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5 Tensors and Multilinear Algebra

5.1 The Dual of a Finite-Dimensional Vector Space

Let V be a vector space over a field K. (In applications to differential geom-
etry and theoretical physics, the field K is usually the field of real numbers,
though sometimes it is appropriate to take the field K of scalars to be the
field of complex numbers.) The dual space V ∗ of V is the vector space over
the field K consisting of all linear functionals from V to K. We define

〈ϕ,v〉 = ϕ(v)

for all ϕ ∈ V ∗ and v ∈ V .
Suppose that the vector space V is finite-dimensional. Let e1, e2, . . . , en

be a basis for V , where n is the dimension of V . Then there is a corresponding
dual basis ε1, ε2, . . . , εn of the dual space V ∗. The elements of this dual basis
satisfy the identities

〈εj, ek〉 = εj(ek) = δjk

for j, k = 1, 2, . . . , n, where δjk is the Kronecker delta, defined such that

δjk =

{
1 if j = k;
0 otherwise.

The dual space (V ∗)∗ of V ∗ can be identified with the vector space V
itself. Indeed each element v of V determines a linear functional on V ∗

which sends ω to 〈ω,v〉 for all ω ∈ V ∗. Moreover every linear functional
on V ∗ is determined in this fashion by some element of the vector space v.
Let e1, e2, . . . , en be a basis of V , and let ε1, ε2, . . . , εn be the corresponding
dual basis of V ∗. Then the basis of V that is the dual basis of the basis
ε1, ε2, . . . , εn of V ∗ is the original basis e1, e2, . . . , en of the vector space V .

5.2 Multilinear Forms on Finite-Dimensional Vector
Spaces

Let V1, V2, . . . , Vr and W be vector spaces over some field K. A function

S:V1 × V2 × · · ·Vr → W

is said to be multilinear (or K-multilinear) if

S(αv′1 + βv′′1 ,v2,v3, . . . ,vr)

= αS(v′1,v2,v3, . . . ,vr) + βS(v′′1 ,v2,v3, . . . ,vr)
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S(v1, αv′2 + βv′′2 ,v3, . . . ,vr)

= αS(v1,v
′
2,v3, . . . ,vr) + βS(v1,v

′′
2 ,v3, . . . ,vr)

· · ·
S(v1,v2,v3, . . . , αv′r + βv′′r )

= αS(v1,v2,v3, . . . ,v
′
r) + βS(v1,v2,v3, . . . ,v

′′
r )

for all v1,v
′
1,v

′′
1 ∈ V1, v2,v

′
2,v

′′
2 ∈ V2, . . ., vr,v

′
r,v

′′
r ∈ Vr, and for all α, β ∈ K.

The collection of all K-multilinear maps (or functions) from V1, V2, . . . , Vr to
W is a vector space over the field K, which we denote by

MK(V1, V2, . . . , Vr;W )

In particular, we denote byMK(V1, V2, . . . , Vr;K) the vector space consisting
of all multilinear maps from V1 × V2 × · · · × Vr to the field K.

We define

v1 ⊗ v2 ⊗ · · · ⊗ vr ∈MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K)

and
ω1 ⊗ ω2 ⊗ · · · ⊗ ωr ∈MK(V1, V2, . . . , Vr;K)

for all
(v1,v2, . . . ,vr) ∈ V1 × V2, . . . , Vr

and
(ω1, ω2, . . . , ωr) ∈ V ∗1 × V ∗2 × · · · × V ∗r

such that

(v1 ⊗ v2 ⊗ · · · ⊗ vr)(ω1, ω2, . . . , ωr)

= (ω1 ⊗ ω2 ⊗ · · · ⊗ ωr)(v1,v2, . . . ,vr)

= 〈ω1,v1〉 〈ω2,v2〉 · · · 〈ωr,vr〉
= ω1(v1)ω2(v2) · · ·ωr(vr).

The multilinear map

v1 ⊗ v2 ⊗ · · · ⊗ vr:V
∗
1 × V ∗2 · · · × V ∗r → K

represents the tensor product of v1,v2, . . . ,vr, and the multilinear map

ω1 ⊗ ω2 ⊗ · · · ⊗ ωr:V1 × V2 · · · × Vr → K

represents the tensor product of ω1, ω2, . . . , ωr.
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Proposition 5.1 Let K be a field, let V1, V2, . . . , Vr be finite-dimensional
vector spaces over K, let V ∗1 , V

∗
2 , . . . , V

∗
r be the corresponding dual spaces,

and, for each integer q between 1 and r, let

(e(q),j : j = 1, 2, . . . , nq)

be a basis of the vector space Vq, where nq = dimK Vq, and let

(εj(q) : j = 1, 2, . . . , nq)

be the corresponding dual basis of the dual space V ∗q . Let

S ∈MK(V1, V2, . . . , Vr;K),

be a multilinear map from V1 × V2 × · · · × Vk to K, and let

Sj1,j2,...,jr = S(e(1),j1 , e(2),j2 , . . . , e(r),jr)

for all (j1, j2, . . . , jr) ∈ J , where

J = {(j1, j2, . . . , jr) ∈ Zr : 1 ≤ jq ≤ nq for q = 1, 2, . . . , r}.

Then

S =

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

Sj1,j2,...,jrε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r).

Thus if (v(1),v(2), . . . ,v(r)) ∈ V1 × V2 × · · · × Vr, and if

vj(q) = 〈εj(q),vq〉 = εj(q)(vq)

for q = 1, 2, . . . , r and j = 1, 2, . . . , nq, so that

v(q) =

nq∑
jq=1

v
jq
(q) e(q),jq

for q = 1, 2, . . . , r then

S(v(1),v(2), . . . ,v(r)) =

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

Sj1,j2,...,jrv
j1
(1)v

j2
(2) · · · v

jr
(r).

Proof The definition of εj1(1) ⊗ ε
j2
(2) ⊗ · · · ⊗ ε

jr
(r) ensures that

(εj1(1) ⊗ ε
j2
(2) ⊗ · · · ⊗ ε

jr
(r)) (v(1),v(2), . . . ,v(r)) = vj1(1)v

j2
(2) · · · v

jr
(r)
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for all (j1, j2, . . . , jr) ∈ J . It follows from the multilinearity of S that

S(v(1),v(2), . . . ,v(r))

=

n1∑
j1=1

S(e(1),j1 ,v(2), . . . ,v(r))v
j1
(1)

=

n1∑
j1=1

n2∑
j2=1

S(e(1),j1 , e(2),j2 ,v(3), . . . ,v(r))v
j1
(1)v

j2
(2)

· · ·

=

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

S(e(1),j1 , e(2),j2 , e(r),jr)v
j1
(1)v

j2
(2) · · · v

jr
(r)

=

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

Sj1,j2,...,jrv
j1
(1)v

j2
(2) · · · v

jr
(r)

=

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

Sj1,j2,...,jr(ε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r)) (v(1),v(2), . . . ,v(r)).

The result follows.

Remark In order to simplify notation slightly, it is convenient to denote a
summation such as

n1∑
j1=1

n2∑
j2=1

· · ·
nr∑
jr=1

Sj1,j2,...,jrε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r)

simply as ∑
j1,j2,...,jr

Sj1,j2,...,jrε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r),

where it is understood that each index jq ranges over the set of all integers
between 1 and the dimension nq of the corresponding vector space Vq.

Corollary 5.2 Let V1, V2, . . . , Vr be finite-dimensional vector spaces over a
field K, let V ∗1 , V

∗
2 , . . . , V

∗
r be the corresponding dual spaces, and, for each

integer q between 1 and r, let ε1
(q), ε

2
(q), . . . , ε

nq
(q) be a basis of the dual space V ∗q

of Vq. Then the collection of all tensor products of the form

εj1(1) ⊗ ε
j2
(2) ⊗ · · · ⊗ ε

jr
(r),

with (j1, j2, . . . , jr) ∈ J constitutes a basis for the vector space

MK(V1, V2, . . . , Vr;K)
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of multilinear maps from V1 × V2 × · · · × Vr to K, where

J = {(j1, j2, . . . , jr) ∈ Zr : 1 ≤ jq ≤ nq for q = 1, 2, . . . , r}.

ThusMK(V1, V2, . . . , Vr;K) is vector space of dimension n1n2 · · ·nr over the
field K.

Proof It follows from Proposition 5.1 that the collection of all tensor prod-
ucts of the form

εj1(1) ⊗ ε
j2
(2) ⊗ · · · ⊗ ε

jr
(r)

spans the vector space MK(V1, V2, . . . , Vr;K). Suppose that∑
j1,j2,...,jr

Sj1,j2,...,jrε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r) = 0.

where Sj1,j2,...,jr ∈ K for each (j1, j2, . . . , jr) ∈ J . For each q ∈ {1, 2, . . . , r},
let (e(q),j : j = 1, 2, . . . , nq) be the basis of Vq that has as its dual basis the

basis (εj(q) : j = 1, 2, . . . , nq) of V ∗q . Then

0 =
∑

j1,j2,...,jr

Sj1,j2,...,jr(ε
j1
(1) ⊗ ε

j2
(2) ⊗ · · · ⊗ ε

jr
(r))(e(1),k1 , e(2),k2 , . . . , e(r),kr)

= Sk1,k2,...,kr

for all (k1, k2, . . . , kr) ∈ J . We conclude from this that the elements

εj1(1) ⊗ ε
j2
(2) ⊗ · · · ⊗ ε

jr
(r)

of MK(V1, V2, . . . , Vr;K) are linearly independent, and therefore constitute
a basis of this vector space. It follows immediately that this vector space is
of dimension n1n2 · · ·nr.

Corollary 5.3 Let V1, V2, . . . , Vr be finite-dimensional vector spaces over a
field K, let V ∗1 , V

∗
2 , . . . , V

∗
r be the corresponding dual spaces, and, for each

integer q between 1 and r, let e(q),1, e(q),2, . . . , e(q),nq be a basis of the vector
space Vq. Then the collection of all tensor products of the form

e(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr ,

with (j1, j2, . . . , jr) ∈ J constitutes a basis for the vector space

MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K)

of multilinear maps from V ∗1 , V
∗
2 , . . . , V

∗
r to the field K of scalars, where of

multilinear maps from V ∗1 × V ∗2 × · · · × V ∗r to K, where

J = {(j1, j2, . . . , jr) ∈ Zr : 1 ≤ jq ≤ nq for q = 1, 2, . . . , r}.

