
Module MA3427: Michaelmas Term 2010

Problems

Geodesic Congruences and Jacobi Fields

1. (a) Let ∇ be a smooth torsion-free affine connection on a smooth man-
ifold M , and let Q and X be smooth vector fields on M . Suppose that
∇QQ = 0 and [Q,X] = 0. Prove that

∇Q∇QX +R(X,Q)Q = 0,

where R is the curvature of the connection ∇.

(b) Let ∇ be a smooth torsion-free affine connection on a smooth man-
ifold M , and let Q and X be smooth vector fields on M . Suppose that
∇QQ = 0 and [Q,X] = 0. Let γ: I → M be an integral curve for the
vector field Q, and let V (t) = Xγ(t) for all t ∈ I. Explain why γ is a
geodesic in M , and also explain why the vector field V : I → TM is a
Jacobi field along the curve γ.

Constant Curvature Metrics and the Expanding Uni-
verse

2. Let N be a Riemannian manifold with metric tensor gN , let I be an
open interval in R, let M = N × I, and let π:M → N and ιt:N →M
be defined for all t ∈ I so that

π(p, t) = p, and ιt(p) = (p, t)

for all p ∈ N and t ∈ I. Let Q be the vector field
∂

∂t
on M whose

integral curves are the curves γp: I → M , where γp(t) = (p, t) for all
p ∈ N and t ∈ I. Also, for each smooth vector field X on N , let X◦ be
the smooth vector field on M defined such that X◦

(p,t) = ιt∗Xp for all
p ∈ N and t ∈ I.

Let a: I → (0,+∞) be a positive smooth real-valued function on the
open interval I, let q be a real constant, and let g be the Riemannian or
pseudo-Riemannian metric on M characterized by the properties that
g(Q,Q) = q, g(Q,X◦) = 0 and

g(p,t)(X
◦, Y ◦) = a(t)2gNp (X, Y )
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for all smooth vector fields X and Y on N (where gN denotes the metric
tensor of the Riemannian manifold N), so that

g = q dt⊗ dt+ a(t)2 π∗gN ,

where (π∗gN)(U, V ) = gN(π∗U, π∗V ) for all vector fields U and V on
M . Also let∇ and RM denote the Levi-Civita connection and Riemann
curvature tensor respectively on M determined by the metric tensor g.

(a) Explain why [Q,X◦] = 0 and [X◦, Y ◦] = [X, Y ]◦ for all smooth vec-
tor fields X on N . [Hint: use Lemma 7.6 to prove that π∗[Q,X

◦](p,t) = 0
and σ∗[Q,X

◦](p,t) = 0 for all p ∈ N and t ∈ I, where π:M → N and
σ:M → I are the projection functions that satisfy π(p, t) = p and
σ(p, t) = t for all p ∈ N and t ∈ I.]

(b) By evaluating Q[g(Q,Q)], X◦[g(Q,Q)] and Q[g(Q,X◦)], where X
is some smooth vector field on N , or otherwise, show that ∇QQ = 0
and g(∇QX

◦, Q) = 0.

(c) Show that

g(∇X◦Y ◦, Q) = g(∇Y ◦X◦, Q)

= −g(∇X◦Q, Y ◦)

= −g(∇QX
◦, Y ◦)

= −1
2
Q[g(X◦, Y ◦)]

= −H(t) g(X◦, Y ◦)

for all smooth vector fields X and Y on N , where

H(t) =
1

a(t)

da(t)

dt
=
d(log(a(t))

dt
,

and hence show that

∇X◦Q = ∇QX
◦ = H(t)X◦

for all smooth vector fields X on N .

(d) Show that

RM(X◦, Q)Q = −
(
dH(t)

dt
+H(t)2

)
X◦

= − 1

a(t)

d2a(t)

dt2
X◦,
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and thus

RM(W ◦, Q,X◦, Q) = −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦).

for all smooth vector fields W and X on N . [Hint: use the result of
problem 1(a).]

(e) Prove that

g(∇X◦Y ◦, Z◦) = a(t)2gN(∇N
XY, Z) ◦ π = g((∇N

XY )◦, Z◦)

for all vector smooth fields X, Y and Z on N , where ∇N denotes the
Levi-Civita connection determined by the metric tensor gN on N , and
apply this result, together with the results of (c) in order to show that

∇X◦Y ◦ = (∇N
XY )◦ − H(t)

q
g(X◦, Y ◦)Q

for all smooth vector fields X, Y and Z on N .

