proposition 1.54.

Corollary 1.55 A topological space X is connected if and only if every con-
tinuous function f :X → {0, 1} from X to the discrete topological space {0, 1}
is constant.
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Corollary 1.56 A topological space X is connected if and only if every con-
tinuous function f :X → Z from X to the set Z of integers is constant.

Example Let X = {(x, y) ∈ R2 : x 6= 0}. The topological space X is not
connected. Indeed if f :X → Z is defined by

f(x, y) =

{
1 if x > 0,
−1 if x < 0,

then f is continuous on X but is not constant.

Definition A subset I of the set R of real numbers is said to be an interval
if (1− t)c+ td ∈ I for all c ∈ I, d ∈ I and t ∈ [0, 1].

Using the Least Upper Bound Property of the real number system one
can show that a non-empty subset of the set R of real numbers is an interval
if and only if it can be expressed in one of the following forms: [a, b], [a, b),
(a, b], (a, b), [a,+∞), (a,+∞), (−∞, b], (−∞, b), (−∞,∞).

Theorem 1.57 Every interval in the set R of real numbers is connected.

Proof An interval consisting of a single real number is clearly connected.
Throughout the remainder of the proof let I be an interval with more

than one element, and let V and W be disjoint non-empty subsets of I that
are both open in I. We shall show that V ∪W must then be a proper subset
of I.

Now there must exist real numbers c and d belonging to the interval I
and satisfying c < d for which c belongs to one of the sets V and W and d
belongs to the other. We may suppose, without loss of generality, that c ∈ V
and d ∈ W .

Let z = sup([c, d]∩V ). If t ∈ [c, d]∩V then there exists some positive real
number δ such that (t−δ, t+δ)∩[c, d] ⊂ V , and therefore t 6= z. It follows that
z 6∈ V . Similarly if t ∈ [c, d]∩W then there exists some positive real number δ
such that (t − δ, t + δ) ∩ [c, d] ⊂ W , But then (t − δ, t + δ) ∩ [c, d] ∩ V = ∅,
because V ∩W = ∅, and therefore t 6= z. It follows that z 6∈ W .

We have now shown that z 6∈ V ∪W . But z ∈ I. It follows that V ∪W
is a proper subset of I. We conclude that the interval I is connected (see
Lemma 1.51, see also Lemma 1.53).

Corollary 1.58 Let f : I → Z be a continuous integer-valued function de-
fined on an interval I in the real line. Then f : I → Z is a constant function.
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Proof The result follows directly on combining the results of Corollary 1.56
and Theorem 1.57.

Lemma 1.59 Let X be a topological space, and let A be a subset of X. Then
A is connected (with respect to the subspace topology on A) if and only if,
given open sets V and W in X for which A ∩ V 6= ∅, A ∩ W 6= ∅ and
A ⊂ V ∪W , the set A ∩ V ∩W is non-empty.

Proof A subset of A is open in the subspace topology if and only if it is of
the form A ∩ V for some open set V in X. It follows from Lemma 1.52 that
A is connected if and only if, given any open sets V and W in X for which
A∩V 6= ∅, A∩W 6= ∅ and (A∩V )∪ (A∩W ) = A, the set (A∩V )∩ (A∩W )
is the emptyset. Now (A∩ V )∪ (A∩W ) = A if and only if A ⊂ V ∪W , and
(A ∩ V ) ∩ (A ∩W ) = ∅ if and only if A ∩ V ∩W = ∅. The result therefore
follows directly on applying Lemma 1.52.

Lemma 1.60 Let X be a topological space and let A be a connected subset
of X. Then the closure A of A is connected.

Proof Let V and W be open sets in X for which V ∩ A 6= ∅, W ∩ A 6= ∅,
and A ⊂ V ∪W . The definition of the closure of A in X ensures that if A is
a subset of a closed subset F of X then A is also a subset of F . Now X \ V
and X \W are closed subsets of X and A is not a subset of either X \ V
or X \W . It follows that A is not a subset of either X \ V or X \W and
therefore V ∩ A 6= ∅ and W ∩ A 6= ∅ (see Lemma 1.6). Also A ⊂ V ∪W . It
follows from the connectedness of A that A ∩ V ∩W 6= ∅ (see Lemma 1.59).
Therefore A ∩ V ∩W 6= ∅. We conclude from this that A is connected, as
required.