Thus MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K) is vector space of dimension n1n2 · · ·nr over

the field K.
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Proof The dual space of V ∗q is the vector space Vq, for q = 1, 2, . . . , r.
Moreover if ε1

(q), ε
2
(q), . . . , ε

nq
(q) is the basis of V ∗q that is dual to the basis

e(q),1, e(q),2, . . . , e(q),nq then the latter basis is also the dual of the former.
The result therefore follows directly on applying Corollary 5.2.

Corollary 5.4 Let V1, V2, . . . , Vr and W be finite-dimensional vector spaces
over a field K, and let V ∗1 , V

∗
2 , . . . , V

∗
r be the dual spaces of V1, V2, . . . , Vr.

Then every multilinear map

λ:V1 × V2 × · · · × Vr → W

from V1 × V2 × · · · × Vr to W determines a unique linear transformation

λ̂:MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K)→ W

from MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K) to W which satisfies

λ̂(v(1) ⊗ v(2) ⊗ · · · ⊗ v(r)) = λ(v(1),v(2), . . . ,v(r))

for all (v(1),v(2), . . .v(r)) ∈ V1 × V2 × · · · × Vr.

Proof Let e(q),1, e(q),2, . . . , e(q),nq be a basis of the vector space Vq. Then the
collection of all tensor products of the form

e(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr ,

where jq ∈ {1, 2, . . . , r} for q = 1, 2, . . . , r, constitutes a basis for the vector
space MK(V ∗1 , V

∗
2 , . . . , V

∗
r ;K). It follows that, given any multilinear map

λ:V1 × V2 × · · · × Vr → W,

there exists a unique linear transformation

λ̂:MK(V ∗1 , V
∗
2 , . . . , V

∗
r ;K)→ W

characterized by the property that

λ̂(e(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr) = λ(e(1),j1 , e(2),j2 , . . . , e(r),jr)

for all (j1, j2, . . . , jr) ∈ J , where

J = {(j1, j2, . . . , jr) ∈ Zr : 1 ≤ jq ≤ nq for q = 1, 2, . . . , r}.

The multilinearity of λ and the linearity of λ̂ then ensure that

λ̂(v(1) ⊗ v(2) ⊗ · · · ⊗ v(r)) = λ(v(1),v(2), . . . ,v(r))

for all (v(1),v(2), . . .v(r)) ∈ V1 × V2 × · · · × Vr, as required.
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5.3 Tensor Products of Finite-Dimensional Vector
Spaces

Definition Let V1, V2, . . . , Vr be finite-dimensional vector spaces over some
field K. We define the tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vr of V1, V2, . . . , Vr to
be the vector space MK(V ∗1 , V

∗
2 , . . . , V

∗
r ;K) whose elements are multilinear

maps from V ∗1 × V ∗2 × · · · × V ∗r to the field K of scalars.

Let V1, V2, . . . , Vr be finite-dimensional vector spaces over a field K. Then
there is a well-defined multilinear map

µ:V1 × V2 × · · · × Vr → V1 ⊗ V2 ⊗ · · · ⊗ Vr

which is defined such that

µ(v(1),v(2), . . . ,v(r)) = v(1) ⊗ v(2) ⊗ · · · ⊗ v(r)

for all (v(1),v(2), . . .v(r)) ∈ V1 × V2 × · · · × Vr. Moreover it follows from
Corollary 5.4 that, given any finite-dimensional vector space W , and given
any multilinear map

λ:V1 × V2 × · · · × Vr → W,

there exists a unique linear transformation

λ̂:V1 ⊗ V2 ⊗ · · · ⊗ Vr → W

such that λ = λ̂◦µ. This property is the universal property that characterizes
tensor products of finite-dimensional vector spaces.

Proposition 5.5 Let T ∈ V1⊗ V2⊗ · · · ⊗ Vr, where V1, V2, . . . , Vr are finite-
dimensional vector spaces over a field K, let

(e(q),j : j = 1, 2, . . . , nq) and (f(q),k : k = 1, 2, . . . , nq)

be bases of the vector space Vq for q = 1, 2, . . . , r, where nq = dimK Vq, and

let T j1,j2,...,jr ∈ K and T̂ k1,k2,...,kr ∈ K be defined for all (j1, j2, . . . , jr) ∈ J
and (k1, k2, . . . , kr) ∈ J , where

J = {(j1, j2, . . . , jr) ∈ Zr : 1 ≤ jq ≤ nq for q = 1, 2, . . . , r},

so that

T =
∑

(j1,j2,...,jr)∈J

T j1,j2,...,jre(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr

=
∑

(k1,k2,...,kr)∈J

T̂ k1,k2,...,krf(1),k1 ⊗ f(2),k2 ⊗ · · · ⊗ f(r),kr .
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Suppose that

f(q),k =

nq∑
j=1

(A(q))
j
ke(q),j

for q = 1, 2, . . . , r, where (A(q))
j
k ∈ K for j, k = 1, 2, . . . , nq. Then

T j1,j2,...,jr =
∑

(k1,k2,...,kr)∈J

(A(1))
j1
k1

(A(2))
j2
k2
· · · (A(r))

jr
kr
T̂ k1,k2,...,kr

for all (j1, j2, . . . , jr) ∈ J .

Proof It follows from the multilinearity of the tensor product that

f(1),k1 ⊗ f(2),k2 ⊗ · · · ⊗ f(r),kr .

=
∑

(j1,j2,...,jk)∈J

(A(1))
j1
k1

(A(2))
j2
k2
· · · (A(r))

jr
kr

e(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr

for all (k1, k2, . . . , kr) ∈ J . The required result follows directly, by substitut-
ing in the above equation into the equation

T =
∑

(k1,k2,...,kr)∈J

T̂ k1,k2,...,krf(1),k1 ⊗ f(2),k2 ⊗ · · · ⊗ f(r),kr

and then equating coefficients of

e(1),j1 ⊗ e(2),j2 ⊗ · · · ⊗ e(r),jr

in the resulting formula for T .

5.4 Tensors

Definition Let V be a finite-dimensional vector space over a field K. A
tensor of type (r, s) on V is an element of the vector space V ⊗r ⊗ V ∗⊗s that
is the tensor product of r copies of the vector space V and s copies of the
dual vector space V ∗.

Let V be a vector space of dimension n over a field K, let e1, e2, . . . , en
be a basis of V , and let ε1, ε2, . . . , εn be the dual basis of V ∗, which is defined
so that 〈εk, ej〉 = δkj for j, k = 1, 2, . . . , n, where δkj is the Kronecker delta.

Let T be a tensor of type (r, s) on V . Then there exist scalars T j1,j2,...,jrk1,k2,...,ks
∈ K

such that

T =
∑

j1,j2,...,jr

∑
k1,k2,...,ks

T j1,j2,...,jrk1,k2,...,ks
ej1 ⊗ ej2 ⊗ · · · ⊗ ejr ⊗ εk1 ⊗ εk2 ⊗ · · · ⊗ εks .
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Let f1, f2, . . . , fn be another basis for V , and let η1, η2, . . . , ηn be the corre-
sponding dual basis for V ∗, so that 〈ηq, fp〉 = δqp for p, q = 1, 2, . . . , n. Then
there exist non-singular matrices A and B, with coefficients Ajp and Bq

k in K,
such that

fp =
n∑
j=1

Ajpej and ηq =
n∑
k=1

Bq
kε
k

for p, q = 1, 2, . . . , n. Then

δpq = 〈ηq, fp〉 =
n∑
j=1

n∑
k=1

Bq
kA

j
p〈εk, ej〉 =

n∑
j=1

n∑
k=1

Bq
kA

j
pδ
k
j =

n∑
j=1

Bq
jA

j
p

for p, q = 1, 2, . . . , n. It follows that the matrix product BA is the identity
matrix, and thus B = A−1. We may therefore write Bq

k = (A−1)qk.

Proposition 5.6 Let V be a vector space of dimension n over a field K, let

e1, e2, . . . , en and f1, f2, . . . , fn

be bases of V , let

ε1, ε2, . . . , εn and η1, η2, . . . , ηn

be the corresponding dual bases of V ∗, and let A be the n × n matrix with

coefficients Ajk in K such that fp =
n∑
j=1

Ajpej for p = 1, 2, . . . , n. Let T ∈ V r,s

be a tensor of type (r, s) on V , and let

T =
∑

j1,j2,...,jr

∑
k1,k2,...,ks

T j1,j2,...,jrk1,k2,...,ks
ej1 ⊗ ej2 ⊗ · · · ⊗ ejr ⊗ εk1 ⊗ εk2 ⊗ · · · ⊗ εks

=
∑

p1,p2,...,pr

∑
q1,q2,...,qs

T̂ p1,p2,...,prq1,q2,...,qs
fp1 ⊗ fp2 ⊗ · · · ⊗ fpr ⊗ ηq1 ⊗ ηq2 ⊗ · · · ⊗ ηqs ,

where the coefficients T j1,j2,...,jrk1,k2,...,ks
and T̂ p1,p2,...,prq1,q2,...,qs

of T with respect to the relevant
bases are scalars belonging to the field K. Then

T j1,j2,...,jrk1,k2,...,ks

=
∑

p1,p2,...,pr

∑
q1,q2,...,qs

Aj1p1 A
j2
p2
· · · Ajrpr (A−1)q1k1 (A−1)q2k2 · · · (A−1)qsks T̂

p1,p2,...,pr
q1,q2,...,qs

for all values of the indices j1, j2, . . . , jr and k1, k2, . . . , ks as these indices
range from 1 to n.
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Proof This result follows directly on applying Proposition 5.5.

Let V be a vector space over a field K. A covariant tensor of rank s on
V is a tensor of type (0, s). A covariant tensor of rank s corresponds to a
multilinear map from V s to K. Covariant tensors thus represent multilinear
forms on the vector space V .

A contravariant tensor of rank r on V is a tensor of type (r, 0). A con-
travariant tensor of rank r corresponds to a multilinear map from V ∗r to K.
Contravariant tensors thus represent multilinear forms on the dual V ∗ of the
vector space V .

The space V (1,0) of tensors of rank (1, 0) on the vector space V is isomor-
phic to the vector space V itself.

The space V (0,1) of tensors of rank (0, 1) on the vector space V is isomor-
phic to the dual V ∗ of the vector space V .

Tensors of type (1, 1) on the vector space V represent linear operators on
V .

A tensor of type (1, s) represents a multilinear map from V s to V .

