
Module MA3427: Michaelmas Term 2010

Problems

Geodesic Congruences and Jacobi Fields

1. (a) Let ∇ be a smooth torsion-free affine connection on a smooth man-
ifold M , and let Q and X be smooth vector fields on M . Suppose that
∇QQ = 0 and [Q,X] = 0. Prove that

∇Q∇QX +R(X,Q)Q = 0,

where R is the curvature of the connection ∇.

The affine connection ∇ is torsion-free, and therefore

∇QX = ∇XQ+ [Q,X] = ∇XQ.

It follows that

∇Q∇QX +R(X,Q)Q = ∇Q∇XQ+R(X,Q)Q

= ∇X∇QQ−∇[X,Q]Q = 0,

as required.

(b) Let ∇ be a smooth torsion-free affine connection on a smooth man-
ifold M , and let Q and X be smooth vector fields on M . Suppose that
∇QQ = 0 and [Q,X] = 0. Let γ: I → M be an integral curve for the
vector field Q, and let V (t) = Xγ(t) for all t ∈ I. Explain why γ is a
geodesic in M , and also explain why the vector field V : I → TM is a
Jacobi field along the curve γ.

It follows from the definitions of integral curves of vector fields, and of
covariant derivatives of vector fields along curves, that

D

dt

(
dγ

dt

)
=
D

dt

(
Qγ(t)

)
= ∇Qγ(t)Q = 0.

Thus γ: I →M is a geodesic. Also

D2V (t)

dt2
=

D

dt

(
∇γ′(t)X

)
=
D

dt

(
∇QX

)
=
D

dt

(
∇QX

)
γ(t)

= ∇Qγ(t)(∇QX)
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and therefore

D2V (t)

dt2
+R(V (t), γ′(t))γ′(t) = (∇Q∇QX +R(X,Q)Q)γ(t) = 0.

Hence the vector field V along γ satisfies the Jacobi equation, and is
thus a Jacobi field along γ.

Constant Curvature Metrics and the Expanding Uni-
verse

2. Let N be a Riemannian manifold with metric tensor gN , let I be an
open interval in R, let M = N × I, and let π:M → N and ιt:N →M
be defined for all t ∈ I so that

π(p, t) = p, and ιt(p) = (p, t)

for all p ∈ N and t ∈ I. Let Q be the vector field
∂

∂t
on M whose

integral curves are the curves γp: I → M , where γp(t) = (p, t) for all
p ∈ N and t ∈ I. Also, for each smooth vector field X on N , let X◦

be the smooth vector field on M defined such that X◦(p,t) = ιt∗Xp for all
p ∈ N and t ∈ I.

Let a: I → (0,+∞) be a positive smooth real-valued function on the
open interval I, let q be a real constant, and let g be the Riemannian or
pseudo-Riemannian metric on M characterized by the properties that
g(Q,Q) = q, g(Q,X◦) = 0 and

g(p,t)(X
◦, Y ◦) = a(t)2gNp (X, Y )

for all smooth vector fields X and Y on N (where gN denotes the metric
tensor of the Riemannian manifold N), so that

g = q dt⊗ dt+ a(t)2 π∗gN ,

where (π∗gN)(U, V ) = gN(π∗U, π∗V ) for all vector fields U and V on
M . Also let ∇ and RM denote the Levi-Civita connection and Riemann
curvature tensor respectively on M determined by the metric tensor g.

(a) Explain why [Q,X◦] = 0 and [X◦, Y ◦] = [X, Y ]◦ for all smooth vec-
tor fields X on N . [Hint: use Lemma 7.6 to prove that π∗[Q,X

◦](p,t) =
0 and σ∗[Q,X

◦](p,t) = 0 for all p ∈ N and t ∈ I, where π:M → N
and σ:M → I are the projection functions that satisfy π(p, t) = p and
σ(p, t) = t for all p ∈ N and t ∈ I.]
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The smooth vector fields X◦ and Q satisfy

π∗X
◦
(p,t) = Xp, σ∗X

◦
(p,t) = 0, π∗Q(p,t) = 0, σ∗Q(p,t) =

d

dt
.

It follows from Lemma 7.6 that

π∗[Q,X
◦](p,t) = 0, σ∗[Q,X

◦](p,t) = 0

and
ιt∗[X, Y ]p = [X◦, Y ◦](p,t),

and thus
[Q,X◦] = 0 and [X◦, Y ◦] = [X, Y ]◦

for all smooth vector fields X and Y on N .

(b) By evaluating Q[g(Q,Q)], X◦[g(Q,Q)] and Q[g(Q,X◦)], where X
is some smooth vector field on N , or otherwise, show that ∇QQ = 0
and g(∇QX

◦, Q) = 0.

The real-valued functions g(Q,Q) and g(Q,X◦) are constant on M .
Therefore

0 = Q[g(Q,Q)] = g(∇QQ,Q) + g(Q,∇QQ) = 2g(∇QQ,Q),

0 = X◦[g(Q,Q)] = 2g(∇X◦Q,Q)

and
0 = Q[g(Q,X◦)] = g(∇QQ,X

◦) + g(Q,∇QX
◦).

But ∇QX
◦ = ∇X◦Q, because [Q,X◦] = 0. It follows that

g(∇QQ,Q) = 0 and g(∇QQ,X
◦) = 0

for all smooth vector fields X◦ on N , and therefore ∇QQ = 0.

(c) Show that

g(∇X◦Y
◦, Q) = g(∇Y ◦X

◦, Q)

= −g(∇X◦Q, Y
◦)

= −g(∇QX
◦, Y ◦)

= −1
2
Q[g(X◦, Y ◦)]

= −H(t) g(X◦, Y ◦)
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for all smooth vector fields X and Y on N , where

H(t) =
1

a(t)

da(t)

dt
=
d(log(a(t))

dt
,

and hence show that

∇X◦Q = ∇QX
◦ = H(t)X◦

for all smooth vector fields X on N .

Let X and Y be smooth vector fields on N . Then [X◦, Y ◦] = [X, Y ]◦,
and therefore

g(∇X◦Y
◦, Q)− g(∇Y ◦X

◦, Q)

= g([X◦, Y ◦], Q) = g([X, Y ]◦, Q) = 0.

Also g(Y ◦, Q) = 0, and therefore

0 = X◦[g(Y ◦, Q)] = g(∇X◦Y
◦, Q) + g(Y ◦,∇X◦Q)

= g(∇X◦Y
◦, Q) + g(∇X◦Q, Y

◦).

Therefore

g(∇X◦Y
◦, Q) = −g(∇X◦Q, Y

◦) = −g(∇QX
◦, Y ◦),

and thus

Q[g(X◦, Y ◦)] = g(∇QX
◦, Y ◦) + g(X◦,∇QY

◦)

= −g(∇X◦Y
◦ +∇Y ◦X

◦, Q)

= 2g(∇QX
◦, Y ◦),

and therefore

g(∇QX
◦, Y ◦) =

1

2

d

dt
(g(X◦, Y ◦)) =

1

2

d

dt

(
a(t)2gN(X, Y )

)
= a(t)

d(a(t)

dt
gN(X, Y ) =

1

a(t)

da(t)

dt
g(X◦, Y ◦)

= H(t) g(X◦, Y ◦).