Alternative Proof Let f :A → Z be a continuous function mapping the
closure A of A into the set Z of integers. It follows from Corollary 1.56 that
the restriction of the function f to the connected set A is constant. Therefore
there exists some integer n such that f(x) = n for all x ∈ A.

Let B = {x ∈ A : f(x) = n}. Now {n} is closed in Z. It follows from
the continuity of f that the set B is closed in the subspace topology on A.
Therefore B = A∩F for some closed subset F of X. But A is itself closed in
X. It follows that B is closed in X, and therefore A ⊂ B. Thus B = A, and
therefore the continuous function f :A → Z is constant on A. The required
result therefore follows from Corollary 1.56.

Lemma 1.61 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a connected subset of X. Then f(A) is con-
nected.
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Proof Let V and W be open sets in Y for which V ∩f(X) 6= ∅, W∩f(X) 6= ∅
and f(X) ⊂ V ∪W . Then f−1(V ) 6= ∅, f−1(W ) 6= ∅ and X ⊂ f−1(V ) ∪
f−1(W ). It follows from the connectedness of X that f−1(V )∩ f−1(W ) 6= ∅.
Let x ∈ f−1(V )∩f−1(W ). Then f(x) ∈ V ∩W , and therefore f(X)∩V ∩W 6=
∅. It follows from Lemma 1.59 that the subset f(X) of Y is connected, as
required.

Alternative Proof Let g: f(A)→ Z be any continuous integer-valued func-
tion on f(A). Then g◦f :A→ Z is a continuous integer-valued function on A.
It follows from Corollary 1.56 that g ◦f is constant on A. Therefore g is con-
stant on f(A). We deduce from Corollary 1.56 that f(A) is connected.

1.22 Products of Connected Topological Spaces

Lemma 1.62 The Cartesian product X × Y of connected topological spaces
X and Y is itself connected.

Proof Let f :X×Y → Z be a continuous integer-valued function from X×Y
to Z. Choose x0 ∈ X and y0 ∈ Y . The function x 7→ f(x, y0) is continuous
on X, and is thus constant. Therefore f(x, y0) = f(x0, y0) for all x ∈ X. Now
fix x. The function y 7→ f(x, y) is continuous on Y , and is thus constant.
Therefore

f(x, y) = f(x, y0) = f(x0, y0)

for all x ∈ X and y ∈ Y . We deduce from Corollary 1.56 that X × Y is
connected.

We deduce immediately that a finite Cartesian product of connected topo-
logical spaces is connected.

1.23 Connected Components of Topological Spaces

Proposition 1.63 Let X be a topological space. For each x ∈ X, let Sx be
the union of all connected subsets of X that contain x. Then

(i) Sx is connected,

(ii) Sx is closed,

(iii) if x, y ∈ X, then either Sx = Sy, or else Sx ∩ Sy = ∅.

35



Proof Let f :Sx → Z be a continuous integer-valued function on Sx, for
some x ∈ X. Let y be any point of Sx. Then, by definition of Sx, there exists
some connected set A containing both x and y. But then f is constant on A,
and thus f(x) = f(y). This shows that the function f is constant on Sx.
We deduce that Sx is connected. This proves (i). Moreover the closure Sx is
connected, by Lemma 1.60. Therefore Sx ⊂ Sx. This shows that Sx is closed,
proving (ii).

Finally, suppose that x and y are points of X for which Sx ∩ Sy 6= ∅. Let
f :Sx ∪ Sy → Z be any continuous integer-valued function on Sx ∪ Sy. Then
f is constant on both Sx and Sy. Moreover the value of f on Sx must agree
with that on Sy, since Sx ∩ Sy is non-empty. We deduce that f is constant
on Sx ∪ Sy. Thus Sx ∪ Sy is a connected set containing both x and y, and
thus Sx∪Sy ⊂ Sx and Sx∪Sy ⊂ Sy, by definition of Sx and Sy. We conclude
that Sx = Sy. This proves (iii).

Given any topological space X, the connected subsets Sx of X defined as
in the statement of Proposition 1.63 are referred to as the connected com-
ponents of X. We see from Proposition 1.63, part (iii) that the topological
space X is the disjoint union of its connected components.

Example The connected components of {(x, y) ∈ R2 : x 6= 0} are

{(x, y) ∈ R2 : x > 0} and {(x, y) ∈ R2 : x < 0}.

Example The connected components of

{t ∈ R : |t− n| < 1
2

for some integer n}.

are the sets Jn for all n ∈ Z, where Jn = (n− 1
2
, n+ 1

2
).