(f) Use the definition of the Riemann curvature tensor and the results
of previous parts of this question to show that

RM(X◦, Y ◦)Z◦ = (RN(X, Y )Z)◦

− H(t)2

q

(
g(Z◦, Y ◦)X◦ − g(Z◦, X◦)Y ◦

)
and thus

RM(W ◦, Z◦, X◦, Y ◦)

= a(t)2RN(W,Z,X, Y ) ◦ π

− H(t)2

q

(
g(W ◦, X◦)g(Z◦, Y ◦)− g(W ◦, Y ◦)g(Z◦, X◦)

)
and

RM(Q,Z◦, X◦, Y ◦) = 0

for all smooth vector fields X, Y , Z and W on N , where RN denotes
the Riemann curvature tensor determined by the metric tensor gN on
N .

3



3. Let Sn be the unit sphere in Rn+1, let g be the standard flat metric on
Rn+1, defined such that

g

(
n+1∑
j=1

vj
∂

∂xj
,

n+1∑
j=1

wj
∂

∂xj

)
=

n+1∑
j=1

vjwj

for all (v1, . . . , vn+1), (w1, . . . , wn+1) ∈ Rn+1, where (x1, x2, . . . , xn+1) is
the standard Cartesian coordinate system on Rn+1, and let gS denote
the Riemannian metric on Sn obtained on restricting the standard flat
metric g on Rn+1 to the tangent spaces of Sn. Let π: Rn+1 \ {0} → Sn

be the radial projection map, defined so that π(x) = |x|−1x for all
x ∈ Rn+1 \ {0}, and let r: Rn+1 → R be the function defined such that
r(x) = |x| for all x ∈ Rn+1, so that r(x) is the Euclidean distance from
a point x of Rn+1 to the origin.

(a) Explain why

g(U,V) = 〈dr,U〉 〈dr,V〉+ r2gS(π∗U, π∗V)

for all points x of Rn+1 and tangent vectors U and V to Rn+1 at x, so
that

g = dr ⊗ dr + r2π∗gS.

(b) By applying the results of problem 2, show that the Riemann curva-
ture tensor RS of the Riemannian metric gS on Sn satisfies the identity

RS(W,Z,X, Y ) = gS(W,X)gS(Z, Y )− gS(W,Y )gS(Z,X).

4. A Riemannian manifold M with metric tensor g is said to be a space
of constant curvature K0, where K0 is some real constant, if the Rie-
mann curvature tensor R determined by the metric tensor g satisfies
the identity

R(W,Z,X, Y ) = K0 (g(W,X)g(Z, Y )− g(W,Y )g(Z,X)) .

Question 3 shows that the unit sphere in Rn+1, with the usual Rieman-
nian metric, is a space of constant curvature +1. Moreover Lemma 9.9
ensures that a Riemannian manifold is a space of constant curvature
K0 if and only if all sectional curvatures of M are equal to K0.

LetN be a Riemannian manifold of constant curvatureKN , with metric
tensor gN and Riemann curvature tensor RN , let M = N × I, where
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I is an open interval in R, and let g be the Riemannian metric on R
defined as described in problem 2, with q = 1, so that

g = dt⊗ dt+ a(t)2 π∗gN ,

where π:M → N is the projection function defined such that π(p, t) =
p, the smooth real-valued function t on M corresponds to the projection
map (p, t) 7→ t from M to I, and a: I → R is a smooth everywhere

positive function. Also let Q =
∂

∂t
, so that Q(p,t) is the velocity vector

of the smooth curve s 7→ (p, s) at each point (p, t) of M . And, for each
smooth vector field X on N , let X◦ denote the smooth vector field on
M defined such that g(Q,X◦) = 0 and π∗X

◦
(p,t) = Xp for all (p, t) ∈M .