Example Let V be a vector space of dimension n over a field K, and let R
be a tensor of type (1, 3) on V . Let e1, e2, . . . , en be a basis of V , and let
ε1, ε2, . . . , εn be the dual basis of V ∗, which is defined so that 〈εk, ej〉 = δkj
for j, k = 1, 2, . . . , n, where δkj is the Kronecker delta. Then

R =
∑
h,i,j,k

Rh
ijk eh ⊗ εi ⊗ εj ⊗ εk,

where the above summation is taken over all values of the indices h, i, j and k
between 1 and n. This tensor determines a trilinear map from V ×V ×V to V .
This trilinear map sends (u,v,w) to R(u,v,w) for all (u,v,w) ∈ V ×V ×V ,
where

R(u,v,w) =
∑
h,i,j,k

Rh
ijk 〈εi,u〉 〈εj,v〉 〈εk,w〉 eh.

Let up, vp and wp denote the pth components of the vectors u, v and w for
p = 1, 2, . . . , n, where these components are taken with respect to the basis
e1, e2, . . . , en, so that

u =
n∑
p=1

upep, v =
n∑
p=1

vpep, w =
n∑
p=1

wpep.

Then
〈εi,u〉 = ui, 〈εj,v〉 = vj, 〈εk,w〉 = wk,
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and therefore
R(u,v,w) =

∑
h,i,j,k

Rh
ijku

ivjwk eh.

Remark The Riemann curvature tensor of Riemannian geometry and Gen-
eral Relativity is a tensor of type (1, 3) on each tangent space of a Riemannian
or pseudo-Riemannian manifold. The Riemann curvature tensor on the tan-
gent space at any point of a Riemannian manifold thus determines a trilinear
map sending a triple of tangent vectors at that point to a single tangent vec-
tor.
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6 Vector Bundles

6.1 Smooth Vector Bundles

Definition Let E and M be a smooth manifolds, let k be a non-negative
integer, and let πE:E → M be a smooth surjective map. Suppose that, for
each point p of M , the subset Ep of E consisting of those elements e of E that
satisfy πE(e) = p has operations of addition and scalar multiplication defined
on it, with respect to which it is a real vector space of dimension k. Suppose
also that, given any point p0 of M , there exists an open set U containing p0

and a smooth map ψ:U × Rk → E which satisfies the following conditions:

(i) the function ψ maps U × Rk diffeomorphically onto π−1
E (U);

(ii) πE(ψ(p,v)) = p for all p ∈ U and v ∈ Rk;

(iii) for each p ∈ U , the map ψp: Rk → Ep is an isomorphism of real vector
spaces, where

ψp(v) = ψ(p,v)

for all v ∈ Rk.

The smooth manifold E and the smooth map πE:E →M then constitute a
smooth real vector bundle over M of rank k with total space E, base space M
and projection map πE:E →M .

Definition Let πE:E →M be a smooth vector bundle over a smooth man-
ifold M . Given any point p of M , the fibre of the vector bundle πE:E →M
over the point p of M is the real vector space Ep, where

Ep = π−1
E ({p}) = {e ∈ E : πE(e) = p}.

Definition Let πE:E →M and πÊ: Ê →M be smooth vector bundles over

a smooth manifold M . A function ϕE → Ê between the total spaces of
these vector bundles is said to be an isomorphism of vector bundles over M
provided that it satisfies the following conditions:

(i) ϕ:E → Ê is a diffeomorphism;

(ii) given any point p of M , the restriction of ϕ to the fibre Ep of the vector

bundle πE:E →M over the point p yields an isomorphism ϕp:Ep → Êp
of vector spaces between Ep and the corresponding fibre Êp of the vector

bundle πÊ: Ê →M over the point p.
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Vector bundles πE:E → M and πÊ: Ê → M are said to be isomorphic as
vector bundles over M if there exists an isomorphism between them.

Let πE:E → M and πÊ: Ê → M be smooth vector bundles over M , and

let the smooth map ϕ:E → Ê be an isomorphism of vector bundles over M .
Then πÊ ◦ ϕ = πE.

Definition Let M be a smooth manifold. The product bundle of rank k over
M is the smooth vector bundle πE:E →M , where E = M×Rk, πE(p,v) = p
for all p ∈M and v ∈ Rk, and where, for each point p of M , the vector space
structure on the fibre π−1

E ({p}) is defined such that

λvp + µwp = (λv + µw)p

for all p ∈ M , v,w ∈ Rk and λ, µ ∈ R, where vp = (p,v) for all p ∈ M and
v ∈ Rk.

Definition A smooth vector bundle πE:E → M of rank k over a smooth
manifold M is said to be (topologically) trivial if it is isomorphic (as a smooth
vector bundle) to the product bundle of rank k over M .

Lemma 6.1 A smooth vector bundle πE:E →M over a smooth manifold M
is trivial if and only if there exists a diffeomorphism ψ:M×Rk → E such that
πE(ψ(p,v)) = p and ψp: Rk → Ep is an isomorphism of real vector spaces for
all p ∈M , where Ep = π−1

E ({p}) and ψp(v) = ψ(p,v) for all p ∈M and v.

Proof This result follows immediately from the relevant definitions.

Definition Let πE:E →M be a smooth vector bundle over a smooth mani-
fold M , and let U be an open subset of M . Then πE|U :E|U → U is a smooth
vector bundle over U , where E|U = π−1

E (U) and πE|U = πE|π−1
E (U) (so that

E|U is the union of the fibres of πE:E → M that project to points of U ,
and πE|U is the restriction of the projection map πE to E|U). We refer to
this smooth vector bundle πE|U :E|U → U as the restriction of the vector
bundle πE:E →M to the open set U .

Lemma 6.2 Let πE:E →M be a smooth vector bundle over a smooth man-
ifold M , and let p ∈M . Then there exists an open set U in M , where p ∈ U ,
such that the restriction πE|U :E|U → U of this vector bundle to the open
set U is isomorphic to a product bundle over U , and is thus a trivial bundle
over U .
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Proof The result follows immediately from the relevant definitions and from
Lemma 6.1.

Definition Let πE:E →M be a smooth vector bundle over a smooth man-
ifold M , and let U be an open set in M . A continous map s:U → E is said
to be a continuous section of the vector bundle over U if πE(s(p)) = p for all
p ∈ U .

Lemma 6.3 A smooth vector bundle πE:E → M of rank r over a smooth
manifold M is trivial if and only if there exist smooth sections s1, s2, . . . , sr
of πE:E →M such that, for each point p of M , the elements

s1(p), s2(p), . . . , sr(p)

of the fibre Ep of the bundle over p constitute a basis of the real vector space
Ep.

Proof Suppose that there exist smooth sections s1, s2, . . . , sr of πE:E →M
such that, for all p ∈ M , the elements s1(p), s2(p), . . . , sr(p) of the fibre Ep
of the vector bundle over the point p constitute a basis of the real vector
space Ep. Define ψ:M × Rr → E so that

ψ(p, (v1, v2, . . . , vk)) = v1s1(p) + v2s2(p) + · · ·+ vrsr(p)

for all p ∈M and (v1, v2, . . . , vr) ∈ Rr. Then ψ:M ×Rr → E is a diffeomor-
phism. Moreover this diffeomorphism is an isomorphism of smooth vector
bundles over M , where we regard M ×Rr as a product bundle over M with
fibre Rr. Thus the smooth vector bundle πE:E →M is trivial.

Conversely if the smooth vector bundle πE:E → M is trivial then there
exists a diffeomorphism ψ:M ×Rr → E which is an isomorphism of smooth
vector bundles over M . Let Let s1, s2, . . . , sr be the smooth sections of
πE:E →M defined such that

s1(p) = ψ(p, (1, 0, . . . , 0)),

s2(p) = ψ(p, (0, 1, . . . , 0)),
...

sr(p) = ψ(p, (0, 1, . . . , r))

for all p ∈ M . Then the elements s1(p), s2(p), . . . , sr(p) of Ep constitute a
basis of the real vector space Ep at each point of M , as required.
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6.2 Patching Constructions

Let k be a non-negative integer. We denote by GL(k,R) the group of all non-
singular k × k matrices with real coefficients. This group is an open subset
of the real vector space consisting of all k× k matrices with real coefficients.
The operation of matrix multiplication determines a smooth function from
GL(k,R) × GL(k,R) to GL(k,R), and the operation of matrix inversion is
a smooth function from GL(k,R) to itself. Each element B of the group
GL(k,R) determines an isomorphism of real vector spaces from Rk to itself
that sends v ∈ Rk to Bv for all v ∈ Rk. Moreover every vector space
isomorphism from Rk to itself is determined in this fashion by some element
of the group GL(k,R).

Proposition 6.4 Let πE:E →M be a smooth vector bundle of rank k over
a smooth manifold M . Then there exists an open cover (Uα : α ∈ A) of M ,
indexed by some indexing set A, and smooth maps

ψα:Uα × Rk → E,

and
gα,β:Uα ∩ Uβ → GL(k,R)

for all α, β ∈ A, where these smooth maps satisfy the following properties:—

(i) πE(ψα(p,v)) = p for all p ∈ Uα and v ∈ Rk;

(ii) ψα maps Uα × Rk diffeomorphically onto π−1
E (Uα)

(iii) for each p ∈ Uα, the map (ψα)p: Rk → Ep is an isomorphism of real
vector spaces, where

(ψα)p(v) = ψα(p,v)

for all v ∈ Rk;

(iv) ψβ(p,v) = ψα(p, gα,β(p)v) for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈ Rk;

(v) gα,β(p) = (ψα)−1
p (ψβ)p for all α, β ∈ A and p ∈ Uα ∩ Uβ;

(vi) gα,α(p) is the identity matrix for all α ∈ A and p ∈ Uα;

(vii) gβ,α(p) = gα,β(p)−1 for all α, β ∈ A and p ∈ Uα ∩ Uβ;

(viii) gα,β(p)gβ,γ(p) = gα,γ(p) for all α, β, γ ∈ A and p ∈ Uα ∩ Uβ ∩ Uγ.
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Proof The existence of the open cover (Uα : α ∈ A) and the smooth func-
tions ψα satisfying conditions (i), (ii), (ii) follows immediately from the defi-
nition of a smooth vector bundle, and is a mere restatement of that definition.
Then functions gα,β can be defined by the equation given in (v), and these
functions will satisfy propertites (iv), (vi), (vii) and (viii).

Proposition 6.5 Let M be a smooth manifold, let E be a set, let πE:E →M
be a surjective function, let (Uα : α ∈ A) be collection of open sets in M
indexed by a set A, let k be a non-negative integer, and, for all α, β ∈ A, let
ψα:Uα ×Rk → E and gα,β:Uα ∩Uβ → GL(k,R) be functions that satisfy the
following conditions:—

(i)
⋃
α∈A Uα = M ,

(ii) πE(ψα(p,v)) = p for all α ∈ A, p ∈ Uα and v ∈ Rk;

(iii) the function ψα:Uα × Rk → E maps U × Rk bijectively onto π−1
E (Uα)

for all α ∈ A;

(iv) ψβ(p,v) = ψα(p, gα,β(p)v) for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈ Rk;

(v) the function gα,β:Uα ∩ Uβ → GL(k,R) is smooth for all α, β ∈ A.

