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1. A tangent vector to a smooth manifold M at some point p of M is defined to be a

operator Xp that associates a real number Xp[f ] to each smooth real-valued function f

defined throughout some open neigbourhood of p, where this operator satisfies the

following conditions:—

(i) Xp[αf+βg] = αXp[f ]+βXp[g] for all real numbers α and β and smooth functions

f and g defined around the point p;

(ii) Xp[f ·g] = Xp[f ] g(p)+f(p)Xp[g] for all smooth functions f and g defined around

the point p, where (f · g)(m) = f(m)g(m) for all points m close to p;

(iii) if f and g are smooth real-valued functions defined around p, and if f |V = g|V

for some open set V that contains the point p, then Xp[f ] = Xp[g].

Let ϕ:M → N be a smooth map between smooth manifolds M and N , and let p be a

point of M .

(a) Let Xp be a tangent vector at the point p, and let

(ϕ∗Xp)[g] = Xp[g ◦ ϕ]

for all smooth real-valued functions g that are defined throughout some open

neighbourhood of ϕ(p) in N . Prove that the operator ϕ∗Xp is a tangent vector

at ϕ(p).

(6 marks)

The derivative of the smooth map ϕ at the point p is defined to be the linear transfor-

mation ϕ∗:TpM → Tϕ(p)N characterized by the property that

(ϕ∗Xp)[g] = Xp[g ◦ ϕ]

for all smooth real-valued functions g that are defined throughout some open neigh-

bourhood of ϕ(p) in N .

(Question continues on next page)
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Let (x1, . . . , xn) be a smooth coordinate system defined throughout some open neigh-

bourhood U of the point p in M , let (y1, . . . , yk) be a smooth coordinate system defined

throughout some open neighbourhood V of the point ϕ(p) in N , and let F 1, F 2, . . . , F k

be the smooth functions of n real variables, defined throughout some open neighbour-

hood of the point (x1(p), x2(p), . . . , xn(p)) in Rn, that represent the smooth map ϕ

around p with respect to the coordinate systems on M and N , so that

yj(ϕ(u)) = F j(x1(u), x2(u), . . . , xn(u))

for j = 1, 2, . . . , k and for all u ∈ U ∩ ϕ−1(V ).

(b) Prove that

ϕ∗

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
=

k∑
j=1

bj
∂

∂yj

∣∣∣∣
ϕ(p)

,

where

bj =
n∑
i=1

ai
∂F j

∂xi

∣∣∣∣
p

.

(9 marks)

(c) Let ϕ: R2 → R be the smooth map defined such that ϕ(u, v) = u2 + v2. Calculate

ϕ∗

(
u3 ∂

∂u

∣∣∣∣
(1,0)

+ v3 ∂

∂v

∣∣∣∣
(1,0)

)
,

expressing this tangent vector to R in the form b
∂

∂x

∣∣∣∣
1

, where x is the usual

coordinate function on the real line R, and where b is some real number.

(5 marks)
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2. (a) Let πE:E → M be a smooth vector bundle over a smooth manifold M , and let

D be a differential operator which acts on each smooth vector field X and each

smooth section s of the vector bundle to produce a smooth section DXs of that

vector bundle. List the conditions that this differential operator is required to

satisfy in order that it be a connection on the vector bundle.

(5 marks)

Let D be a smooth connection on a smooth vector bundle πE:E → M of rank r, and

let U be an open subset in M which is contained in the domain of a smooth coordinate

system (x1, x2, . . . , xn) for M and over which are defined smooth sections e1, e2, . . . , er

of the vector bundle whose values e1(p), e2(p), . . . , er(p) at each point p of Ep constitute

a basis of the fibre Ep of this vector bundle over the point p. Let

Djeβ = D ∂

∂xj
eβ =

r∑
α=1

Aαβ jeα,

for j = 1, 2, . . . , n and β = 1, 2, . . . , r, where each function Aαβ j is a smooth real-

valued function on U . Let X be a smooth vector field on U , and let s:U → E be a

smooth section of the vector bundle πE:E →M defined over U , and let

X =
n∑
j=1

vj
∂

∂xj
and s =

r∑
α=1

fαeα,

where v1, v2, . . . , vn and f 1, f 2, . . . , f r are smooth real-valued functions on U .

(b) Prove that

DXs =
n∑
j=1

vjDjs,

where

Djs =
r∑

α=1

(
∂fα

∂xj
+

r∑
β=1

Aαβ jf
β

)
eα.

(7 marks)

(Question continues on next page)
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(c) What is an affine connection on a smooth manifold?

(2 marks)

(d) The torsion tensor T of an affine connection ∇ on a smooth manifold M is defined

such that

T (X, Y ) = ∇XY −∇YX − [X, Y ]

for all smooth vector fields X and Y on M . Prove that T (X, fY ) = f T (X, Y )

for all smooth vector fields X and Y and for all smooth real-valued functions f on

M .