Also g(∇QX
◦, Q) = 0, by (b). It follows that ∇QX

◦ = H(t)X◦, as
required.
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(d) Show that

RM(X◦, Q)Q = −
(
dH(t)

dt
+H(t)2

)
X◦

= − 1

a(t)

d2a(t)

dt2
X◦,

and thus

RM(W ◦, Q,X◦, Q) = −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦).

for all smooth vector fields W and X on N . [Hint: use the result of
problem 1(a).]

Let X be a smooth vector fields on N . The equation

∇Q∇QX
◦ +RM(X◦, Q)Q = 0,

by problem 1(a). But

∇Q∇QX
◦ = ∇Q(H(t)X◦) =

dH(t)

dt
X◦ +H(t)2X◦,

where

dH(t)

dt
=

d

dt

(
1

a(t)

da(t)

dt

)
= − 1

a(t)

2
(
da(t)

dt

)2

+
1

a(t)

d2a(t)

dt2

= −H(t)2 +
1

a(t)

d2a(t)

dt2
.

(e) Prove that

g(∇X◦Y
◦, Z◦) = a(t)2gN(∇N

XY, Z) ◦ π = g((∇N
XY )◦, Z◦)

for all vector smooth fields X, Y and Z on N , where ∇N denotes the
Levi-Civita connection determined by the metric tensor gN on N , and
apply this result, together with the results of (c) in order to show that

∇X◦Y
◦ = (∇N

XY )◦ − H(t)

q
g(X◦, Y ◦)Q

for all smooth vector fields X, Y and Z on N .
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It follows from Lemma 9.3 that

2gN(∇N
XY, Z) = X[g(Y, Z)] + Y [g(X,Z)]− Z[g(X, Y )]

+ g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

2g(∇X◦Y
◦, Z◦) = X◦[g(Y ◦, Z◦)] + Y ◦[g(X◦, Z◦)]

− Z◦[g(X◦, Y ◦)] + g([X◦, Y ◦], Z◦)

− g([X◦, Z◦], Y ◦)− g([Y ◦, Z◦], X◦)

But

X◦[g(Y ◦, Z◦)] = X◦[a(t)2(g(Y, Z) ◦ π)] = a(t)2X◦[(g(Y, Z) ◦ π)]

= a(t)2X[(g(Y, Z))] ◦ π,
and

g([X◦, Y ◦], Z◦) = g([X, Y ]◦, Z◦) = a(t)2g([X, Y ], Z) ◦ π.
Therefore

g(∇X◦Y
◦, Z◦) = a(t)2gN(∇N

XY, Z) ◦ π = g((∇N
XY )◦, Z◦)

for all smooth vector fields X, Y and Z. It follows that

∇X◦Y
◦ = (∇XY )◦ + fQ,

for some real-valued function f on M . But it then follows from (c) that

qf = g(fQ,Q) = g(∇X◦Y
◦, Q) = −g(∇X◦Q, Y

◦) = −H(t)g(X◦, Y ◦).

The result follows.

(f) Use the definition of the Riemann curvature tensor and the results
of previous parts of this question to show that

RM(X◦, Y ◦)Z◦ = (RN(X, Y )Z)◦

− H(t)2

q

(
g(Z◦, Y ◦)X◦ − g(Z◦, X◦)Y ◦

)
and thus

RM(W ◦, Z◦, X◦, Y ◦)

= a(t)2RN(W,Z,X, Y ) ◦ π

− H(t)2

q

(
g(W ◦, X◦)g(Z◦, Y ◦)− g(W ◦, Y ◦)g(Z◦, X◦)

)
and

RM(Q,Z◦, X◦, Y ◦) = 0

for all smooth vector fields X, Y , Z and W on N , where RN denotes
the Riemann curvature tensor determined by the metric tensor gN on
N .
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It follows from (e) and (c) that

∇X◦∇Y ◦Z
◦ = ∇X◦

(
(∇N

Y Z)◦ − H(t)

q
g(Y ◦, Z◦)Q

)
= (∇N

X∇N
Y Z)◦ − H(t)

q
g(X◦, (∇N

Y Z)◦)

− H(t)

q
X◦[g(Y ◦, Z◦)]Q− H(t)2

q
g(Y ◦, Z◦)X◦

= (∇N
X∇N

Y Z)◦ − H(t)

q
g(X◦, (∇N

Y Z)◦)

− H(t)

q
g(∇X◦Y

◦, Z◦)Q− H(t)

q
g(Y ◦,∇X◦Z

◦)Q

− H(t)2

q
g(Y ◦, Z◦)X◦

= (∇N
X∇N

Y Z)◦ − H(t)

q
g((∇N

XY )◦, Z◦)Q

− H(t)

q
g(X◦, (∇N

Y Z)◦)− H(t)

q
g(Y ◦, (∇N

XZ)◦)Q

− H(t)2

q
g(Y ◦, Z◦)X◦

Therefore

RM(X◦, Y ◦)Z◦ = ∇X◦∇Y ◦Z
◦ −∇Y ◦∇X◦Z

◦ −∇[X◦,Y ◦]Z
◦

= (∇N
X∇N

Y Z −∇N
Y ∇N

XZ −∇N
[X,Y ]Z)◦

− H(t)

q
g((∇N

XY )◦ − (∇N
Y X)◦ − [X◦, Y ◦], Z◦)Q

− H(t)2

q

(
g(Y ◦, Z◦)X◦ − g(X◦, Z◦)Y ◦

)
But

(∇N
XY )◦ − (∇N

Y X)◦ − [X◦, Y ◦] = (∇N
XY −∇N

Y X − [X, Y ])◦ = 0,

because the Levi-Civita connection ∇N on N is torsion-free. Therefore

RM(X◦, Y ◦)Z◦

= (RN(X, Y )Z)◦ − H(t)2

q

(
g(Y ◦, Z◦)X◦ − g(X◦, Z◦)Y ◦

)
for all smooth vector fields X, Y and Z on N . The remaining identities
now follow from the relevant definitions.
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3. Let Sn be the unit sphere in Rn+1, let g be the standard flat metric on
Rn+1, defined such that

g

(
n+1∑
j=1

vj
∂

∂xj
,

n+1∑
j=1

wj
∂

∂xj

)
=

n+1∑
j=1

vjwj

for all (v1, . . . , vn+1), (w1, . . . , wn+1) ∈ Rn+1, where (x1, x2, . . . , xn+1) is
the standard Cartesian coordinate system on Rn+1, and let gS denote
the Riemannian metric on Sn obtained on restricting the standard flat
metric g on Rn+1 to the tangent spaces of Sn. Let π: Rn+1 \ {0} → Sn

be the radial projection map, defined so that π(x) = |x|−1x for all
x ∈ Rn+1 \ {0}, and let r: Rn+1 → R be the function defined such that
r(x) = |x| for all x ∈ Rn+1, so that r(x) is the Euclidean distance from
a point x of Rn+1 to the origin.