Then there exists a topology and smooth structure on the set E with respect
to which E is a smooth manifold, πE:E → M is a smooth map, and the
function ψα:Uα×Rk → E maps Uα×Rk diffeomorphically onto π−1

E (Uα) for
all α ∈ A. The smooth manifold E and the smooth map πE:E → M then
constitute a smooth vector bundle of rank k over the smooth manifold M .

Proof Let τα,β: (Uα ∩ Uβ)× Rk → Rk be defined for all α, β ∈ A such that

τα,β(p,v) = gα,β(p)v

for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈ Rk. Then these functions τα,β are
smooth functions, and ψβ(p,v) = ψα(p, τα,β(p,v)) for all α, β ∈ A, p ∈ Uα ∩
Uβ and v ∈ Rk. The result therefore follows on applying Proposition 4.6.

Corollary 6.6 Let M be a smooth manifold, let (Uα : α ∈ A) be an open
cover of M indexed by a set A, let k be a non-negative integer, and, for all
α, β ∈ A, let gα,β:Uα ∩ Uβ → GL(k,R) be a smooth map that satisfy the
following conditions:—

(i) gα,α(p) is the identity matrix for all α ∈ A and p ∈ Uα;

(ii) gβ,α(p) = gα,β(p)−1 for all α, β ∈ A and p ∈ Uα ∩ Uβ;
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(iii) gα,β(p)gβ,γ(p) = gα,γ(p) for all α, β, γ ∈ A and p ∈ Uα ∩ Uβ ∩ Uγ.

Then there exists a smooth vector bundle πE:E → M over M and smooth
maps

ψα:Uα × Rk → E

which satisfy the following properties:

(iv) πE(ψα(p,v)) = p for all p ∈ Uα and v ∈ Rk;

(v) ψα maps Uα × Rk diffeomorphically onto π−1
E (Uα);

(vi) for each p ∈ Uα, the map (ψα)p: Rk → Ep is an isomorphism of real
vector spaces, where

(ψα)p(v) = ψα(p,v)

for all v ∈ Rr;

(vii) ψβ(p,v) = ψα(p, gα,β(p)v) for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈ Rk.

Proof Let
X = {(α, p,v) ∈ A×M × Rk : p ∈ Uα}.

We define a relation ∼ on X, where elements (α, p,v) and (β, q,w) of X
satisfy (α, p,v) ∼ (β, q,w) if and only if

p = q and w = gβ,α(p)v.

Conditions (i), (ii) and (iii) ensure that the relation ∼ on X is reflexive,
symmetric and transitive, and is thus an equivalence relation. Let E be the
set of equivalence classes of elements of X under the equivalence relation ∼.
We denote by [α, p,v] the equivalence class of an element (α, p,v) of X. The
definition of the equivalence relation ∼ ensures that there is a well-defined
function πE:E →M , where πE([α, p,v]) = p for all (α, p,v)inX.

Let ψα(p,v) = [α, p,v] for all α ∈ A, p ∈ Uα and v ∈ Rk. Then

ψβ(p,w) = [β, p,w] = [β, p, gβ,α(p)(gα,β(p)(w))] = [α, p, gα,β(p)w]

= ψα(p, gα,β(p)w)

for all p ∈ Uα ∩ Uβ and w ∈ Rk. Let Ep = π−1
E ({p}) for all p ∈M . Then

Ep = {[α, p,v] : v ∈ Rk}.

for all p ∈ Uα. Now if elements (α, p,v1), (α, p,v2), (β, p,w1) and (β, p,w2)
are elements of X, and if [α, p,v1] = [β, p,w1] and [α, p,v2] = [β, p,w2] then

[α, p, λ1v1 + λ2v2] = [β, p, λ1w1 + λ2w2]
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for all λ1, λ2 ∈ R, because

λ1w1 + λ2w2 = λ1gβ,α(p)(v1) + λ2gβ,α(p)(v2) = gβ,α(p)(λ1v1 + λ2v2).

It follows that, for all p ∈M , the fibre Ep of πE:E →M over p can be given
the structure of a real vector space, where

λ1[α, p,v1] + λ2[α, p,v2] = [α, p, λ1v1 + λ2v2]

for all v1,v2 ∈ Rk and λ1, λ2 ∈ R. The function that sends v ∈ R to ψα(p,v)
is then an isomorphism of vector spaces for all α ∈ A and p ∈ Uα. The
conditions of Proposition 6.5 are then satisfied by the smooth manifold M ,
the set E, the surjective function πE:E → M , the open cover (Uα : α ∈ A)
and the functions ψα and gα,β. The result therefore follows immediately from
that proposition.

6.3 The Tangent Bundle of a Smooth Manifold

Proposition 6.7 Let M be a smooth manifold of dimension n, let TM be
the set whose elements are the tangent vectors to M , and let πTM :TM →
M be the function that satisfies πTM(Xp) = p for all points p of M and
for all tangent vectors Xp belonging to the tangent space TpM to M at the
point p. Then the set TM can be given a topology and smooth structure so
that it becomes a smooth manifold. The surjective function πTM :TM → M
is then a smooth map, and TM and πTM :TM → M are the total space
and projection function of a smooth vector bundle over M . Moreover, given
any smooth coordinate system (x1, x2, . . . , xn) for M , defined over some open
subset U of M , there is a smooth map ψ:U ×Rn → TM which maps U ×Rn

diffeomorphically onto π−1
TM(U) and sends (p, (v1, v2, . . . , vn)) ∈ U × Rn to

the tangent vector ψ(p, (v1, v2, . . . , vn)) determined by the following equation:

ψ(p, (v1, v2, . . . , vn)) =
n∑
j=1

vj
∂

∂xj

∣∣∣∣
p

.

The inverse of the diffeomorphism from U ×Rn to π−1
TM(U) determined by ψ

is thus a smooth chart for TM which sends each tangent vector
n∑
j=1

vi
∂

∂xj

∣∣∣∣
p

in π−1
TM(U) to the element

(x1(p), x2(p), . . . , xn(p), v1, v2, . . . , vn)

of R2n. These requirements uniquely determine the topology and smooth
structure on the smooth manifold TM .
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Proof Let (x1, x2, . . . , xn) and (x̂1, x̂2, . . . , x̂n) be a smooth coordinate sys-
tems for M , defined over open subsets U and Û respectively of M , where
U ∩ Û is non-empty. Let ψ:U ×Rn → TM and ψ̂: Û ×Rn → TM be defined
such that

ψ(p, (v1, v2, . . . , vn)) =
n∑
j=1

vi
∂

∂xj

∣∣∣∣
p

.

and

ψ̂(p, (w1, w2, . . . , wn)) =
n∑
j=1

wi
∂

∂x̂j

∣∣∣∣
p

.

Then

ψ(p, (v1, v2, . . . , vn)) =
n∑
j=1

vi
∂

∂xj

∣∣∣∣
p

=
n∑
j=1

n∑
k=1

vi
∂x̂k

∂xj

∣∣∣∣
p

∂

∂x̂k

∣∣∣∣
p

= ψ̂(p, (w1, w2, . . . , wn)),

where

wk =
n∑
j=1

∂x̂k

∂xj

∣∣∣∣
p

vj =
n∑
j=1

(J(p))kjv
j,

where (J(p))kj =
∂x̂k

∂xj

∣∣∣∣
p

for all p ∈ U ∩ Û . Now the entries of the Jacobian

matrix J(p) depend smoothly on P . The result therefore follows on applying
Proposition 6.5.

Definition Let M be a smooth manifold. A smooth vector field defined
over an open subset V of M is a smooth section X:V → TM of the tangent
bundle πTM :TM →M of M defined over the open set V .

6.4 Examples of Vector Bundles

Example Let Sn be the unit sphere centred on the origin in Rn+1, so that

Sn = {p ∈ Rn+1 : |p| = 1},

where |p|2 = p.p, and let

E = {(p,v) ∈ Rn+1 × Rn+1 : |p| = 1 and p.v = 0}.
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Now Rn+1×Rn+1 is a (2n+2)-dimensional Euclidean space, and the subset E
of Rn+1 × Rn+1 is a 2n-dimensional submanifold of this Euclidean space.
Indeed let (p,v) be an element of E. Then at last one of the components
p1, p2, . . . , pn+1 is non-zero. We may suppose, without loss of generality, that
pn+1 6= 0. Then p ∈ E \ (Hn+1 × Rn+1), where

Hn+1 =
{

(x1, x2, . . . , xn+1) ∈ Rn+1 : xn+1 = 0
}
,

and

E \ (Hn+1 × Rn+1)

=
{

(x1, x2, . . . , xn+1, z1, z2, . . . , zn+1) ∈ R2n+2 :

xn+1 =
√

1− x2
1 − · · · − x2

n and

zn+1 = −x1z1 + x2z2 + · · ·+ xnzn√
1− x2

1 − · · · − x2
n

}
.

There is a smooth surjective map πE:E → Sn, where πE(p,v) = p for all
(p,v) ∈ E. Then πE:E → Sn is the projection map of a fibre bundle over
Sn with total space Sn.

Let Ep = π−1
E ({p}) for all p ∈ Sn, and, for each element v of Rn+1 for

which (p,v) ∈ E, let us denote by vp the element of Ep represented by the
ordered pair (p,v). We give the fibre Ep of πE:E → Sn over the point p of
Sn the structure of a vector space, where

λvp + µwp = (λv + µw)p

for all vp,wp ∈ Ep and for all real numbers λ and µ. Then the fibre bundle
πE:E → Sn acquires thereby the structure of a smooth vector bundle over
Sn.

Now an element v of Rn+1 represents the Cartesian components of a
vector in Rn+1. This vector is tangent to the submanifold Sn of Rn+1 at
some point p of Sn if and only if p.v = 0, in which case (p,v) ∈ E, and thus
vp ∈ Ep. It follows that the tangent space TpS

n to Sn at the point p is natu-
rally isomorphic to the fibre Ep of the smooth vector bundle πE:E → Sn over
the point p. These natural isomorphisms between the fibres of the respective
bundles over Sn give rise to a smooth map ϕ:TSn → E that is an isomor-
phism of vector bundles over Sn. Thus the tangent bundle πTSn :TSn → Sn

of the n-dimensional sphere Sn is naturally isomorphic to the smooth vector
bundle πE:E → Sn constructed above.
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Example Consider the tangent bundle πTS1 :TS1 → S1 of the unit circle S1

in R2, where
S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.