(a) Let P be a 2-dimensional vector subspace of the tangent space T(p,t)

to M at some point (p, t) of M . Use the results of problem 2, show
that the sectional curvature KM(P ) of M in the plane P satisfies

KM(P ) = −
(
dH(t)

dt
+H(t)2

)
= − 1

a(t)

d2a(t)

dt2

if the plane P contains Q(p,t), and that

KM(P ) =
KN

a(t)2
−H(t)2

=
1

a(t)2

(
KN −

(
da(t)

dt

)2
)

if the plane P is orthogonal to Q(p,t), where

H(t) =
1

a(t)

da(t)

dt
.

(b) Show that if the function a satisfies the differential equation

KN −
(
da(t)

dt

)2

= KM a(t)2,

where KN and KM are real constants, then

d2a(t)

dt2
= −KM a(t).
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Hence or otherwise show that, in the case where KM > 0 and KN > 0,
the Riemannian manifold M is a space of constant curvature KM if and
only if

a(t) =

√
KN

KM

sin
(√

KM(t− t0)
)
,

where t0 is an arbitrary real constant. Show also that, in the case
where KM < 0 and KN > 0, the Riemannian manifold M is a space of
constant curvature KM if and only if

a(t) =

√
−KN

KM

sinh
(√
−KM(t− t0)

)
,

where t0 is an arbitrary real constant. And also show that, in the case
where KM < 0 and KN < 0, the Riemannian manifold M is a space of
constant curvature KM if and only if

a(t) =

√
KN

KM

cosh
(√
−KM(t− t0)

)
,

5. (Friedman-Robertson-Walker Metrics) Let N be a Riemannian
manifold of constant curvatureKN , with metric tensor gN and Riemann
curvature tensor RN , where

RN(W,Z,X, Y ) = KN

(
gN(W,X)gN(Z, Y )

− gN(W,Y )gN(Z,X)
)

for all vector fields W , X, Y and Z on N . Let M = N×I, where I is an
open interval in R, and let g be the Riemannian metric on R defined
as described in problem 2, with q = −c2, where c is a real constant
(representing the speed of light in General Relativity), so that

g = −c2 dt⊗ dt+ a(t)2 π∗gN ,

where π:M → N is the projection function defined such that π(p, t) =
p, the smooth real-valued function t on M corresponds to the projection
map (p, t) 7→ t from M to I, and a: I → R is a smooth everywhere

positive function. Also let Q =
∂

∂t
, so that Q(p,t) is the velocity vector

of the smooth curve s 7→ (p, s) at each point (p, t) of M . And, for each
smooth vector field X on N , let X◦ denote the smooth vector field on
M defined such that g(Q,X◦) = 0 and π∗X

◦
(p,t) = Xp for all (p, t) ∈M .
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(a) Show that

RM(W ◦, Q,X◦, Q) = −
(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)

=
1

c2

(
dH(t)

dt
+H(t)2

)
g(W ◦, X◦)g(Q,Q)

and

RM(W ◦, Z◦, X◦, Y ◦)

=

(
KN

a(t)2
+
H(t)2

c2

)(
g(W ◦, X◦)g(Z◦, Y ◦)

− g(W ◦, Y ◦)g(Z◦, X◦)
)

where

H(t) =
1

a(t)

da(t)

dt
.

Verify also that R(V1, V2, V3, V4) = 0 when exactly one of these vector
fields V1, V2, V3, V4 is parallel to Q and the remaining three are orthog-
onal to Q.

Remark Pseudo-Riemannian manifolds whose metric tensor has the struc-
ture analysed in problems 2 and 5 are used to model the expansion of the
universe, on the assumption that the universe is homogeneous and isotropic
(so that mass, energy and pressure are uniformly distributed). This question
establishes that the Riemann curvature tensor of M is determined by the
two quantities

1

c2

(
dH(t)

dt
+H(t)2

)
and

H(t)2

c2
+

k

a(t)2
,

where k is some appropriate constant, which is positive if the universe at any
instant of time is a space of constant positive curvature, zero if the universe
is flat, and negative if the universe at any instance of time is a space of
constant negative curvature. Without loss of generality, we may suppose
that k has one of the three values +1, 0 and −1. The Einstein field equations
of General Relativity relate these quantities to appropriate components of
the stress-energy tensor. In these models describing the expansion of the
universe, the stress-energy tensor is determined by the mass density ρ and
the pressure p. Alexander Friedmann discovered in 1922 and 1924 equations
that describe the evolution of these cosmological models. Einstein’s field
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equations yield the following equations governing the time evolution of a
homogeneous isotropic universe as described by Friedmann’s models:

1

c2

(
dH(t)

dt
+H(t)2

)
= −4πG

3c2

(
ρ+

3p

c2

)
+

Λ

3

H(t)2

c2
+

k

a(t)2
=

8πG

3c2
ρ+

Λ

3

Here the constant c is the speed of light, the function H is the Hubble param-
eter (whose current value is the Hubble constant that expresses the current
rate of expansion of the universe), G is the gravitational constant, and Λ is
the cosmological constant (regretfully introduced by Einstein in the hope of
obtaining static solutions to the field equations) which represents dark energy
in the universe. The constant k represents the curvature of our model uni-
verse N , and indeed we may choose N so that k has one of the three values
+1, 0 and −1. In the case where k = +1, the universe at time t is compact,
and is isometric to a three-dimensional sphere of radius a(t). In the case
where k = 0, the universe is flat at all times. In the case where k = −1 the
universe at time t is non-compact, and is isometric to a three-dimensional
hyperbolic space of curvature −1/a(t)2.

The cosmological models discussed here were later studied by Georges
Lemâıtre in 1927 and in the 1930s by Howard Percy Robertson and Arthur
Geoffrey Walker. Riemannian metrics with the structure described in prob-
lem 5 are often referred to as Robertson-Walker metrics.

We now discuss in more detail how to derive Friedmann’s equations from
Einstein’s field equations. Note that if E0, E1, E2 and E3 are smooth vector
fields over an open subset of M that constitute a Lorentzian moving frame
for M , so that the vector fields E0, E1, E2, E3 are mutually orthogonal and
satisfy

g(E0, E0) = −1, g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

and if this moving frame is chosen such that E0 = Q and E1, E2, E3 are
orthogonal to Q, then the Riemann curvature tensor R of space-time satisfies

R(E1, E2, E1, E2) = R(E2, E3, E2, E3) = R(E3, E1, E3, E1)

=
H(t)2

c2
+

k

a(t)2

R(E0, E1, E0, E1) = R(E0, E2, E0, E2) = R(E0, E3, E0, E3)

= − 1

c2

(
dH(t)

dt
+H(t)2

)
= − 1

c2a(t)

d2a(t)

dt2
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Moreover R(Eα, Eβ, Eγ, Eδ) = 0 unless α 6= β and either γ = α and δ = β or
else γ = β and δ = α. The Einstein field equations require that the curvature
of the space-time manifold M satisfy the identity

Ric(X, Y )− 1

2
g(X, Y )S =

8πG

c4
T (X, Y )− Λ g(X, Y )

for all vector fields X and Y on M , where T is the stress-energy tensor, in
covariant form, determined by the matter, electromagnetic fields etc. in the
universe, Ric is the Ricci curvature tensor of M , defined such that

Ric(X, Y ) = −R(E0, X,E0, Y ) +R(E1, X,E1, Y )

+R(E2, X,E2, Y ) +R(E3, X,E3, Y ),

and S is the scalar curvature, defined such that

S = −Ric(E0, E0) + Ric(E1, E1) + Ric(E2, E2) + Ric(E3, E3)

= 2
(
−R(E0, E1, E0, E1)−R(E0, E2, E0, E2)

−R(E0, E3, E0, E3) +R(E1, E2, E1, E2)

+R(E2, E3, E2, E3) +R(E3, E1, E3, E1)
)

The Einstein field equations may also be presented in the form

Ein(X, Y ) =
8πG

c4
T (X, Y )− Λ g(X, Y )

where Ein denotes the Einstein tensor, defined such that

Ein(X, Y ) = Ric(X, Y )− 1

2
g(X, Y )S

for all vector fields X and Y on space-time. Then

Ein(E0, E0) = R(E1, E2, E1, E2) +R(E2, E3, E2, E3)

+R(E3, E1, E3, E1)

Ein(E1, E1) = R(E0, E2, E0, E2) +R(E0, E3, E0, E3)

−R(E2, E3, E2, E3)

Ein(E2, E2) = R(E0, E3, E0, E3) +R(E0, E1, E0, E1)