(a) Explain why

g(U,V) = 〈dr,U〉 〈dr,V〉+ r2gS(π∗U, π∗V)

for all points x of Rn+1 and tangent vectors U and V to Rn+1 at x, so
that

g = dr ⊗ dr + r2π∗gS.

Let U and V be tangent vectors to Rn+1 at some point x of Rn+1,
and let r̂ denote the unit vector pointing radially outwards at x whose
Cartesian components are (r−1x1, r

−1x2, . . . , r
−1xn+1), where r = |x|.

Then
U = 〈dr,U〉 r̂ + U⊥, V = 〈dr,V〉 r̂ + V⊥,

where U⊥ and V⊥ are the components of U and V respectively that
are perpendicular to the radial vector r̂. Then

g(U,V) = 〈dr,U〉 〈dr,V〉+ g(U⊥,V⊥)

= 〈dr,U〉 〈dr,V〉+ r2gS(π∗U
⊥, π∗V

⊥)

= 〈dr,U〉 〈dr,V〉+ r2gS(π∗U, π∗V),

as required.

(b) By applying the results of problem 2, show that the Riemann curva-
ture tensor RS of the Riemannian metric gS on Sn satisfies the identity

RS(W,Z,X, Y ) = gS(W,X)gS(Z, Y )− gS(W,Y )gS(Z,X).

The Riemann curvature tensor of the flat metric g on Rn+1 is zero. The
required result therefore follows on applying problem 2(f).
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4. A Riemannian manifold M with metric tensor g is said to be a space
of constant curvature K0, where K0 is some real constant, if the Rie-
mann curvature tensor R determined by the metric tensor g satisfies
the identity

R(W,Z,X, Y ) = K0 (g(W,X)g(Z, Y )− g(W,Y )g(Z,X)) .

Question 3 shows that the unit sphere in Rn+1, with the usual Rieman-
nian metric, is a space of constant curvature +1. Moreover Lemma 9.9
ensures that a Riemannian manifold is a space of constant curvature
K0 if and only if all sectional curvatures of M are equal to K0.

Let N be a Riemannian manifold of constant curvature KN , with metric
tensor gN and Riemann curvature tensor RN , let M = N × I, where
I is an open interval in R, and let g be the Riemannian metric on R
defined as described in problem 2, with q = 1, so that

g = dt⊗ dt+ a(t)2 π∗gN ,

where π:M → N is the projection function defined such that π(p, t) =
p, the smooth real-valued function t on M corresponds to the projection
map (p, t) 7→ t from M to I, and a: I → R is a smooth everywhere

positive function. Also let Q =
∂

∂t
, so that Q(p,t) is the velocity vector

of the smooth curve s 7→ (p, s) at each point (p, t) of M . And, for each
smooth vector field X on N , let X◦ denote the smooth vector field on
M defined such that g(Q,X◦) = 0 and π∗X

◦
(p,t) = Xp for all (p, t) ∈M .

(a) Let P be a 2-dimensional vector subspace of the tangent space T(p,t)

to M at some point (p, t) of M . Use the results of problem 2, show that
the sectional curvature KM(P ) of M in the plane P satisfies

KM(P ) = −
(
dH(t)

dt
+H(t)2

)
= − 1

a(t)

d2a(t)

dt2

if the plane P contains Q(p,t), and that

KM(P ) =
KN

a(t)2
−H(t)2

=
1

a(t)2

(
KN −

(
da(t)

dt

)2
)
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if the plane P is orthogonal to Q(p,t), where

H(t) =
1

a(t)

da(t)

dt
.

Now g(Q,Q) = 1. It follows from problem 2 that

RM(W ◦, Q,X◦, Q) = −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)

= −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)g(Q,Q).

for all smooth vector fields X on M (using the notation of that question,
with q = 1). This immediately yields the required result when the
plane P in T(p,t)M contains the tangent vector Q(p,t).

Also

a(t)2RN(W,Z,X, Y ) ◦ π

= a(t)2KN

(
gN(W,X)gN(Z, Y )− gN(W,Y )gN(Z,X)

)
◦ π

=
KN

a(t)2

(
g(W ◦, X◦)g(Z◦, Y ◦)− g(W ◦, Y ◦)g(Z◦, X◦)

)
for all smooth vector fields W , X, Y and Z on M . It follows from
problem 2(f) that

RM(W ◦, Z◦, X◦, Y ◦)

=

(
KN

a(t)2
−H(t)2

) (
g(W ◦, X◦)g(Z◦, Y ◦)

− g(W ◦, Y ◦)g(Z◦, X◦)
)

when the plane P is orthogonal to Q(p,t).

(b) Show that if the function a satisfies the differential equation

KN −
(
da(t)

dt

)2

= KM a(t)2,

where KN and KM are real constants, then

d2a(t)

dt2
= −KM a(t).
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Hence or otherwise show that, in the case where KM > 0 and KN > 0,
the Riemannian manifold M is a space of constant curvature KM if
and only if

a(t) =

√
KN

KM

sin
(√

KM(t− t0)
)
,

where t0 is an arbitrary real constant. Show also that, in the case
where KM < 0 and KN > 0, the Riemannian manifold M is a space of
constant curvature KM if and only if

a(t) =

√
−KN

KM

sinh
(√
−KM(t− t0)

)
,

where t0 is an arbitrary real constant. And also show that, in the case
where KM < 0 and KN < 0, the Riemannian manifold M is a space of
constant curvature KM if and only if

a(t) =

√
KN

KM

cosh
(√
−KM(t− t0)

)
,

The second differential equation satisfied by the function a(t) follows on
differentiating the first. If M is a space of constant curvature M then
both differential equations must be satisfied, and therefore the function
a(t) is of the specified form determined by the signs of KM and KN .
Conversely suppose that these differential equations are satisfied. Let
R0 be the covariant tensor of degree 4 defined by

R0(V1, V2, V3, V4) = KM

(
g(V1, V3)g(V2, V4)− g(V1, V4)g(V2, V3)

)
for all V1, V2, V3, V4 ∈ T(p,t)M . Then

RM(W ◦, Z◦, X◦, Y ◦) = R0(W
◦, Z◦, X◦, Y ◦)

and
RM(W ◦, Q,X◦, Q) = R0(W

◦, Q,X◦, Q).

Moreover it follows from the results of problem 2(f) that

RM(V1, V2, V3, V4) = R0(V1, V2, V3, V4) = 0

when one of the vectors V1, V2, V3, V4 is parallel to Q and the remaining
vectors are orthogonal to Q. And the basic identities satisfied by the
Riemann curvature tensor ensure that the same is true when at least
three of these vectors V1, V2, V3, V4 are parallel to Q. It follows that
R = R0, and thus M is a space of constant curvature KM , as required.
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5. (Friedman-Robertson-Walker Metrics) Let N be a Riemannian
manifold of constant curvature KN , with metric tensor gN and Rie-
mann curvature tensor RN , where

RN(W,Z,X, Y ) = KN

(
gN(W,X)gN(Z, Y )

− gN(W,Y )gN(Z,X)
)

for all vector fields W , X, Y and Z on N . Let M = N × I, where
I is an open interval in R, and let g be the Riemannian metric on
R defined as described in problem 2, with q = −c2, where c is a real
constant (representing the speed of light in General Relativity), so that

g = −c2 dt⊗ dt+ a(t)2 π∗gN ,

where π:M → N is the projection function defined such that π(p, t) =
p, the smooth real-valued function t on M corresponds to the projection
map (p, t) 7→ t from M to I, and a: I → R is a smooth everywhere

positive function. Also let Q =
∂

∂t
, so that Q(p,t) is the velocity vector

of the smooth curve s 7→ (p, s) at each point (p, t) of M . And, for each
smooth vector field X on N , let X◦ denote the smooth vector field on
M defined such that g(Q,X◦) = 0 and π∗X

◦
(p,t) = Xp for all (p, t) ∈M .