Let π0:S
1×R→ S1 be the projection map of the product bundle with total

space S1 × R, fibre R and base space S1, where π0((x, y), t) = (x, y) for all
(x, y) ∈ S1 and R, and where the vector space structure on each fibre of π0

is defined such that, for all (x, y) ∈ S1, the function from R to S1 × R that
sends t ∈ R to (x, y), t) is an isomorphism of one-dimensional real vector
spaces. Then there is an isomorphism ψ:S1 × R → TS1 of smooth vector
bundles over S1 that sends each element ((x, y), t) of S1 × R to the tangent
vector to S1 at the point (x, y) whose Cartesian components are (−yt, xt).
(Thus, for each point p of S1, and for each real number t, the smooth map ψ
sends (p, t) ∈ S1 × R to the tangent vector at p obtained on rotating the
displacement vector p of the point anticlockwise through a right angle, and
then multiplying the resulting vector by the real number t so as to obtain a
tangent vector to S1 at the point p.) We have thus shown that the tangent
bundle πTS1 :TS1 → S1 of the circle S1 is isomorphic to a product bundle
over S1, and is therefore (topologically) trivial.

Example We now construct a non-trivial smooth vector bundle of rank 1
over the circle S1. Let

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

let
M = {(x, y, u, v) ∈ R4 : x2 + y2 = 1 and y(u2 − v2) = 2xuv},

and let πM :M → S1 be defined so that

πM(x, y, u, v) = (x, y)

for all (x, y, u, v) ∈M .
Let (x, y, u, v) ∈ M . Then there exist real numbers θ, ϕ and z such that

x = cos θ, y = sin θ, u = z cosϕ and v = z sinϕ. Then

y(u2 − v2) = z2 sin θ(cos2 ϕ− sin2 ϕ) = z2 sin θ cos 2ϕ

and
2xuv = 2z2 cos θ cosϕ sinϕ = z2 cos θ sin 2ϕ,

and therefore
sin θ cos 2ϕ = cos θ sin 2ϕ.
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It follows that 2ϕ − θ is an integer multiple of 2π. Thus, given any point q
of M , there exist real numbers θ and z such that

q =

(
cos θ, sin θ, z cos

θ

2
, z sin

θ

2

)
.

It follows easily from this that πM :M → S1 is a smooth fibre bundle over the
circle. We can give each fibre of this map the structure of a real vector space
of dimension 1. This vector space structure is determined by the requirement
that, for all (x, y, u, v) ∈ M , the function from R to M that sends z ∈ R to
(x, y, zu, zv) is a linear transformation from R to the fibre of πM :M → S1

over the point (x, y) of S1. Then πM :M → S1 carries the structure of a
smooth vector bundle of rank 1 over S1.

Let s:S1 → M be a continuous section of πM :M → S1. Then s de-
termines a continuous real-valued function f : R → R characterized by the
property that

s(cos θ, sin θ) =

(
cos θ, sin θ, f(θ) cos

θ

2
, f(θ) sin

θ

2

)
for all θ ∈ R. But then

s(cos θ, sin θ)

= s(cos(θ + 2π), sin(θ + 2π))

=

(
cos θ, sin θ, f(θ + 2π) cos

θ + 2π

2
, f(θ + 2π) sin

θ + 2π

2

)
=

(
cos θ, sin θ, −f(θ + 2π) cos

θ

2
, −f(θ + 2π) sin

θ

2

)
and therefore f(θ + 2π) = −f(θ) for all θ ∈ R. Thus if the function f on
R is not identically equal to zero then it assumes both positive and negative
values. It follows from the Intermediate Value Theorem that there exists
θ0 ∈ R for which f(θ0) = 0. But then s(p0) is the zero element of the fibre
Mp0 of πM :M → S1 over the point p0 of S1, where p0 = (cos θ0, sin θ0).
We have thus shown that the smooth vector bundle πM :M → S1 has no
continuous sections that are non-zero throughout the circle S1. It follows
from this that the vector bundle πM :M → S1 is not isomorphic to a product
bundle, and is therefore (topologically) non-trivial.

Example The tangent bundle of a two-dimensional sphere is not isomorphic
to a product bundle.
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Let S2 be the unit sphere in R3, where

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

The Hairy Ball Theorem (or Hairy Dog Theorem) in two dimensions states
that there is no continuous vector field on S2 that is everywhere tangential to
S2 and that is non-zero everywhere on S2. We now give a somewhat informal
proof of this theorem.

Given any point p of the unit sphere S2, let np denote the outward normal
at the point p. If the point p has cartesian components (x, y, z) then the
vector np also has components (x, y, z).

Also, given any point p of the unit sphere S2, there exist angles θ ∈ [0, π]
and ϕ ∈ (−π, π] such that

p = (sin θ cosϕ, sin θ sinϕ, cos θ).

Let Qp denote the tangent vector at p that is the velocity vector γ′θ(ϕ) of
the smooth curve γθ: R→ S2 at time ϕ, where

γθ(t) = (sin θ cos t, sin θ sin t, cos θ)

for all t ∈ R. Then Qp is a tangent vector to the sphere at the point p, and

Qp = (− sin θ sinϕ, sin θ cosϕ, 0).

It follows that the map p 7→ Qp is a smooth vector field, defined over S2,
which is everywhere tangential to S2. It is zero at the points (0, 0, 1) and
(0, 0,−1) and is non-zero everywhere else. If one imagines the unit sphere
being rotated at constant speed about the z-axis, where the angle of rotation
(measured in radians) increases at unit speed, then Qp will represent the
velocity vector of a particle currently at the point p of the sphere.

Let p 7→ Vp be a continuous vector field on the sphere S2 which is
everywhere tangential to the sphere. Let θ be an angle satisfying 0 < θ < π,
and let

Cθ = (x, y, z) ∈ S2 : z = cos θ}.
Then γθ(t) ∈ Cθ for all t ∈ R. Suppose that Vp 6= 0 for all p ∈ Cθ. Then
there exists a continous strictly positive function fθ: R → (0,+∞) and a
smooth function ψθ: R→ R with the property that

Vγθ(t) = fθ(t)
(
cosψθ(t) Qγθ(t) + sinψθ(t) nγθ(t) ×Qγθ(t)

)
for all t ∈ R. Then, for all t ∈ R, the quantity ψ(t) represents the angle
between the tangent vectors Qγθ(t) and Vγθ(t) at the point γ(t). Now the
function ψθ is not necessarily periodic. But

ψθ(t+ 2π)− ψθ(t)
2π
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is an integer for all real numbers t (because γθ(t+ 2π) = γθ(t) and therefore
ψθ(t+ 2π) and ψθ(t) both represent the angle between the vectors Qγθ(t) and
Vγθ(t) at the point γθ(t)). Moreover the function mapping real number t to
the integer (2π)−1(ψθ(t + 2π) − ψθ(t)) is a continuous function of t. It is
therefore a constant function of t. We conclude therefore that there is an
integer nθ with the property that

ψθ(t+ 2π) = ψθ(t) + 2πnθ.

It is not difficult to see that if V(0,0,1) 6= 0 then nθ = −1 for values of
the angle θ that are sufficiently close to 0. (Think of the unit sphere as
representing the surface of the earth, where the point (0, 0, 1) represents the
north pole. If we have a continuous tangential vector field V which is non-
zero at the north pole then the angle between this vector field V and the
velocity vector in the direction of motion would increase through an angle
of 2π in the clockwise direction as one traverses a sufficiently small circle of
latitude in the anticlockwise direction around the north pole.) Similarly if
V(0,0,−1) 6= 0 then nθ = 1 for values of the angle θ that are sufficiently close
to π.

Now if the tangential vector field V were non-zero over the entire sphere
then the function sending θ to nθ for all θ ∈ (0, π) would be a continuous
integer-valued function of θ on the open interval (0, π). It would therefore
be a constant function of θ on this open interval. But this constant function
would have the value −1 when θ was sufficiently close to 0, and it would
have the value 1 when θ was sufficiently close to π. This however is clearly
impossible. We conclude therefore that there cannot exist any continuous
vector field on the two-dimensional sphere S2 that is everywhere tangential
to the sphere, and that is non-zero at every point of the sphere. This proves
the Hairy Ball Theorem for vector fields on a two-dimensional sphere.

It follows immediately from the Hairy Ball Theorem that the tangent
bundle of the two-dimensional sphere S2 is not isomorphic to a product
bundle over the sphere, and is therefore a non-trivial vector bundle.

Example The tangent bundle of a three-dimensional sphere is isomorphic
to a product bundle.

Let S3 be the unit sphere in R4, defined such that

S3 = {(w, x, y, z) ∈ R4 : w2 + x2 + y2 + z2 = 1}.

We note that S3 is diffeomorphic to the group SU(2) of 2 × 2 unitary ma-
trices A satisfying detA = 1. A 2 × 2 matrix A with complex coefficients
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belongs to the group SU(2) if and only if A−1 = A† and detA = 1. Let

A =

(
a b
c d

)
,

where a, b, c, d ∈ C. Then A ∈ SU(2) if and only if ad− bc = 1 and(
d −b
−c a

)
=

(
a b
c d

)−1

=

(
a b
c d

)†
=

(
a c

b d

)
.

It follows that A ∈ SU(2) if and only if ad − bc = 1, d = a and c = −b.
Moreover if d = a and c = −b then ad − bc = |a|2 + |b|2. We conclude
therefore that

SU(2) =

{(
a b

−b a

)
: a, b ∈ C and |a|2 + |b|2 = 1

}
=

{(
w − iz −ix− y
−ix+ y w + iz

)
: (w, x, y, z) ∈ S3

}
=

{
wI − ixσx − iyσy − izσz : (w, x, y, z) ∈ S3

}
,

where the identity matrix I and the Pauli matrices σx, σy and σz are defined
as follows:

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The group SU(2) is a smooth submanifold of the algebra M2(C) of 2× 2
matrices with complex coefficients, and the tangent space to SU(2) at the
identity matrix I is the 3-dimensional real subspace of M2(C) spanned by
the matrices −iσx, −iσy and −iσz. The elements of this subspace are the
2× 2 skew-Hermitian matrices whose trace is zero. Let

XA = −iAσx, YA = −iAσy, ZA = −iAσz

for all A ∈ SU(2). Then the matrices XA, YA, ZA consitute a basis of the
tangent space TASU(2) to SU(2) at each A ∈ SU(2). Indeed let γ: (−ε, ε)→
SU(2) be a smooth curve in SU(2) satisfying γ(0) = I, and let

γ′(0) =
d(γ(t))

dt

∣∣∣∣
t=0

= −iuσx − ivσy − iwσz = uXI + vYI + wZI ,

where u, v, w ∈ R. Then the map sending t ∈ (−ε, ε) to Aγ(t) is a smooth
curve in SU(2), and the velocity vector to this smooth curve at time t = 0 is

86



uXA+vYA+wZA. Thus the function that sends (A, (u, v, w)) ∈ SU(2)×R3 to
the tangent vector uXA+vYA+wZA at A is an isomorphism of smooth vector
bundles over SU(2), and thus the tangent bundle of SU(2) is isomorphic to
a product bundle.