1.24 Path-Connected Topological Spaces

A concept closely related to that of connectedness is path-connectedness. Let
x0 and x1 be points in a topological space X. A path in X from x0 to x1 is
defined to be a continuous function γ: [0, 1] → X such that γ(0) = x0 and
γ(1) = x1.

Definition A topological space X is said to be path-connected if and only
if, given any two points x0 and x1 of X, there exists a continuous map
γ: [0, 1] → X from the closed unit interval [0, 1] to the space X for which
γ(0) = x0 and γ(1) = x1.

Proposition 1.64 Every path-connected topological space is connected.
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Proof Let X be a path-connected topological space, and let V and W be
non-empty subsets of X that are open in X and satisfy V ∩W = ∅. We show
that V ∪W is a proper subset of X.

Now X is path-connected. Therefore there exists a continuous map
γ: [0, 1]→ X for which γ(0) ∈ V and γ(1) ∈ W . Then the preimages γ−1(V )
and γ−1(W ) of V and W are open in [0, 1], because the map γ is continuous.
Moreover γ−1(V ) and γ−1(W ) are non-empty and γ−1(V )∩γ−1(W ) = ∅. Now
the interval [0, 1] is connected (Theorem 1.57). Therefore γ−1(V ) ∪ γ−1(W )
must be a proper subset of [0, 1] (see Lemma 1.53).

Let s be a real number satisfying 0 ≤ s ≤ 1 that does not belong to
either γ−1(V ) or γ−1(W ). Then γ(s) ∈ X \ (V ∪W ). Thus there cannot
exist non-empty open subsets V and W of X for which both V ∩W = ∅ and
V ∪W = X. It follows that X is connected (see Lemma 1.51).

The topological spaces R, C and Rn are all path-connected. Indeed, given
any two points of one of these spaces, the straight line segment joining these
two points is a continuous path from one point to the other. Also the n-sphere
Sn is path-connected for all n > 0. We conclude that these topological spaces
are connected.

Definition A subset X of a real vector space is said to be convex if, given
points u and v of X, the point (1−t)u+tv belongs to X for all real numbers t
satisfying 0 ≤ t ≤ 1.

Corollary 1.65 All convex subsets of real vector spaces are connected.

Remark Proposition 1.64 generalizes the Intermediate Value Theorem of
real analysis. Indeed let f : [a, b]→ R be a continuous real-valued function on
an interval [a, b], where a and b are real numbers satisfying a ≤ b. The range
f([a, b]) is then a path-connected subset of R. It follows from Proposition 1.64
that this set is connected. Let c be a real number that lies strictly between
f(a) and f(b) and let

V = {y ∈ f([a, b]) : y < c} and W = {y ∈ f([a, b]) : y > c}.

Then V and W are non-empty open subsets of f([a, b]), and V ∩W = ∅. It
follows from the connectness of f([a, b]) that V ∪W must be a proper subset
of f([a, b]) (see Lemma 1.53), and therefore c ∈ f([a, b]). Thus the range of
the function f contains all real numbers between f(a) and f(b).

Example Let f :R→ R be defined so that

f(x) =

 sin

(
1

x

)
if x 6= 0,

0 if x = 0,
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and let
X = {(x, y) ∈ R2 : y = f(x)}.

We show that X is a connected set. Let

X+ = {(x, y) ∈ R2 : x > 0 and y = f(x)}

and
X− = {(x, y) ∈ R2 : x < 0 and y = f(x)}.

Now the restriction of the function f to the set of (strictly) positive real
numbers is continuous on the set of positive real numbers. It follows from
this that the set X+ is path-connected. It then follows that the set X+

is connected (see Proposition 1.64). The connectedness of X+ can also be
verified by noting that it is the image of the connected space {x ∈ R : x > 0}
under a continuous map and is therefore itself connected (see Lemma 1.61).
Similarly the set X− is path-connected, and is therefore connected.

Let pn = (1/πn, 0) for all natural numbers n. Then pn ∈ X+ for all
natural numbers n, and pn → (0, 0) as n→ +∞. It follows that (0, 0) belongs
to the closure X+ of X+ in X. Connected components of a topological space
are closed (see Proposition 1.63). Thus the connected component of X that
includes the connected subset X+ also contains the point (0, 0). Similarly
the connected component of X that includes X +− also contains the point
(0, 0). Therefore the unique connected component of X that contains the
point (0, 0) is the whole of X and thus X is a connected topological space.