(a) Show that

RM(W ◦, Q,X◦, Q) = −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)

=
1

c2

(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)g(Q,Q)

and

RM(W ◦, Z◦, X◦, Y ◦)

=

(
KN

a(t)2
+
H(t)2

c2

)(
g(W ◦, X◦)g(Z◦, Y ◦)

− g(W ◦, Y ◦)g(Z◦, X◦)
)

where

H(t) =
1

a(t)

da(t)

dt
.

Verify also that R(V1, V2, V3, V4) = 0 when exactly one of these vector
fields V1, V2, V3, V4 is parallel to Q and the remaining three are orthog-
onal to Q.
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These results follow from problem 2, parts (d) and (f).

Remark Pseudo-Riemannian manifolds whose metric tensor has the struc-
ture analysed in problems 2 and 5 are used to model the expansion of the
universe, on the assumption that the universe is homogeneous and isotropic
(so that mass, energy and pressure are uniformly distributed). This question
establishes that the Riemann curvature tensor of M is determined by the
two quantities

1

c2

(
dH(t)

dt
+H(t)2

)
and

H(t)2

c2
+

k

a(t)2
,

where k is some appropriate constant, which is positive if the universe at any
instant of time is a space of constant positive curvature, zero if the universe
is flat, and negative if the universe at any instance of time is a space of
constant negative curvature. Without loss of generality, we may suppose
that k has one of the three values +1, 0 and −1. The Einstein field equations
of General Relativity relate these quantities to appropriate components of
the stress-energy tensor. In these models describing the expansion of the
universe, the stress-energy tensor is determined by the mass density ρ and
the pressure p. Alexander Friedmann discovered in 1922 and 1924 equations
that describe the evolution of these cosmological models. Einstein’s field
equations yield the following equations governing the time evolution of a
homogeneous isotropic universe as described by Friedmann’s models:

1

c2

(
dH(t)

dt
+H(t)2

)
= −4πG

3c2

(
ρ+

3p

c2

)
+

Λ

3

H(t)2

c2
+

k

a(t)2
=

8πG

3c2
ρ+

Λ

3

Here the constant c is the speed of light, the function H is the Hubble param-
eter (whose current value is the Hubble constant that expresses the current
rate of expansion of the universe), G is the gravitational constant, and Λ is
the cosmological constant (regretfully introduced by Einstein in the hope of
obtaining static solutions to the field equations) which represents dark energy
in the universe. The constant k represents the curvature of our model uni-
verse N , and indeed we may choose N so that k has one of the three values
+1, 0 and −1. In the case where k = +1, the universe at time t is compact,
and is isometric to a three-dimensional sphere of radius a(t). In the case
where k = 0, the universe is flat at all times. In the case where k = −1 the
universe at time t is non-compact, and is isometric to a three-dimensional
hyperbolic space of curvature −1/a(t)2.
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The cosmological models discussed here were later studied by Georges
Lemâıtre in 1927 and in the 1930s by Howard Percy Robertson and Arthur
Geoffrey Walker. Riemannian metrics with the structure described in prob-
lem 5 are often referred to as Robertson-Walker metrics.

We now discuss in more detail how to derive Friedmann’s equations from
Einstein’s field equations. Note that if E0, E1, E2 and E3 are smooth vector
fields over an open subset of M that constitute a Lorentzian moving frame
for M , so that the vector fields E0, E1, E2, E3 are mutually orthogonal and
satisfy

g(E0, E0) = −1, g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

and if this moving frame is chosen such that E0 = Q and E1, E2, E3 are
orthogonal to Q, then the Riemann curvature tensor R of space-time satisfies

R(E1, E2, E1, E2) = R(E2, E3, E2, E3) = R(E3, E1, E3, E1)

=
H(t)2

c2
+

k

a(t)2

R(E0, E1, E0, E1) = R(E0, E2, E0, E2) = R(E0, E3, E0, E3)

= − 1

c2

(
dH(t)

dt
+H(t)2

)
= − 1

c2a(t)

d2a(t)

dt2

Moreover R(Eα, Eβ, Eγ, Eδ) = 0 unless α 6= β and either γ = α and δ = β or
else γ = β and δ = α. The Einstein field equations require that the curvature
of the space-time manifold M satisfy the identity

Ric(X, Y )− 1

2
g(X, Y )S =

8πG

c4
T (X, Y )− Λ g(X, Y )

for all vector fields X and Y on M , where T is the stress-energy tensor, in
covariant form, determined by the matter, electromagnetic fields etc. in the
universe, Ric is the Ricci curvature tensor of M , defined such that

Ric(X, Y ) = −R(E0, X,E0, Y ) +R(E1, X,E1, Y )

+R(E2, X,E2, Y ) +R(E3, X,E3, Y ),

and S is the scalar curvature, defined such that

S = −Ric(E0, E0) + Ric(E1, E1) + Ric(E2, E2) + Ric(E3, E3)

= 2
(
−R(E0, E1, E0, E1)−R(E0, E2, E0, E2)

−R(E0, E3, E0, E3) +R(E1, E2, E1, E2)

+R(E2, E3, E2, E3) +R(E3, E1, E3, E1)
)
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The Einstein field equations may also be presented in the form

Ein(X, Y ) =
8πG

c4
T (X, Y )− Λ g(X, Y )

where Ein denotes the Einstein tensor, defined such that

Ein(X, Y ) = Ric(X, Y )− 1

2
g(X, Y )S

for all vector fields X and Y on space-time. Then

Ein(E0, E0) = R(E1, E2, E1, E2) +R(E2, E3, E2, E3)

+R(E3, E1, E3, E1)

Ein(E1, E1) = R(E0, E2, E0, E2) +R(E0, E3, E0, E3)

−R(E2, E3, E2, E3)

Ein(E2, E2) = R(E0, E3, E0, E3) +R(E0, E1, E0, E1)

−R(E3, E1, E3, E1)

Ein(E3, E3) = R(E0, E1, E0, E1) +R(E0, E2, E0, E2)

−R(E1, E2, E1, E2)

Thus, for the Friedmann metric,

Ric(E0, E0) = − 3

c2

(
dH(t)

dt
+H(t)2

)
,

Ric(E1, E1) = Ric(E2, E2) = Ric(E3, E3)

=
1

c2

(
dH(t)

dt
+H(t)2

)
+

2k

a(t)2
+

2H(t)2

c2
,

Ein(E0, E0) =
3k

a(t)2
+

3H(t)2

c2
,

Ein(E1, E1) = Ein(E2, E2) = Ein(E3, E3)

= − 2

c2

(
dH(t)

dt
+H(t)2

)
− H(t)2

c2
− k

a(t)2
,

S =
6

c2

(
dH(t)

dt
+H(t)2

)
+

6k

a(t)2
+

6H(t)2

c2
.