We have thus shown that the tangent bundle of the three-dimensional
sphere S3 is isomorphic to a product bundle.

6.5 Dual Bundles

Proposition 6.8 Let πE:E → M be a smooth vector bundle over a smooth
manifold M . For each point p of M let E∗p be the real vector space that is
the dual space of the fibre Ep of πE:E → M over the point p. Let E∗ be the
disjoint union of the vector spaces E∗p , and let πE∗p :E

∗ →M be the surjective
function on E∗ that maps elements of E∗p to p for all points p of M . Then
the set E∗ can be given the structure of a smooth manifold so as to ensure
that πE∗ :E

∗ →M is a smooth vector bundle over M satisfying the following
condition:

if s:V → E and τ :V → E∗ are smooth sections of the vector
bundles πE:E → M and πE∗ :E

∗ → M defined over some open
subset V of M , then the function on V that sends p ∈ V to
〈τ(p), s(p)〉 is a smooth real-valued function on M .

Proof It follows from Proposition 6.4 that there exists an open cover (Uα :
α ∈ A) of M , indexed by some indexing set A, and smooth maps

ψα:Uα × Rk → E,

and
gα,β:Uα ∩ Uβ → GL(k,R)

for all α, β ∈ A, where these smooth maps satisfy the properties listed in the
statement of Proposition 6.4. In particular the maps ψα satisfy the following
properties:

(i) πE(ψα(p,v)) = p for all p ∈ Uα and v ∈ Rk;

(ii) ψα maps Uα × Rk diffeomorphically onto π−1
E (Uα)

(iii) for each p ∈ Uα, the map (ψα)p: Rk → Ep is an isomorphism of real
vector spaces, where

(ψα)p(v) = ψα(p,v)

for all v ∈ Rk.
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The smooth maps gα,β:Uα∩Uβ → GL(k,R) are then defined so that gα,β(p) =
(ψα)−1

p (ψβ)p, and therefore satisfy the identity

ψβ(p,v) = ψα(p, gα,β(p)v)

for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈ Rk.
Let p be a point of the open set Uα for some α ∈ A. The isomorphism

(ψα)p: Rk → Ep determines an isomorphism (χα)p: Rk∗ → E∗p of the corre-
sponding dual spaces, where (χα)p(λ) = λ ◦ (ψα)−1

p for all linear functionals
λ: Rk → R on Rk. These isomorphisms of dual spaces then determine func-
tions χα:Uα × Rk∗ → E∗, where χα(p, λ) = (χα)p(λ) = λ ◦ (ψα)−1

p for all
p ∈ Uα and λ ∈ Rk∗. Clearly πE∗(χα(p, λ)) = p for all p ∈ Uα. Moreover the
function χα:Uα × Rk∗ → E∗ maps U × Rk∗ bijectively onto π−1

E∗(Uα) for all
α ∈ A. Then

χβ(p, λ) = (χβ)p(λ) = λ ◦ (ψβ)−1
p

= λ ◦ (ψβ)−1
p ◦ (ψα)p ◦ (ψα)−1

p = λ ◦ gα,β(p)−1 ◦ (ψα)−1
p

= χα(p, λ ◦ gα,β(p)−1).

for all p ∈ Uα ∩ Uβ and λ ∈ Rk∗.
Let GL(Rk∗) be the group of invertible linear operators on the dual space

Rk∗ of Rk. We define the standard basis on Rk∗ to be the dual basis de-
termined by the standard basis on Rk. The jth element of this standard
basis on Rk∗ is then the linear functional (x1, x2, . . . , xk) 7→ xj on Rk. Let
hα,β:Uα ∩ Uβ → GL(Rk∗) be defined so that hα,β(p)λ = λ ◦ gα,β(p)−1 for
all λ ∈ Rk∗ and p ∈ Uα ∩ Uβ. Then hα,β is a smooth function on Uα:Uβ.
Indeed the matrix that represents hα,β(p) with respect to the standard ba-
sis on Rk∗ is the inverse of the transpose of the matrix gα,β(p). The open
cover (Uα : α ∈ A) and the smooth maps χα and hα,β then satisfy conditions
(i)–(v) of Proposition 6.5, (with ψα and gα,β replaced by χα and hα,β in the
statements of those conditions), and therefore there exists a topology and
smooth structure on πE∗ :E

∗ →M . Each function χα:Uα×Rk∗ → E∗ is then
a smooth map which maps is domain diffeomorphically onto π−1

E∗(Uα).
Now

〈(χα)pλ, (ψα)pv〉 = (λ ◦ (ψα)−1
p )((ψα)pv) = λ(v) = 〈λ,v〉

for all p ∈ Uα, λ ∈ Rk∗ and v ∈ Rk. If V is an open set in M and if s:V → E
and τ :V → E∗ are smooth sections of the vector bundles πE:E → M and
πE∗ :E

∗ → M defined over V then, for each α ∈ A there exist smooth
functions u:V ∩ Uα → Rk and ω:V ∩ Uα → Rk∗ such that s(p) = ψp(u(p))
and τ(p) = χp(ω(p)) for all p ∈ V ∩ Uα. Then

〈τ(p), s(p)〉 = 〈χp(ω(p)), ψp(u(p))〉 = 〈ω(p),u(p)〉
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It follows that the real-valued function on V which sends p ∈ V to 〈τ(p), s(p)〉
restricts to a smooth function on V ∩ Uα for all α ∈ A, and is thus itself
smooth, as required.

6.6 Some Results concerning Local Trivializations

Lemma 6.9 Let M be a smooth manifold, and, for each integer q between 1
and k, let πEq :Eq →M be a smooth vector bundle over M . Then, given any
point p0 of M , there exists an open set V such that p0 ∈ V and the vector
bundle πEq :Eq → M is trivial over V for q = 1, 2, . . . , k. There then exists
smooth functions ψq:V ×Rrq → Eq, where rq is the rank of the vector bundle
πEq :Eq →M , which satisfy the following properties:—

(i) πEq(ψq(p,vq)) = p for all p ∈ V and vq ∈ Rrq ;

(ii) ψq maps V × Rrq diffeomorphically onto π−1
Eq

(Uα)

(iii) for each p ∈ V the map (ψq)p: Rrq → (Eq)p is an isomorphism of real
vector spaces, where

(ψq)p(vq) = ψq(p,vq)

for all vq ∈ Rrq .

Proof Let (Eq)p = π−1
Eq

({p}) for q = 1, 2, . . . , k and for all p ∈M . Then each
fibre (Eq)p is a finite dimensional real vector space of dimension rq, where
rq denotes the rank of the corresponding vector bundle Eq. Now given any
point p of M , there exist open sets Vq in M for q = 1, 2, . . . , k, where p0 ∈ Vq
for all q, such that the smooth vector bundle πEq :Eq →M is trivial over Vq.
Let V = V1 ∩ V2 ∩ · · · ∩ Vk. Then V is an open set in M , p0 ∈ V , and each
vector bundle πEq :Eq → M is trivial over V . The restriction of each vector
bundle πEq :Eq → M to this open set V is then isomorphic to a product
bundle, and therefore there exist smooth maps ψq:V × Rrq → Eq satisfying
the required properties.

Lemma 6.10 Let M be a smooth manifold, and, for each integer q between
1 and k, let πEq :Eq → M be a smooth vector bundle over M . Then there
exists an open cover (Uα : α ∈ A) of M , indexed by some indexing set A,
and smooth maps

ψq,α:Uα × Rrq → Eq,

and
gq,α,β:Uα ∩ Uβ → GL(rq,R)

for q = 1, 2, . . . , k and for all α, β ∈ A, where these smooth maps satisfy the
following properties:—
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(i) πEq(ψq,α(p,vq)) = p for all p ∈ Uα and vq ∈ Rrq ;

(ii) ψq,α maps Uα × Rrq diffeomorphically onto π−1
Eq

(Uα)

(iii) for each p ∈ Uα, the map (ψq,α)p: Rrq → (Eq)p is an isomorphism of
real vector spaces, where

(ψq,α)p(vq) = ψq,α(p,vq)

for all vq ∈ Rrq ;

(iv) ψq,β(p,vq) = ψq,α(p, gq,α,β(p)vq) for q = 1, 2, . . . , k and for all α, β ∈ A,
p ∈ Uα ∩ Uβ and vq ∈ Rrq ;

(v) gq,α,β(p) = (ψq,α)−1
p (ψq,β)p for q = 1, 2, . . . , k and for all α, β ∈ A and

p ∈ Uα ∩ Uβ.

Proof It follows from Lemma 6.9 that there exists an open cover (Uα : α ∈
A) of M , indexed by some indexing set A, such that the smooth vector bundle
πEq :Eq → M is trivial over Uα for q = 1, 2, . . . , k and for all α ∈ A. There
then exist smooth maps

ψq,α:Uα × Rrq → Eq,

where rq is the rank of the vector bundle πEq :Eq → M , which satisfy prop-
erties (i), (ii), (iii). These functions ψq,α then determine smooth maps
gq,α,β:Uα ∩ Uβ → GL(rq,R) that satisfy property (iv). Property (v) then
follows directly from properties (iii) and (iv).

6.7 Direct Sums of Vector Bundles

Let
k⊕
q=1

Vq denote the direct sum

V1 ⊕ V2 ⊕ · · ·Vk

of real vector spaces V1, V2, . . . , Vk. The elements of
k⊕
q=1

Vq may be represented

as ordered k-tuples (ξ1, ξ2, . . . , ξk), where ξq ∈ Vq for q = 1, 2, . . . , k. Given
elements ξq of Vq for q = 1, 2, . . . , k, we shall denote by ξ1⊕ξ2⊕· · ·⊕ξk the el-

ement of
k⊕
q=1

Vq that is also represented by the ordered k-tuple (ξ1, ξ2, . . . , ξk).