(6 marks)
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3. Let M be a pseudo-Riemannian manifold with metric tensor g. The Levi-Civita connec-

tion ∇ on M is torsion-free, and has the property that

X[g(Y, Z)] = g(∇XY, Z) + g(Y,∇XZ)

for all smooth vector fields X, Y and Z on M . The Riemann curvature tensor R of M

satisfies R(W,X, Y, Z) = g(W,R(X, Y )Z) for all smooth vector fields X, Y , Z and

W on M , where

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ.

(a) Prove that R(X,W, Y, Z) = −R(W,X, Y, Z).

(6 marks)

Let M be the smooth 4-dimensional manifold which is the domain of a smooth coordi-

nate chart (t, z, r, θ), where 0 < r < π0 and 0 < θ < 2π throughout M . Let g be the

pseudo-Riemannian metric on M defined as follows:

g = − 1

1 + r2
dt⊗ dt+ sin2 r dz ⊗ dz + dr ⊗ dr + r2 dθ ⊗ dθ.

Let Et, Ez, Er and Eθ be the smooth vector fields on M defined as follows:

Et =
√

1 + r2
∂

∂t
, Ez =

1

sin r

∂

∂z
, Er =

∂

∂r
, Eθ =

1

r

∂

∂θ
.

(b) Calculate the values of the Lie brackets

[Et, Ez], [Et, Er], [Et, Eθ],

[Ez, Er], [Ez, Eθ] and [Er, Eθ],

(You should express the values of these Lie brackets as linear combinations of the

vector fields Et, Er, Ez and Eθ of the form ftEt + fzEz + frEr + fθEθ, where ft,

fz, fr and fθ are smooth real-valued functions on M .)

(7 marks)

(Question continues on next page)
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(c) Explain why

g(∇EzEt, Et) = g(∇ErEt, Et) = g(∇EθEt, Et) = 0,

where ∇ denotes the Levi-Civita connection on M , and find the values of

g(∇EtEz, Et), g(∇EtEr, Et), g(∇EtEθ, Et),

g(∇EtEt, Ez), g(∇EtEt, Er) and g(∇EtEt, Eθ).

Hence or otherwise, express ∇EtEt as a linear combination of the vector fields Et,

Er, Ez and Eθ of the form ftEt + fzEz + frEr + fθEθ, where ft, fz, fr and fθ

are smooth real-valued functions on M .

(7 marks)

4. Let M be a Riemannian manifold with metric tensor g, and let ∇ and R denote the

Levi-Civita connection and Riemann curvature tensor on M . The Levi-Civita connection

on M is torsion-free, and satisfies the identity

X[g(Y, Z)] = g(∇XY, Z) + g(Y,∇XZ)

for all smooth vector fields X, Y and Z on M . Let E1, E2, . . . , En be smooth vector

fields, defined over some open subset U of M which, at each point of U , constitute a

basis of the tangent space to M at that point. Let γ: I →M be a smooth curve in M ,

where I is some open interval in R, and let V and W be smooth vector fields along γ.

Then

V (t) =
n∑
j=1

vj(t)(Ej)γ(t), W (t) =
n∑
j=1

wj(t)(Ej)γ(t)

for all t ∈ I for which γ(t) ∈ U , where vj and wj are smooth real-valued functions on

the interval I. The covariant derivative
DV (t)

dt
of the vector field V along the curve γ

is then determined by the formula

dV (t)

dt
=

n∑
j=1

(
dvj(t)

dt
(Ej)γ(t) + vj(t)∇γ′(t)Ej

)
when γ(t) ∈ U . (The covariant derivative of the vector field W is determined by an

analogous formula.)

(Question continues on next page)
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(a) Prove that

d

dt
g(V (t),W (t)) = g

(
DV (t)

dt
,W (t)

)
+ g

(
V (t),

DW (t)

dt

)
.

(10 marks)

(b) What is meant by saying that a smooth curve γ: I → M in the Riemannian

manifold M is a geodesic?

(2 marks)

Let γ: I →M be a geodesic in the Riemannian The length |γ′(t)| of the velocity vector

γ′(t) of γ at γ(t) is defined such that |γ′(t)|2 = g(γ′(t), γ′(t)) for all t ∈ I.

(c) Prove that manifold M then
d

dt
|γ′(t)| = 0

when γ: I →M is a geodesic in M .

(3 marks)

(d) Let V : I → TM be a smooth vector field along the geodesic γ: I →M . Suppose

that 0 ∈ I, g(V (0), γ′(0)) = 0 and

DV (t)

dt
= f(t)V (t),

where f : I → R is a smooth real-valued function on the interval I. Prove that

g(V (t), γ′(t)) = 0 for all t ∈ I.

(5 marks)
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