Also Ric(Eα, Eβ) = Ein(Eα, Eβ) = 0 when α 6= β.
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Now if the universe is filled with a perfect homogeneous fluid with mass
density ρ and pressure p, where the world-lines of the particles are integral
curves for the vector field E0 (so that E0 represents the four-velocity of the
particles in the fluid) then

T (E0, E0) = ρc2 and T (E1, E1) = T (E2, E2) = T (E3, E3) = p.

It follows from the Einstein field equations that

H(t)2

c2
+

k

a(t)2
=

1

3
Ein(E0, E0) =

8πG

3c4
T (E0, E0)−

Λ

3
g(E0, E0)

=
8πG

3c2
ρ+

Λ

3
,

1

c2

(
dH(t)

dt
+H(t)2

)
=

1

6
S − 1

3
Ein(E0, E0)

= −4πG

3c2

(
ρ+

3p

c2

)
+

Λ

3
.

We have thus obtained the equations govening the expansion of the universe
in Friedmann’s models. We can eliminate the mass density ρ from these two
equations to obtain the equation

2

c2a(t)

d2a(t)

dt2
+

1

c2a(t)2

(
da(t)

dt

)2

+
k

a(t)2

=
2

c2

(
dH(t)

dt
+H(t)2

)
+
H(t)2

c2
+

k

a(t)2

= −8πGp

c4
+ Λ.

The Schwarzschild and Reissner-Nordström Metrics

6. Let M be a Riemannian or pseudo-Riemannian manifold with metric
tensor g and Levi-Civita connection ∇, and let E1, E2, . . . , En be smooth
vector fields on M , where g(Ej, Ek) is a constant function for all j and
k.

(a) Explain why

g(∇EiEj, Ek) = −g(Ej,∇EiEk)

= g([Ek, Ei], Ej)− g(∇EkEi, Ej)

for i, j, k = 1, 2, . . . , n.
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The function g(Ej, Ek) is constant on M , and therefore

0 = Ei[g(Ej, Ek)] = g(∇EiEj, Ek) + g(Ej,∇EiEk).

Moreover

g([Ek, Ei], Ej) = g(∇EkEi, Ej)− g(∇EiEk, Ej),

because the Levi-Civita connection∇ is torsion-free. The results follow.

(b) Show that

g(∇EiEj, Ek) + g(∇EjEi, Ek) = g([Ek, Ei], Ej) + g(Ei, [Ek, Ej]),

and therefore

g(∇EiEj, Ek) = 1
2

(
g([Ek, Ei], Ej) + g(Ei, [Ek, Ej]) + g([Ei, Ej], Ek)

)
.

It follows from (a) that

g(∇EiEj, Ek) + g(∇EjEi, Ek)

= g([Ek, Ei], Ej)− g(∇EkEi, Ej) + g([Ek, Ej], Ei)− g(Ei,∇EkEj)

= g([Ek, Ei], Ej) + g([Ek, Ej], Ei)− Ek[g(Ei, Ej)]

= g([Ek, Ei], Ej) + g([Ek, Ej], Ei).

Therefore

g(∇EiEj, Ek)

= 1
2

(
g(∇EiEj, Ek) + g(∇EjEi, Ek) + g([Ei, Ej], Ek)

)
= 1

2

(
g([Ek, Ei], Ej) + g(Ei, [Ek, Ej]) + g([Ei, Ej], Ek)

)
,

as required.

(c) Show that

g(∇EiEj, Ei) = g([Ei, Ej], Ei) and g(∇EiEj, Ej) = 0.

This follows directly from (b), or may be verified directly using the
identities Ei[g(Ej, Ej)] = 0 and [Ei, Ej] = ∇EiEj −∇EjEi,

(d) Suppose that there exist smooth real-valued functions uij for i 6= j
such that [Ei, Ej] = uijEj − ujiEi, so that [Ei, Ej] is in the linear span
of the vectors Ei and Ej at each point of M for i, j = 1, 2, . . . , n. Show
that g(∇EiEj, Ek) = 0 whenever the indices i, j and k are distinct.
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This result follows directly from the formula for g(∇EiEj, Ek) given in
(b).

7. Consider a pseudo-Riemannian metric g on a space-time M that takes
the form

g = −µ(r)2 dt2 + κ(r)2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2,

on the domain U of a local coordinate system t, r, θ, ϕ, where (in accor-
dance with traditional notation)

dt2 = dt⊗ dt, dr2 = dr ⊗ dr, dθ2 = dθ ⊗ dθ, dϕ2 = dϕ⊗ dϕ,

and where ψ and κ are smooth real-valued functions defined on {r ∈
R : r > r0} for some r0 > 0. Let Et, Er, Eθ and Eϕ be the smooth
vector fields on U defined such that

Et =
1

µ(r)

∂

∂t
, Er =

1

κ(r)

∂

∂r
, Eθ =

1

r

∂

∂θ
, Eϕ =

1

r sin θ

∂

∂ϕ
,

so that the vector fields Et, Er, Eθ and Eϕ are mutually orthogonal,
and

g(Et, Et) = −1

and
g(Er, Er) = g(Eθ, Eθ) = g(Eϕ, Eϕ) = 1.

(a) Show that

[Er, Et] = − 1

κ(r)µ(r)

dµ(r)

dr
Et,

[Er, Eθ] = − 1

rκ(r)
Eθ,

[Er, Eϕ] = − 1

rκ(r)
Eϕ,

[Et, Eθ] = 0,

[Et, Eϕ] = 0,

[Eθ, Eϕ] = − 1

r tan θ
Eϕ.

These follow by direct calculation using Lemma 7.6.
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(b) Using the results of (a) and of problem 6, or otherwise, show that

∇ErEt = ∇ErEr = ∇ErEθ = ∇ErEϕ = 0,

∇EtEθ = ∇EθEt = ∇EtEϕ = ∇EϕEt = ∇EθEϕ = 0,

∇EtEr =
1

κ(r)µ(r)

dµ(r)

dr
Et, ∇EtEt =

1

κ(r)µ(r)

dµ(r)

dr
Er,

∇EθEr =
1

rκ(r)
Eθ, ∇EθEθ = − 1

rκ(r)
Er,

∇EϕEr =
1

rκ(r)
Eϕ, ∇EϕEθ =

1

r tan θ
Eϕ,

∇EϕEϕ = − 1

rκ(r)
Er −

1

r tan θ
Eθ.

It follows from (a) that if X and Y are distinct vector fields chosen
from the list Et, Er, Eθ, Eϕ then [X, Y ] = hX+kY for some real-valued
functions h and k. It then follows from the results of problem 6 that

g(∇XY,X) = g([X, Y ], X), g(∇XX, Y ) = −g([X, Y ], X),

g(∇XY, Y ) = 0 and g(∇XY, Z) = 0

for all mutually orthogonal vector fields X, Y and Z chosen from the
list Et, Er, Eθ, Eϕ. The stated results then follow from (a).