Then

(ξ1⊕ ξ2⊕· · ·⊕ ξk)+(η1⊕η2⊕· · ·⊕ηk) = (ξ1 +η1)⊕ (ξ2 +η2)⊕· · ·⊕ (ξk +ηk)
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and
λ(ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξk) = (λξ1)⊕ (λξ2)⊕ · · · ⊕ (λξk)

for all elements ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξk and η1 ⊕ η2 ⊕ · · · ⊕ ηk of
k⊕
q=1

Vq and for all

λ ∈ R.

Proposition 6.11 Let M be a smooth manifold, and, for each integer q
between 1 and k, let πEq :Eq → M be a smooth vector bundle over M . For
each point p of M let E⊕p be the real vector space that is the direct sum of the
fibres of the given vector bundles over the point p, so that

E⊕p =
k⊕
q=1

(Eq)p = (E1)p ⊕ (E2)p ⊕ · · · (Ek)p,

where (Eq)p = π−1
Eq

({p}) for q = 1, 2, . . . , k. Also let E⊕ be the disjoint union

of the vector spaces E⊕p , and let πE⊕ :E⊕ → M be the surjective function,
defined on the disjoint union E⊕ of all these vector spaces E⊕p , that sends
elements of E⊕p to p for all points p of M . Then E⊕ can be given the structure
of a smooth manifold so as to ensure that πE⊕ :E⊕ → M is a smooth vector
bundle over M satisfying the following condition:

if s:V → E⊕ is a function mapping some open subset V of M
into E⊕, and if

s(p) = s1(p)⊕ s2(p)⊕ · · · ⊕ sk(p)

for all p ∈ V , where sq:V → Eq is a smooth section of πEq :Eq →
M defined over V for q = 1, 2, . . . , k, then s:V → E⊕ is a smooth
section of πE⊕ :E⊕ →M defined over V .

Proof Let (Uα:α ∈ A) be an open cover of M , where the smooth vector
bundles πEq :Eq → M are all trivial over each open set Uα, and, for q =
1, 2, . . . , k and for all α, β ∈ A, let ψq,α:Uα×Rrq → Eq and gq,α,β:Uα ∩Uβ →
GL(rq,R) be smooth maps with the properties (i)–(v) listed in the statement
of Corollary 6.9.

Now the real vector space
k⊕
q=1

Rrq is isomorphic to Rm, where

m = r1 + r2 + · · ·+ rk.

Let ν:
k⊕
q=1

Rrq → Rm be an isomorphism between these vector spaces. Then

the functions ψα:Uα × Rrq → E⊕ and gq,α,β:Uα ∩ Uβ → GL(rq,R) and the
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isomorphism ν determine functions ψ⊕α :Uα×Rm → E⊕, and g⊕α,β:Uα∩Uβ →
GL(m,R) such that

ψ⊕α (p, ν(v1,v2, . . . ,vk)) = ψ1,α(p,v1)⊕ ψ2,α(p,v2)⊕ · · · ⊕ ψs,α(p,vk)

and

g⊕α,β(p)(ν(v1,v2, . . . ,vk)) = ν(g1,α,β(p)(v1), g2,α,β(p)(v2), . . . , gk,α,β(p)(vk))

for all α, β ∈ A, p ∈ Uα ∩ Uβ and (v1,v2, . . . ,vk) ∈
k⊕
q=1

Rrq . Now, given

any v ∈ Rm, the function that sends p ∈ Uα × Uβ to g⊕α,β(p)(v) is a smooth

function from Uα × Uβ to Rm. It follows that g⊕α,β:Uα ∩ Uβ → GL(m,R) is a
smooth map on Uα ∩ Uβ. Moreover

ψ⊕α (p, g⊕α,β(p)(ν(v1,v2, . . . ,vk)))

= ψ⊕α (p, ν(g1,α,β(p)(v1), g2,α,β(p)(v2), . . . , gk,α,β(p)(vk)))

= ψ1,α(p, g1,α,β(v1))⊕ ψ2,α(p, g1,α,β(v2))⊕ · · · ⊕ ψs,α(p, g1,α,β(vk))

= ψ1,β(p,v1)⊕ ψ2,β(p,v2)⊕ · · · ⊕ ψs,β(p,vk)

= ψ⊕β (p, ν(v1,v2, . . . ,vk)),

for all α, β ∈ A, p ∈ Uα ∩ Uβ and (v1,v2, . . . ,vk) ∈
k⊕
q=1

Rrq , and thus

ψ⊕β (p,v) = ψ⊕α (p, g⊕α,β(p)(v))

for all α, β ∈ A, p ∈ Uα∩Uβ and v ∈ Rm. Thus the open cover (Uα : α ∈ A) of
M and the functions ψ⊕α :Uα×Rm → E⊕ and g⊕α,β:Uα∩Uβ → GL(m,R) satisfy
the conditions (i)–(v) in the statement of Proposition 6.5, and therefore there
is a topology and smooth structure on E⊕ with respect to which E⊕ is a
smooth manifold, πE⊕ :E⊕ →M is a smooth vector bundle, and the function

ψ⊕α :Uα ×
k⊕
q=1

Rrq → E⊕ maps its domain diffeomorphically onto π−1
E⊕(Uα) for

all α ∈ A.
Let V be an open set in M , let sq:V → Eq be a smooth section of

πEq :Eq →M for q = 1, 2, . . . , k, and let

s(p) = s1(p)⊕ s2(p)⊕ · · · ⊕ sk(p)

for all p ∈ V . Then there are smooth functions fq,α:V ∩Uα → Rrq such that
sq(p) = ψq,α(p, fq,α(p)) for all p ∈ V ∩ Uα. Let

fα(p) = ν(f1,α(p), f2,α(p), . . . , fk,α(p))
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for all p ∈ V ∩ Uα. Then fα:V ∩ Uα → Rm is a smooth function on V ∩ Uα,
and

ψ⊕α (p, fα(p)) = ψ⊕α (p, ν(f1,α(p), f2,α(p), . . . , fk,α(p)))

= ψ1,α(p, f1,α(p))⊕ ψ2,α(p, f2,α(p))⊕ · · · ⊕ ψk,α(p, fk,α(p))

= s1(p)⊕ s2(p)⊕ · · · ⊕ sk(p)
= s(p)

for all p ∈ V ∩ Uα. Therefore the restriction of the section s:V → E⊕ to
V ∩ Uα is smooth on V ∩ Uα. It follows that s:V → E⊕ is a smooth section
of the smooth vector bundle πE⊕ :E⊕ →M , as required.

Definition Let M be a smooth manifold, and, for each integer q between 1
and k, let πEq :Eq →M be a smooth vector bundle over M . The direct sum

of the vector bundles E1, E2, . . . , Ek is denoted by
k⊕
q=1

Eq, or by

E1 ⊕ E2 ⊕ · · · ⊕ Ek,

and it is the smooth vector bundle πE⊕ :E⊕ → M whose fibre over each
point p is the direct sum of the fibres of the given vector bundles over M ,
where the topology and smooth structure on E⊕ are as described in the
statement of Proposition 6.11

6.8 Tensor Products of Vector Bundles

Proposition 6.12 Let M be a smooth manifold, and, for each integer q
between 1 and k, let πEq :Eq → M be a smooth vector bundle over M . For
each point p of M let E⊗p be the real vector space that is the tensor product
of the fibres of the given vector bundles over the point p, so that

E⊗p =
k⊗
q=1

(Eq)p = (E1)p ⊗ (E2)p ⊗ · · · (Ek)p,

where (Eq)p = π−1
Eq

({p}) for q = 1, 2, . . . , k. Also let E⊗ be the disjoint union

of the vector spaces E⊗p , and let πE⊗ :E⊗ → M be the surjective function,
defined on the disjoint union E⊗ of all these vector spaces E⊗p , that sends
elements of E⊗p to p for all points p of M . Then E⊗ can be given the structure
of a smooth manifold so as to ensure that πE⊗ :E⊗ → M is a smooth vector
bundle over M satisfying the following condition:
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if s:V → E⊗ is a function mapping some open subset V of M
into E⊗, and if

s(p) = s1(p)⊗ s2(p)⊗ · · · ⊗ sk(p)

for all p ∈ V , where sq:V → Eq is a smooth section of πEq :Eq →
M defined over V for q = 1, 2, . . . , k, then s:V → E⊗ is a smooth
section of πE⊗ :E⊗ →M defined over V .

Proof Let (Uα:α ∈ A) be an open cover of M , where the smooth vector
bundles πEq :Eq → M are all trivial over each open set Uα, and, for q =
1, 2, . . . , k and for all α, β ∈ A, let ψq,α:Uα×Rrq → Eq and gq,α,β:Uα ∩Uβ →
GL(rq,R) be smooth maps with the properties (i)–(v) listed in the statement
of Corollary 6.9. These smooth maps determine smooth maps

ψ⊗α :Uα ×
k⊗
q=1

Rrq → E⊗

and

g⊗α,β:Uα ∩ Uβ → GL

(
k⊗
q=1

Rrq

)

for all α, β ∈ A, where GL

(
k⊗
q=1

Rrq

)
denotes the group of invertible linear

operators on the tensor product
k⊗
q=1

Rrq . These smooth maps ψ⊗α and g⊗α,β(p)

are defined so that

ψ⊗α (p,v1 ⊗ v2 ⊗ · · · ⊗ vk) = ψ1,α(p,v1)⊗ ψ2,α(p,v2)⊗ · · · ⊗ ψs,α(p,vk)

and

g⊗α,β(p)(v1⊗v2⊗ · · · ⊗vk) = g1,α,β(p)(v1)⊗ g2,α,β(p)(v2)⊗ · · · ⊗ gk,α,β(p)(vk)

for all α, β ∈ A, p ∈ Uα ∩ Uβ and for all v1,v2, . . . ,vk, where vq ∈ Rrq for
q = 1, 2, . . . , k. Moreover

ψ⊗β (p,v) = ψ⊗α (p, g⊗α,β(p)(v))

for all α, β ∈ A, p ∈ Uα ∩ Uβ and v ∈
k⊗
q=1

Rrq .
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Let eq,1, eq,2, . . . , eq,rq be a basis of the real vector space Rrq for q =
1, 2, . . . , k, and let

J = (j1, j2, . . . , jk) : jq ∈ Z and 1 ≤ jq ≤ rq for q = 1, 2, . . . , k}.