However X is not a path-connected topological space. If γ: [0, 1]→ X is a
continuous map from the closed unit interval [0, 1] intoX, and if γ(0) = (0, 0),
then γ(t) = (0, 0) for all t ∈ [0, 1]. Indeed let

s = sup{t ∈ [0, 1] : γ(t) = (0, 0)}.

It follows from the continuity of γ that γ(s) = (0, 0). There then exists some
positive real number δ such that |γ(t)− (0, 0)| < 1

2
for all t ∈ [0, 1] satisfying

|t − s| < δ. But γ([0, 1] ∩ [s, s + δ)) must also be a connected subset of
X. It follows that γ(t) = (0, 0) for all t ∈ [0, 1] satisfying s ≤ t < s + δ,
and therefore s = 1 and γ(t) = (0, 0) for all t ∈ [0, 1]. (Essentially, the
path γ cannot get from (0, 0) to any other point of X because continuity
prevents from getting over intervening humps where the function f takes
values such as ±1.) We conclude that the connected topological space X is
not path-connected.
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1.25 Locally Path-Connected Topological Spaces

Definition A topological space X is said to be locally connected if, given
any point x of X, and given any open set N in X for which x ∈ N , there
exists some connected open set V in X such that x ∈ V and V ⊂ N .

Definition A topological space X is said to be locally path-connected if,
given any point x of X, and given any open set N in X for which x ∈ N ,
there exists some path-connected open set V in X such that x ∈ V and
V ⊂ N .

Every path-connected subset of a topological space is connected. (This
follows directly from Proposition 1.64.) Therefore every locally path-con-
nected topological space is locally connected.

Proposition 1.66 Let X be a connected, locally path-connected topological
space. Then X is path-connected.

Proof Choose a point x0 of X. Let Z be the subset of X consisting of all
points x of X with the property that x can be joined to x0 by a path. We
show that the subset Z is both open and closed in X.

Now, given any point x of X there exists a path-connected open set Nx

in X such that x ∈ Nx. We claim that if x ∈ Z then Nx ⊂ Z, and if x 6∈ Z
then Nx ∩ Z = ∅.

Suppose that x ∈ Z. Then, given any point x′ of Nx, there exists a path
in Nx from x′ to x. Moreover it follows from the definition of the set Z that
there exists a path in X from x to x0. These two paths can be concatenated
to yield a path in X from x′ to x0, and therefore x′ ∈ Z. This shows that
Nx ⊂ Z whenever x ∈ Z.

Next suppose that x 6∈ Z. Let x′ ∈ Nx. If it were the case that x′ ∈ Z,
then we would be able to concatenate a path in Nx from x to x′ with a path
in X from x′ to x0 in order to obtain a path in X from x to x0. But this is
impossible, as x 6∈ Z. Therefore Nx ∩ Z = ∅ whenever x 6∈ Z.

Now the set Z is the union of the open sets Nx as x ranges over all points
of Z. It follows that Z is itself an open set. Similarly X \ Z is the union of
the open sets Nx as x ranges over all points of X \Z, and therefore X \Z is
itself an open set. It follows that Z is a subset of X that is both open and
closed. Moreover x0 ∈ Z, and therefore Z is non-empty. But the only subsets
of X that are both open and closed are ∅ and X itself, since X is connected.
Therefore Z = X, and thus every point of X can be joined to the point x0
by a path in X. We conclude that X is path-connected, as required.
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1.26 Contractible and Locally Contractible Spaces

Definition A topological space X is said to be contractible if there exists a
point p of X and a continuous map H:X× [0, 1]→ X such that H(x, 0) = x
and H(x, 1) = p for all x ∈ X.

Lemma 1.67 Convex sets in Euclidean spaces are contractible.

Proof Let X be a convex set in a Euclidean space, and let p be a point of
X. Let Let H:X× [0, 1]→ X be defined such that H(x, t) = (1−t)x+tp for
all p ∈ X and t ∈ [0, 1]. Then H(x, 0) = x and H(x, 1) = p for all x ∈ X.
It follows that the convex set X is contractible, as required.

Corollary 1.68 Open and closed balls in Euclidean spaces are contractible.

Lemma 1.69 Every contractible topological space is path-connected, and is
therefore connected.

Proof Let X be a contractible topological space. Then there exists a point p
of X and a continuous map H:X × [0, 1] → X such that H(x, 0) = x and
H(x, 1) = p for all x ∈ X.