(c) Show that

R(Er, Eθ)Eϕ = R(Eθ, Eϕ)Er = R(Eϕ, Er)Eθ = 0,

R(Et, Eθ)Eϕ = R(Eθ, Eϕ)Et = R(Eϕ, Et)Eθ = 0,

R(Et, Er)Eϕ = R(Er, Eϕ)Et = R(Eϕ, Et)Er = 0,

R(Et, Er)Eθ = R(Er, Eθ)Et = R(Eθ, Et)Er = 0.

It follows from (b) that

∇ErEθ = ∇ErEϕ = ∇EtEθ = ∇EtEϕ = ∇EθEϕ = 0,

∇ErEt = ∇EθEt = ∇EϕEt = 0.

Also [Er, Eθ] is parallel to Eθ, [Er, Eϕ] and [Eθ, Eϕ] are parallel to Eϕ,
[Et, Er] is parallel to Et, and [Et, Eθ] = 0, and therefore

∇[Er,Eθ]Et = ∇[Er,Eϕ]Et = ∇[Eθ,Eϕ]Et = ∇[Er,Eθ]Eϕ = 0,
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∇[Et,Er]Eθ = ∇[Et,Er]Eϕ = ∇[Et,Eθ]Eϕ = 0.

It then follows from the definition of the Riemann curvature tensor that

R(Er, Eθ)Et = R(Er, Eϕ)Et = R(Eθ, Eϕ)Et = R(Er, Eθ)Eϕ = 0,

R(Et, Er)Eθ = R(Et, Er)Eϕ = R(Et, Eθ)Eϕ = 0.

Also

R(Er, Eϕ)Eθ = ∇Er∇EϕEθ −∇[Er,Eϕ]Eθ

= ∇Er

(
1

r tan θ
Eϕ

)
+

1

rκ(r)
∇EϕEθ

=
1

κ(r)

d

dr

(
1

r tan θ

)
Eϕ +

1

r2κ(r) tan θ
Eϕ

= 0.

Note that this latter result can also be justified as following from
the identity R(Er, Eθ)Eϕ = 0 on symmetry grounds, since a rotation
through an angle of π/2 about a radial axis will preserve the metric
tensor, and will send the vectors Eθ and Eϕ to Eϕ and −Eθ respectively
at points that lie on the axis of rotation.

Also

R(Et, Eϕ)Eθ = ∇Et∇EϕEθ = ∇Et

(
1

r tan θ
Eϕ

)
=

1

r tan θ
∇EtEϕ

= 0,

R(Et, Eθ)Er = ∇Et∇EθEr −∇Eθ∇EtEr −∇[Et,Eθ]Er

= ∇Et

(
1

rκ(r)
Eθ

)
−∇Eθ

(
1

κ(r)µ(r)

dµ(r)

dr
Et

)
=

1

rκ(r)
∇EtEθ −

1

κ(r)µ(r)

dµ(r)

dr
∇EθEt

= 0,

R(Et, Eϕ)Er = ∇Et∇EϕEr −∇Eϕ∇EtEr −∇[Et,Eϕ]Er

= ∇Et

(
1

rκ(r)
Eϕ

)
−∇Eϕ

(
1

κ(r)µ(r)

dµ(r)

dr
Et

)
=

1

rκ(r)
∇EtEϕ −

1

κ(r)µ(r)

dµ(r)

dr
∇EϕEt

= 0,

R(Eθ, Eϕ)Er = ∇Eθ∇EϕEr −∇Eϕ∇EθEr −∇[Eθ,Eϕ]Er
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= ∇Eθ

(
1

rκ(r)
Eϕ

)
−∇Eϕ

(
1

rκ(r)
Eθ

)
+

1

r tan θ
∇EϕEr

=
1

rκ(r)
(∇EθEϕ −∇EϕEθ) +

1

r2κ(r) tan θ
Eϕ

=
1

rκ(r)
[Eθ, Eϕ] +

1

r2κ(r) tan θ
Eϕ

= 0.

Alternatively, these last four identities follow from previously proved
identities and the Bianchi Identity. Indeed

R(Et, Eϕ)Eθ = −R(Eϕ, Eθ)Et −R(Eθ, Et)Eϕ = 0,

R(Et, Eθ)Er = −R(Eθ, Er)Et −R(Rr, Et)Eθ = 0,

R(Et, Eϕ)Er = −R(Eϕ, Er)Et −R(Rr, Rt)Eϕ = 0,

R(Er, Eθ)Eϕ = −R(Eθ, Eϕ)Er −R(Eϕ, Er)Eθ = 0.

(d) Explain why

R

(
∂

∂t
, Er

)
Er = −∇Er∇Er

∂

∂t

R

(
∂

∂θ
, Er

)
Er = −∇Er∇Er

∂

∂θ

R

(
∂

∂ϕ
, Er

)
Er = −∇Er∇Er

∂

∂ϕ
.

Hence or otherwise, show that

R (Et, Er)Er = − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
Et

R (Eθ, Er)Er = − 1

2r

d

dr

(
1

κ(r)2

)
Eθ,

R (Eϕ, Er)Er = − 1

2r

d

dr

(
1

κ(r)2

)
Eϕ.

The vector fields
∂

∂t

∂

∂θ
and

∂

∂ϕ
satisfy

[
Er,

∂

∂t

]
=

[
Er,

∂

∂θ

]
=

[
Er,

∂

∂ϕ

]
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It follows that these vector fields satisfy the Jacobi equation along the
geodesics whose velocity vector at each point of M is Er. Indeed

∇Er∇Er

∂

∂t
= ∇Er∇ ∂

∂t
Er = R

(
Er,

∂

∂t

)
Er +∇ ∂

∂t
∇ErEr

= −R
(
∂

∂t
, Er

)
Er.

and similarly

∇Er∇Er

∂

∂θ
= −R

(
∂

∂θ
, Er

)
Er,

∇Er∇Er

∂

∂ϕ
= −R

(
∂

∂ϕ
,Er

)
Er.

Now

∇Er∇Er

∂

∂t
= ∇Er∇Er(µ(r)Et) = ∇Er(Er[µ(r)]Et) = Er[Er[µ(r)]]Et,

because ∇ErEt = 0. Similarly

∇Er∇Er

∂

∂θ
= Er[Er[r]]Eθ and ∇Er∇Er

∂

∂ϕ
= Er[Er[r sin θ]]Eϕ.

It follows that

R (Et, Er)Er = − 1

µ(r)
Er[Er[µ(r)]]Et

= − 1

κ(r)µ(r)

d

dr

(
1

κ(r)

dµ(r)

dr

)
Et

= − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
Et

R (Eθ, Er)Er = −1

r
Er[Er[r]]Eθ

= − 1

rκ(r)

d

dr

(
1

κ(r)

)
Eθ

= − 1

2r

d

dr

(
1

κ(r)2

)
Eθ,

R (Eϕ, Er)Er = − 1

r sin θ
Er[Er[r sin θ]]Eϕ

= − 1

rκ(r)

d

dr

(
1

κ(r)

)
Eϕ.