−R(E3, E1, E3, E1)

Ein(E3, E3) = R(E0, E1, E0, E1) +R(E0, E2, E0, E2)

−R(E1, E2, E1, E2)
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Thus, for the Friedmann metric,

Ric(E0, E0) = − 3

c2

(
dH(t)

dt
+H(t)2

)
,

Ric(E1, E1) = Ric(E2, E2) = Ric(E3, E3)

=
1

c2

(
dH(t)

dt
+H(t)2

)
+

2k

a(t)2
+

2H(t)2

c2
,

Ein(E0, E0) =
3k

a(t)2
+

3H(t)2

c2
,

Ein(E1, E1) = Ein(E2, E2) = Ein(E3, E3)

= − 2

c2

(
dH(t)

dt
+H(t)2

)
− H(t)2

c2
− k

a(t)2
,

S =
6

c2

(
dH(t)

dt
+H(t)2

)
+

6k

a(t)2
+

6H(t)2

c2
.

Also Ric(Eα, Eβ) = Ein(Eα, Eβ) = 0 when α 6= β.
Now if the universe is filled with a perfect homogeneous fluid with mass

density ρ and pressure p, where the world-lines of the particles are integral
curves for the vector field E0 (so that E0 represents the four-velocity of the
particles in the fluid) then

T (E0, E0) = ρc2 and T (E1, E1) = T (E2, E2) = T (E3, E3) = p.

It follows from the Einstein field equations that

H(t)2

c2
+

k

a(t)2
=

1

3
Ein(E0, E0) =

8πG

3c4
T (E0, E0)−

Λ

3
g(E0, E0)

=
8πG

3c2
ρ+

Λ

3
,

1

c2

(
dH(t)

dt
+H(t)2

)
=

1

6
S − 1

3
Ein(E0, E0)

= −4πG

3c2

(
ρ+

3p

c2

)
+

Λ

3
.

We have thus obtained the equations govening the expansion of the universe
in Friedmann’s models. We can eliminate the mass density ρ from these two
equations to obtain the equation

2

c2a(t)

d2a(t)

dt2
+

1

c2a(t)2

(
da(t)

dt

)2

+
k

a(t)2
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=
2

c2

(
dH(t)

dt
+H(t)2

)
+
H(t)2

c2
+

k

a(t)2

= −8πGp

c4
+ Λ.

The Schwarzschild and Reissner-Nordström Metrics

6. Let M be a Riemannian or pseudo-Riemannian manifold with met-
ric tensor g and Levi-Civita connection ∇, and let E1, E2, . . . , En be
smooth vector fields on M , where g(Ej, Ek) is a constant function for
all j and k.

(a) Explain why

g(∇EiEj, Ek) = −g(Ej,∇EiEk)

= g([Ek, Ei], Ej)− g(∇EkEi, Ej)

for i, j, k = 1, 2, . . . , n.

(b) Show that

g(∇EiEj, Ek) + g(∇EjEi, Ek) = g([Ek, Ei], Ej) + g(Ei, [Ek, Ej]),

and therefore

g(∇EiEj, Ek) = 1
2

(
g([Ek, Ei], Ej) + g(Ei, [Ek, Ej]) + g([Ei, Ej], Ek)

)
.

(c) Show that

g(∇EiEj, Ei) = g([Ei, Ej], Ei) and g(∇EiEj, Ej) = 0.

(d) Suppose that there exist smooth real-valued functions uij for i 6= j
such that [Ei, Ej] = uijEj − ujiEi, so that [Ei, Ej] is in the linear span
of the vectors Ei and Ej at each point of M for i, j = 1, 2, . . . , n. Show
that g(∇EiEj, Ek) = 0 whenever the indices i, j and k are distinct.