Let u and v be points of X, and let γ: [0, 1]→ X be defined such that

γ(t) =

{
H(u, 2t) if 0 ≤ t ≤ 1

2
;

H(v, 2− 2t) if 1
2
≤ t ≤ 1;

(Note that the formulae defining γ(t) for t ≤ 1
2

and for t ≥ 1
2

are consistent
with each other, because H(u, 2t) = p = H(v, 2 − 2t) when t = 1

2
.) Now

the restrictions γ|[0, 1
2
] and γ|[1

2
, 1] of the function γ to the closed intervals

[0, 1
2
] and [1

2
, 1] are continuous on those intervals. It follows from the Pasting

Lemma (Lemma 1.24) that the function γ: [0, 1] → X is continuous. More-
over γ(0) = u and γ(1) = v. We conclude from this that the topological
space X is path-connected. It then follows from Proposition 1.64 that the
topological spaces X is connected, as required.

Example The Comb Space X is defined so that

X = {(x, y) ∈ [0, 1]× [0, 1] : y = 0 or x = 0 or x = n−1 for some n ∈ N}.

This topological space is the union of one horizontal line, from (0, 0) to (1, 0),
and an infinite number of vertical lines. First we show that the Comb Space
is contractible. Let H:X × [0, 1]→ X be defined such that

H((x, y), t) =

{
(x, (1− 2t)y) if 0 ≤ t ≤ 1

2
;

((2− 2t)x, 0) if 1
2
≤ t ≤ 1.
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The Pasting Lemma (Lemma 1.24) ensures H:X× [0, 1]→ X is a continuous
map from X × [0, 1] to X. Moreover H((x, y), 0) = (x, y) and H((x, y), 1) =
(0, 0) for all (x, y) ∈ X. Thus X is contractible.

Next we show that the Comb Space X is not locally connected. Let v be
a real number satisfying 0 < v ≤ 1, and let

N = {(x, y) ∈ X : y > 0}.

Then N is an open set in X, and (0, v) ∈ N . Let W be an open set in X for
which (0, v) ∈ W and W ⊂ N . Then there exists a positive integer n large
enough to ensure that (n−1, v) ∈ W . Let q be a positive real number chosen
to ensure that 1/q is not an integer and 0 < q < n−1, and let

V1 = {(x, y) ∈ W : x < q},
V2 = {(x, y) ∈ W : x > q}.

Now there is no point (x, y) of W for which x = q. It follows that V1 and V2
are non-empty open subsets of W for which V1 ∩ V2 = ∅ and V1 ∪ V2 = W .
It follows that W is not connected. We conclude from this that the Comb
Space X is not locally connected.

Now suppose that we remove the point (0, v) from the Comb Space X,
where 0 < v < 1. The resultant subset X\{(0, v)} of X is then connected but
not path-connected. Indeed let Y = X \ {(0, v)}. Then the point (n−1, 1)
of Y can be joined to (0, 0) by a path in Y , and therefore belongs to the
same connected component of Y as the point (0, 0). Also every open set in
Y containing the point (0, 1) contains points (n−1, 0) for sufficiently large
positive integers n, and thus the point (0, 1) belongs to the closure of the
connected component of Y that contains the point (0, 0). But connected
components of topological spaces are closed (Proposition 1.63). Therefore
the point (0, 1) belongs to the same connected component of Y as the point
(0, 0). Moreover every point of Y can be joined by a path to at least one of
the points (0, 0) and (0, 1). It follows that Y is connected. But there is no
path in Y from (0, 0) to (0, 1), and therefore Y is not path-connected.

Definition A topological space X is said to be locally contractible if, given
any point p of X, and given any open set N for which p ∈ N , there exists a
contractible open set W for which p ∈ W and W ⊂ N .

Definition A topological space is said to be locally Euclidean of dimension n
if, if, given any point p of X, and given any open set N for which p ∈ N , there
exists an open set W satisfying p ∈ W and W ⊂ N that is homeomorphic to
an open set in Rn.

41



Lemma 1.70 Locally Euclidean topological spaces are locally contractible,
and are therefore locally path-connected and locally connected.

Proof The result follows directly on combining the relevant definitions with
the result stated in Lemma 1.69.

Definition A topological manifold of dimension n is a Hausdorff space with
a countable base of open sets that is locally Euclidean of dimension n.

It follows from Lemma 1.70 that topological manifolds are locally con-
tractible, and are therefore locally path-connected and locally connected.
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