= − 1

2r

d

dr

(
1

κ(r)2

)
Eϕ.
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(d) Show (e.g., by direct calculation using the results of (a) and (b)
that

R(Eθ, Eϕ)Eθ =

(
1

r2κ(r)2
− 1

r2

)
Eϕ

R(Eθ, Eϕ)Eϕ =

(
1

r2
− 1

r2κ(r)2

)
Eθ

R(Et, Eθ)Eθ = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eϕ)Eϕ = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eθ)Et = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eθ

R(Et, Eϕ)Et = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eϕ

R(Eθ, Eϕ)Eθ = ∇Eθ∇EϕEθ −∇Eϕ∇EθEθ −∇[Eθ,Eϕ]Eθ

= ∇Eθ

(
1

r tan θ
Eϕ

)
+∇Eϕ

(
1

rκ(r)
Er

)
+

1

r tan θ
∇EϕEθ

= Eθ

[
1

r tan θ

]
Eϕ

+
1

r2κ(r)2
Eϕ +

1

r2 tan2 θ
Eϕ

=

(
− 1

r2 sin2 θ
+

1

r2κ(r)2
+

1

r2 tan2 θ

)
Eϕ

=

(
1

r2κ(r)2
− 1

r2

)
Eϕ

R(Eθ, Eϕ)Eϕ = ∇Eθ∇EϕEϕ −∇Eϕ∇EθEϕ −∇[Eθ,Eϕ]Eϕ

= −∇Eθ

(
1

rκ(r)
Er +

1

r tan θ
Eθ

)
+

1

r tan θ
∇EϕEϕ

=
1

r2 sin2 θ
Eθ −

1

rκ(r)
∇EθEr −

1

r tan θ
∇EθEθ

+
1

r tan θ
∇EϕEϕ
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=

(
1

r2 sin2 θ
− 1

r2κ(r)2
− 1

r2 tan2 θ

)
Eθ

=

(
1

r2
− 1

r2κ(r)2

)
Eθ

R(Et, Eθ)Eθ = ∇Et∇EθEθ −∇Eθ∇EtEθ −∇[Et,Eθ]Eθ

= −∇Et

(
1

rκ(r)
Er

)
= − 1

rκ(r)2µ(r)

dµ(r)

dr
Et

= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eϕ)Eϕ = ∇Et∇EϕEϕ −∇Eϕ∇EtEϕ −∇[Et,Eϕ]Eϕ

= −∇Et

(
1

rκ(r)
Er −

1

r tan θ
Eθ

)
= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eθ)Et = ∇Et∇EθEt −∇Eθ∇EtEt −∇[Et,Eθ]Et

= −∇Eθ

(
1

κ(r)µ(r)

dµ(r)

dr
Er

)
= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eθ

R(Et, Eϕ)Et = ∇Et∇EϕEt −∇Eϕ∇EtEt −∇[Et,Eϕ]Et

= −∇Eϕ

(
1

κ(r)µ(r)

dµ(r)

dr
Er

)
= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eϕ

Note that general properties of the Riemann curvature tensor ensure
that

g(Eϕ, R(Eθ, Eϕ)Eθ) + g(Eθ, R(Eθ, Eϕ)Eϕ) = 0.

g(Et, R(Et, Eθ)Eθ) + g(Eθ, R(Et, Eθ)Et) = 0.

g(Et, R(Et, Eϕ)Eϕ) + g(Eϕ, R(Et, Eϕ)Et) = 0.

(see Proposition 9.7, property (iii)). Moreover the metric tensor g is
invariant under rotations about an plane of symmetry along which the
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coordinate functions θ and ϕ are constant. A rotation through an angle
of π

2
about a point p on this plane of symmetry fixes the tangent vectors

(Et)p and (Er)p at that point, whilst it sends (Eθ)p and (Eϕ)p to (Eϕ)p
and −(Eθ)p respectively. It follows that

g(Et, R(Et, Eθ)Eθ) = g(Et, R(Et, Eϕ)Eϕ).

Therefore
R(Eθ, Eϕ, Eθ, Eϕ) = −R(Eϕ, Eθ, Eθ, Eϕ)

and

R(Et, Eθ, Et, Eθ) = R(Et, Eϕ, Et, Eϕ) = −R(Eθ, Et, Et, Eθ)

= −R(Eϕ, Et, Et, Eϕ).

Thus symmetry considerations together with basic properties of the
Riemann curvature tensor ensure that these six components of the Rie-
mann curvature tensor are determined by the values of

R(Eθ, Eϕ, Eθ, Eϕ) and R(Et, Eθ, Et, Eθ).

8. (The Schwarzschild and Reissner-Nordström Metrics) Let
the four-dimensional pseudo-Riemannian manifold M , the smooth real-
valued functions κ and µ, the metric tensor g, the smooth local coordi-
nates t, r, θ and ϕ and the smooth vector fields Et, Er, Eθ and Eϕ be
defined as in problem 7, so that

g = −µ(r)2 dt2 + κ(r)2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2,

and

Et =
1

µ(r)

∂

∂t
, Er =

1

κ(r)

∂

∂r
, Eθ =

1

r

∂

∂θ
, Eϕ =

1

r sin θ

∂

∂ϕ
.

The Ricci tensor of M is the covariant tensor Ric of degree 2 on
M defined such that, given Xp, Yp ∈ TpM , the quantity Ric(Xp, Yp)
is the trace of the linear operator on TpM that sends Vp ∈ TpM to
R(Vp, Yp)Xp.

(a) Explain why

Ric(X, Y ) = −R(Et, X,Et, Y ) +R(Er, X,Er, Y )

+R(Eθ, X,Eθ, Y ) +R(Eϕ, X,Eϕ, Y )
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Let Xp, Yp, Vp ∈ TpM . Then Let X, Y and V be vector fields on M .
Then

R(V, Y )X = −R(Et, X, V, Y )Et +R(Er, X, V, Y )Er

+R(Eθ, X, V, Y )Eθ +R(Eϕ, X, V, Y )Eϕ,

because the vector fields Et, Er, Eθ and Eϕ are orthogonal and satisfy

g(Et, Et) = −1, g(Er, Er) = g(Eθ, Eθ) = g(Eϕ, Eϕ) = 1.

It follows that the diagonal elements of the matrix representing the
linear operator Vp 7→ R(VpY )X with respect to the basis Et, Er, Eθ, Eϕ
are

−R(Et, X,Et, Y ), R(Er, X,Er, Y ),

R(Eθ, X,Eθ, Y ), R(Eϕ, X,Eϕ, Y ),

and therefore the trace of the matrix representing the linear operator
Vp 7→ Ric(Vp, Y )X is the sum of these four real numbers, as required.

(b) Using the results of problem 7, show that

Ric(Et, Et) =
1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
+

1

rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
,

Ric(Er, Er) = − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
− 1

r

d

dr

(
1

κ(r)2

)
,

Ric(Eθ, Eθ) = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
,

Ric(Eϕ, Eϕ) = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
,
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Ric(Et, Er) = Ric(Et, Eθ) = Ric(Et, Eϕ) = Ric(Er, Eθ)

= Ric(Er, Eϕ) = Ric(Eθ, Eϕ)

= 0.