7. Consider a pseudo-Riemannian metric g on a space-time M that takes
the form

g = −µ(r)2 dt2 + κ(r)2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2,

on the domain U of a local coordinate system t, r, θ, ϕ, where (in ac-
cordance with traditional notation)

dt2 = dt⊗ dt, dr2 = dr ⊗ dr, dθ2 = dθ ⊗ dθ, dϕ2 = dϕ⊗ dϕ,
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and where ψ and κ are smooth real-valued functions defined on {r ∈
R : r > r0} for some r0 > 0. Let Et, Er, Eθ and Eϕ be the smooth
vector fields on U defined such that

Et =
1

µ(r)

∂

∂t
, Er =

1

κ(r)

∂

∂r
, Eθ =

1

r

∂

∂θ
, Eϕ =

1

r sin θ

∂

∂ϕ
,

so that the vector fields Et, Er, Eθ and Eϕ are mutually orthogonal,
and

g(Et, Et) = −1

and
g(Er, Er) = g(Eθ, Eθ) = g(Eϕ, Eϕ) = 1.

(a) Show that

[Er, Et] = − 1

κ(r)µ(r)

dµ(r)

dr
Et,

[Er, Eθ] = − 1

rκ(r)
Eθ,

[Er, Eϕ] = − 1

rκ(r)
Eϕ,

[Et, Eθ] = 0,

[Et, Eϕ] = 0,

[Eθ, Eϕ] = − 1

r tan θ
Eϕ.

(b) Using the results of (a) and of problem 6, or otherwise, show that

∇ErEt = ∇ErEr = ∇ErEθ = ∇ErEϕ = 0,

∇EtEθ = ∇EθEt = ∇EtEϕ = ∇EϕEt = ∇EθEϕ = 0,

∇EtEr =
1

κ(r)µ(r)

dµ(r)

dr
Et, ∇EtEt =

1

κ(r)µ(r)

dµ(r)

dr
Er,

∇EθEr =
1

rκ(r)
Eθ, ∇EθEθ = − 1

rκ(r)
Er,

∇EϕEr =
1

rκ(r)
Eϕ, ∇EϕEθ =

1

r tan θ
Eϕ,

∇EϕEϕ = − 1

rκ(r)
Er −

1

r tan θ
Eθ.
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(c) Show that

R(Er, Eθ)Eϕ = R(Eθ, Eϕ)Er = R(Eϕ, Er)Eθ = 0,

R(Et, Eθ)Eϕ = R(Eθ, Eϕ)Et = R(Eϕ, Et)Eθ = 0,

R(Et, Er)Eϕ = R(Er, Eϕ)Et = R(Eϕ, Et)Er = 0,

R(Et, Er)Eθ = R(Er, Eθ)Et = R(Eθ, Et)Er = 0.

(d) Explain why

R

(
∂

∂t
, Er

)
Er = −∇Er∇Er

∂

∂t

R

(
∂

∂θ
, Er

)
Er = −∇Er∇Er

∂

∂θ

R

(
∂

∂ϕ
, Er

)
Er = −∇Er∇Er

∂

∂ϕ
.

Hence or otherwise, show that

R (Et, Er)Er = − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
Et

R (Eθ, Er)Er = − 1

2r

d

dr

(
1

κ(r)2

)
Eθ,

R (Eϕ, Er)Er = − 1

2r

d

dr

(
1

κ(r)2

)
Eϕ.

(d) Show (e.g., by direct calculation using the results of (a) and (b)
that

R(Eθ, Eϕ)Eθ =

(
1

r2κ(r)2
− 1

r2

)
Eϕ

R(Eθ, Eϕ)Eϕ =

(
1

r2
− 1

r2κ(r)2

)
Eθ

R(Et, Eθ)Eθ = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eϕ)Eϕ = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Et

R(Et, Eθ)Et = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eθ

R(Et, Eϕ)Et = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
Eϕ
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8. (The Schwarzschild and Reissner-Nordström Metrics) Let
the four-dimensional pseudo-Riemannian manifold M , the smooth real-
valued functions κ and µ, the metric tensor g, the smooth local coor-
dinates t, r, θ and ϕ and the smooth vector fields Et, Er, Eθ and Eϕ
be defined as in problem 7, so that

g = −µ(r)2 dt2 + κ(r)2 dr2 + r2 dθ2 + r2 sin2 θ dϕ2,

and

Et =
1

µ(r)

∂

∂t
, Er =

1

κ(r)

∂

∂r
, Eθ =

1

r

∂

∂θ
, Eϕ =

1

r sin θ

∂

∂ϕ
.