The properties of the Riemann curvature tensor ensure that

R(Et, Et, Et, Et) = 0.

It therefore follows from problem 7, parts (b) and (d), that

Ric(Et, Et) = R(Er, Et, Er, Et) +R(Eθ, Et, Eθ, Et)

+R(Eϕ, Et, Eϕ, Et)

=
1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
+

1

rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
,

Ric(Er, Er) = −R(Et, Er, Et, Er) +R(Eθ, Er, Eθ, Er)

+R(Eϕ, Er, Eϕ, Er)

= − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
− 1

r

d

dr

(
1

κ(r)2

)
,

Ric(Eθ, Eθ) = −R(Et, Eθ, Et, Eθ) +R(Er, Eθ, Er, Eθ)

+R(Eϕ, Eθ, Eϕ, Eθ)

= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
,

Ric(Eϕ, Eϕ) = −R(Et, Eϕ, Et, Eϕ) +R(Er, Eϕ, Er, Eϕ)

+R(Eθ, Eϕ, Eθ, Eϕ)

= − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
.

Also it follows from problem 7, part (c), that if X and Y are distinct
vectors from the list Et, Er, Eθ, Eϕ then Ric(X, Y ) = 0.
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(c) Verify that

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ) =
r2
Q

r4

in the special case where

µ(r)2

c2
=

1

κ(r)2
= 1− rS

r
+
r2
Q

r2

for some positive real constants c and rS, and thus

g = −c2
(

1− rS
r

+
r2
Q

r2

)
dt2 +

1

1− rS
r

+
r2
Q

r2

dr2

+ r2 dθ2 + r2 sin2 θ dϕ2.

If the functions µ and κ determining the metric tensor satisfy the equa-
tion µ(r)κ(r) = c, where c is some positive constant, then the equa-
tions for the components of the Ricci curvature reduce to the following
equations:—

Ric(Et, Et) =
1

2c2
d2

dr2

(
µ(r)2

)
+

1

c2r

d

dr

(
µ(r)2

)
,

Ric(Er, Er) = − 1

2c2
d2

dr2

(
µ(r)2

)
− 1

c2r

d

dr

(
µ(r)2

)
,

= −Ric(Et, Et)

Ric(Eθ, Eθ) = − 1

c2r

d

dr

(
µ(r)2

)
+

1

r2

(
1− µ(r)2

c2

)
,

Ric(Eϕ, Eϕ) = Ric(Eθ, Eθ)

Thus if

µ(r)2 =
c2

κ(r)2
= c2

(
1− rS

r
+
r2
Q

r2

)
then

1

2c2
d2

dr2

(
µ(r)2

)
= −rS

r3
+

3r2
Q

r4
,

1

c2r

d

dr

(
µ(r)2

)
=

rS
r3
−

2r2
Q

r4
,

1

r2

(
1− µ(r)2

c2

)
=

rS
r3
−
r2
Q

r4
,
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and therefore

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ) =
r2
Q

r4
,

as required.

(d) Suppose that the Ricci curvature of the metric tensor g satisfies the
identities

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ).

Prove that the functions µ and κ determining the metric tensor satisfy
the identities

µ(r)2

c2
=

1

κ(r)2
= 1− rS

r
+
A

r2

for some constants c, rS and A.

It follows from (b) that

Ric(Et, Et) + Ric(Er, Er)

=
1

rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

r

d

dr

(
1

κ(r)2

)
=

1

rκ(r)2µ(r)2

(
1

µ(r)2

d

dr

(
µ(r)2

)
+

1

κ(r)2

d

dr

(
κ(r)2

))
=

1

rκ(r)2µ(r)2

d

dr

(
log(κ(r)2µ(r)2)

)
.

Thus if Ric(Er, Er) = −Ric(Et, Et) then κ(r)µ(r) = c for some real
constant c. But then

Ric(Et, Et) = −Ric(Er, Er) =
1

2c2
d2

dr2

(
µ(r)2

)
+

1

c2r

d

dr

(
µ(r)2

)
,

Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ) = − 1

c2r

d

dr

(
µ(r)2

)
+

1

r2

(
1− µ(r)2

c2

)
.

Thus if

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ).

then

1

2c2
d2

dr2

(
µ(r)2

)
+

1

c2r

d

dr

(
µ(r)2

)
= − 1

c2r

d

dr

(
µ(r)2

)
+

1

r2

(
1− µ(r)2

c2

)
,
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and therefore

r2 d2

dr2

(
µ(r)2

)
+ 4r

d

dr

(
µ(r)2

)
+ 2µ(r)2 − 2c2 = 0.

On solving this differential equation for the function µ(r)2− c2 we find
that

µ(r)2 − c2 = −c
2rS
r

+
c2A

r2
.

where c, rS and A are real constants, and thus

µ(r)2 = c2
(

1− rS
r

+
A

r2

)
,

as required.

Remark Einstein published his Theory of General Relativity in 1915. A
month later Karl Schwarzschild found the first non-flat exact solution to the
Einstein field equations. It describes the geometry of space-time away from
a stationary non-rotating uncharged star or black hole. The Schwarzschild
metric takes the form

g = −c2
(

1− rS
r

)
dt2 +

1

1− rS
r

dr2 + r2 dθ2 + r2 sin2 θ dϕ2.

The calculations of problem 8 establish that this metric has zero Ricci tensor.
This is the basic requirement for satisfying the Einstein field equations in the
absence of matter and energy.

The metric that describes the geometry of spacetime around a charged
non-rotating spherically symmetric body was obtained by Hans Reissner in
1916 and Gunnar Nordström in 1918. Suppose that there is no magnetic
field and that the electric field points radially outwards. Let e denote the
electric field strength. It can be shown that if Et, Er, Eθ, Eϕ is a Lorenzian
moving frame, where Et is pointed in the time direction and Er is pointed
in the radial direction, then the Ricci curvature of the metric tensor must
satisfy

Ric(Et, Et) = ke2, Ric(Er, Er) = −ke2,
Ric(Eθ, Eθ) = ke2, Ric(Eϕ, Eϕ) = ke2,

where k is an appropriate physical constant. It then follows from the results
of problem 8 that the metric tensor takes the form

g = −c2
(

1− rS
r

+
r2
Q

r2

)
dt2 +

1

1− rS
r

+
r2
Q

r2

dr2

+ r2 dθ2 + r2 sin2 θ dϕ2,
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obtained by Reissner and Nordström. Moreover the electric field strength e
is proportional to r−2. This requirement that the electric field strength be
proportional to r−2 is what one would expect on generalizing Maxwell’s equa-
tions to curved spacetimes, since it ensures that the surface integral of the
electric field over the sphere of area 4πr2 over which the coordinates t and r
are constant is independent of the parameter r that determines the intrinsic
curvature and area of the sphere, and this is what one would expect if the
surface integral of the electric field over the sphere is to be proportional to
the charge enclosed within the sphere.
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