The Ricci tensor of M is the covariant tensor Ric of degree 2 on M
defined such that, given Xp, Yp ∈ TpM , the quantity Ric(Xp, Yp) is
the trace of the linear operator on TpM that sends Vp ∈ TpM to
R(Vp, Yp)Xp.

(a) Explain why

Ric(X, Y ) = −R(Et, X,Et, Y ) +R(Er, X,Er, Y )

+R(Eθ, X,Eθ, Y ) +R(Eϕ, X,Eϕ, Y )

(b) Using the results of problem 7, show that

Ric(Et, Et) =
1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
+

1

rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
,

Ric(Er, Er) = − 1

2κ(r)µ(r)

d

dr

(
1

κ(r)µ(r)

d

dr

(
µ(r)2

))
− 1

r

d

dr

(
1

κ(r)2

)
,

Ric(Eθ, Eθ) = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
,

Ric(Eϕ, Eϕ) = − 1

2rκ(r)2µ(r)2

d

dr

(
µ(r)2

)
14



− 1

2r

d

dr

(
1

κ(r)2

)
+

1

r2
− 1

r2κ(r)2
,

Ric(Et, Er) = Ric(Et, Eθ) = Ric(Et, Eϕ) = Ric(Er, Eθ)

= Ric(Er, Eϕ) = Ric(Eθ, Eϕ)

= 0.

(c) Verify that

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ) =
r2
Q

r4

in the special case where

µ(r)2

c2
=

1

κ(r)2
= 1− rS

r
+
r2
Q

r2

for some positive real constants c and rS, and thus

g = −c2
(

1− rS
r

+
r2
Q

r2

)
dt2 +

1

1− rS
r

+
r2
Q

r2

dr2

+ r2 dθ2 + r2 sin2 θ dϕ2.

(d) Suppose that the Ricci curvature of the metric tensor g satisfies
the identities

Ric(Et, Et) = −Ric(Er, Er) = Ric(Eθ, Eθ) = Ric(Eϕ, Eϕ).

Prove that the functions µ and κ determining the metric tensor satisfy
the identities

µ(r)2

c2
=

1

κ(r)2
= 1− rS

r
+
A

r2

for some constants c, rS and A.

Remark Einstein published his Theory of General Relativity in 1915. A
month later Karl Schwarzschild found the first non-flat exact solution to the
Einstein field equations. It describes the geometry of space-time away from
a stationary non-rotating uncharged star or black hole. The Schwarzschild
metric takes the form

g = −c2
(

1− rS
r

)
dt2 +

1

1− rS
r

dr2 + r2 dθ2 + r2 sin2 θ dϕ2.
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The calculations of problem 8 establish that this metric has zero Ricci tensor.
This is the basic requirement for satisfying the Einstein field equations in the
absence of matter and energy.

The metric that describes the geometry of spacetime around a charged
non-rotating spherically symmetric body was obtained by Hans Reissner in
1916 and Gunnar Nordström in 1918. Suppose that there is no magnetic
field and that the electric field points radially outwards. Let e denote the
electric field strength. It can be shown that if Et, Er, Eθ, Eϕ is a Lorenzian
moving frame, where Et is pointed in the time direction and Er is pointed
in the radial direction, then the Ricci curvature of the metric tensor must
satisfy

Ric(Et, Et) = ke2, Ric(Er, Er) = −ke2,

Ric(Eθ, Eθ) = ke2, Ric(Eϕ, Eϕ) = ke2,

where k is an appropriate physical constant. It then follows from the results
of problem 8 that the metric tensor takes the form

g = −c2
(

1− rS
r

+
r2
Q

r2

)
dt2 +

1

1− rS
r

+
r2
Q

r2

dr2

+ r2 dθ2 + r2 sin2 θ dϕ2,

obtained by Reissner and Nordström. Moreover the electric field strength e
is proportional to r−2. This requirement that the electric field strength be
proportional to r−2 is what one would expect on generalizing Maxwell’s equa-
tions to curved spacetimes, since it ensures that the surface integral of the
electric field over the sphere of area 4πr2 over which the coordinates t and r
are constant is independent of the parameter r that determines the intrinsic
curvature and area of the sphere, and this is what one would expect if the
surface integral of the electric field over the sphere is to be proportional to
the charge enclosed within the sphere.

16