Then these bases of vector spaces Rrq together determine a basis for the

tensor product
k⊗
q=1

Rrq consisting of all elements of this tensor product that

are of the form
e1,j1 ⊗ e2,j2 ⊗ · · · ek,jk ,

for some (j1, j2, . . . , jk) ∈ J .
Let α, β ∈ A. Then each function gq,α,β:Uα ∩ Uβ → GL(rq,R) is smooth,

and therefore there exist smooth real-valued functions (Aq)
iq
jq , where q ∈

{1, 2, . . . , k} and 1 ≤ iq, jq ≤ rq, such that

gq,α,β(p)(eq,jq) =

rq∑
iq=1

(Aq)
iq
jq(p)eq,iq

for q = 1, 2, . . . , k. Then

g⊗α,β(p)(e1,j1 ⊗ e2,j2 ⊗ · · · ek,jk)

=
∑

(i1,i2,...,ik)∈J

((
k∏
q=1

(Aq)
iq
jq(p)

)
e1,i1 ⊗ e2,i2 ⊗ · · · ek,ik

)
.

Thus the matrix that represents the linear operator g⊗α,β(p) on
k⊗
q=1

Rrq with

respect to the basis(
e1,j1 ⊗ e2,j2 ⊗ · · · ek,jk : (j1, j2, . . . , jk) ∈ J

)
has entries that are products of the form

∏k
q=1(Aq)

iq
jq(p), where

(i1, i2, . . . , ik), (j1, j2, . . . , jk) ∈ J.

It follows that the entries of this matrix are smoooth functions of p as the
point p ranges over the open set Uα ∩ Uβ in M . Thus the open cover (Uα :
α ∈ A) of M and the functions

ψ⊗α :Uα ×
k⊗
q=1

Rrq → E⊗
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and

g⊗α,β:Uα ∩ Uβ → GL

(
k⊗
q=1

Rrq

)
satisfy the conditions (i)–(v) in the statement of Proposition 6.5, and there-
fore there is a topology and smooth structure on E⊗ with respect to which
E⊗ is a smooth manifold, πE⊗ :E⊗ → M is a smooth vector bundle, and

the function ψ⊗α :Uα ×
k⊗
q=1

Rrq → E⊗ maps its domain diffeomorphically onto

π−1
E⊗(Uα) for all α ∈ A.

Let V be an open set in M , let sq:V → Eq be a smooth section of
πEq :Eq →M for q = 1, 2, . . . , k, and let

s(p) = s1(p)⊗ s2(p)⊗ · · · ⊗ sk(p)

for all p ∈ V . Then there are smooth real-valued functions f
jq
q,α on V ∩ Uα

for jq = 1, 2, . . . , rq such that such that

sq(p) =

rq∑
jq=1

f jqq,α(p)ψq(p, eq,jq)

for all p ∈ V ∩ Uα. Then

s(p) =
∑

(j1,j2,...,jk)∈J

((
k∏
q=1

f jqq,α(p)

)
bj1,j2,...,jk(p)

)
,

where
bj1,j2,...,jk(p) = ψ⊗α (p, e1,j1 ⊗ e2,j2 ⊗ · · · ek,jk)

for all p ∈ Uα and (j1, j2, . . . , jk) ∈ J . Now bj1,j2,...,jk is a the smooth section
of πE⊗ :E⊗ → M defined over Uα for all (j1, j2, . . . , jk) ∈ J . It follows that
the section s:V → E⊗ of πE⊗ :E⊗ →M is smooth, as required.

Definition Let M be a smooth manifold, and, for each integer q between
1 and k, let πEq :Eq → M be a smooth vector bundle over M . The tensor

product of the vector bundles E1, E2, . . . , Ek is denoted by
k⊗
q=1

Eq, or by

E1 ⊗ E2 ⊗ · · · ⊗ Ek,

and it is the smooth vector bundle πE⊗ :E⊗ → M whose fibre over each
point p is the tensor product of the fibres of the given vector bundles over
M , where the topology and smooth structure on E⊗ are as described in the
statement of Proposition 6.12
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6.9 Pullbacks of Smooth Vector Bundles

Proposition 6.13 Let M and N be a smooth manifolds of dimensions m
and n respectively, let πE:E → N be a smooth vector bundle of rank k over
N , and let ϕ:M → N be a smooth map. Let

ϕ∗E = {(p, e) ∈M × E : ϕ(p) = πE(e)}

and let πϕ∗E:ϕ∗E →M and ϕ∗:ϕ
∗E → E be defined such that

πϕ∗E(p, e) = p and ϕ∗(p, e) = e

for all (p, e) ∈ ϕ∗E. Then ϕ∗E is a smooth submanifold of M ×E, the maps
πϕ∗E:ϕ∗E → M and ϕ∗:ϕ

∗E → E are smooth, and πϕ∗E:ϕ∗E → M is the
projection map of a smooth vector bundle of rank k over the manifold M
whose total space is ϕ∗E.

Proof Let p0 ∈M . Then there exists an open set U in N , where ϕ(p0) ∈ U ,
and a smooth map ψ:U × Rk → E which satisfies the following properties:
πE(ψ(q,v)) = q for all q ∈ U ; the smooth map ψ maps its domain U × Rk

diffeomorphically onto π−1
E (U); for each q ∈ U , the function mapping v ∈

Rk to ψ(q,v) maps Rk isomorphically onto the real vector space Eq, where
Eq = π−1

E ({q}).
We can choose the open set U so that it is the domain of a smooth

coordinate system (y1, y2, . . . , yn) for the smooth manifold N . Now ϕ−1(U)
is an open set in M , because ϕ:M → N is continuous. Let (x1, x2, . . . , xm)
be a smooth coordinate system on M whose domain W satisfies p0 ∈ W and
W ⊂ ϕ−1(U).

Let ξ1, ξ2, . . . , ξk be the smooth functions from π−1
E (U)→ R defined such

that
ξl(ψ(q, (v1, v2, . . . , vk))) = vl

for l = 1, 2, . . . , k and for all q ∈ U and (v1, v2, . . . , vk) in Rk. Also let
ỹ1, ỹ2, . . . , ỹk be the smooth functions on π−1

E (U) defined such that ỹj =
yj ◦ πE for j = 1, 2, . . . , n. Then the smooth functions

ỹ1, ỹ2, . . . , ỹn, ξ1, ξ2, . . . , ξk

represent a smooth coordinate system throughout the open subset π−1
E (U) of

the (n+k)-dimensional manifold E. Given (p, e) ∈ W×π−1
E (U), let xi(p, e) =

xi(p) for i = 1, 2, . . . ,m, yj(p, e) = ỹj(e) = yj(πE(e)) for j = 1, 2, . . . , n and

ξ
l
(p, e) = ξl(e) for l = 1, 2, . . . , k Then

x1, x2, . . . , xm, y1, y2, . . . , yn, ξ
1
, ξ

2
, . . . , ξ

k
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are smooth functions on M ×E which represent a smooth coordinate system
throughout the open subset W × π−1

E (U) of M × E. Let

zj(p, e) = yj(p, e)− yj(ϕ(p)) = yj(πE(e))− yj(ϕ(p)).

Then the smooth functions

x1, x2, . . . , xm, z1, z2, . . . , zn, ξ
1
, ξ

2
, . . . , ξ

k

also represent a smooth coordinate system throughout W × π−1
E (U), and

(ϕ∗E) ∩ (W × π−1
E (U))

= {(p, e) ∈ W × π−1
E (U) : zj(p, e) = 0 for j = 1, 2, . . . , n}.

We conclude from this that ϕ∗(E) is a smooth submanifold of M × E.
Now each fibre (ϕ∗E)p of the surjective map πϕ∗E:ϕ∗E → M may be

given the structure of a vector space so as to ensure that the smooth map
ϕ∗:ϕ

∗E → E maps (ϕ∗E)p isomorphically onto that fibre isomorphically
onto the corresponding fibre Eϕ(p) of πE:E → N .

Let ψ:W × Rk → ϕ∗E be the smooth map defined such that

ψ(p,v) = (p, ψ(ϕ(p),v)

for all p ∈ W and v ∈ Rk. Then πϕ∗E(ψ(p,v) = p. Morover ψ maps
W × Rk diffemorphically onto π−1

ϕ∗E(W ), and, for each p ∈ W , the map

sending v ∈ Rk to ψ(p,v is an isomorphism of real vector spaces. It follows
that πϕ∗E:ϕ∗E →M is a smooth vector bundle over M , as required.

Definition Let M and N be a smooth manifolds of dimension m and n
respectively, let πE:E → N be a smooth vector bundle of rank k over N ,
and let ϕ:M → N be a smooth map. The pullback of the smooth vector
bundle πE:E → N along the smooth map ϕ:M → N is the smooth vector
bundle πϕ∗E:ϕ∗E →M over M with total space ϕ∗E, where

πϕ∗E(p, e) = p

for all (p, e) ∈ ϕ∗E. The smooth map ϕ∗:ϕ
∗E → E defined such that

ϕ∗(p, e) = e for all (p, e) ∈ ϕ∗E is then a morphism of smooth vector bundles
which induces vector space isomorphisms between corresponding fibres and
which covers the smooth map ϕ:M → N .
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6.10 The Cotangent Bundle of a Smooth Manifold

Let M be a smooth manifold, and let πTM :TM →M be the tangent bundle
of M . This tangent bundle is a smooth vector bundle. There is a correspond-
ing dual bundle πT ∗M :T ∗M →M whose fibre over a point p of M is the dual
space T ∗pM of the tangent space TpM at the point p. This dual space T ∗pM
is referred to as the cotangent space at the point p: its elements are linear
functionals on the tangent space TpM .

Definition The cotangent bundle of a smooth manifold is the smooth vector
bundle πT ∗M :T ∗M →M that is the dual of the tangent bundle πTM :TM →
M of M .

Let (x1, x2, . . . , xn) be a smooth coordinate system defined over an open
set U in M . Then the differentials

dx1
p, dx

2
p, . . . , dx

n
p

of these coordinate functions constitute a basis of the cotangent space T ∗pM
at each point p of U , where〈

dxjp,
n∑
k=1

vk
∂

∂xk

∣∣∣∣
p

〉
= vj

for j = 1, 2, . . . , n. Then there are diffeomorphisms

ψ:U × Rn → π−1
TM(U) and χ:U × Rn → π−1

T ∗M(U)

that are isomorphisms of vector bundles over U , where

ψ(p, (v1, v2, . . . , vn) =
n∑
j=1

vj
∂

∂xj

∣∣∣∣
p

and

χ(p, (b1, b2, . . . , bn)) =
n∑
j=1

bj dx
j
p

for all p ∈ Uα and for all elements (v1, v2, . . . , vn) and (b1, b2, . . . , bn) of Rn.
Moreover

〈χp(b1, b2, . . . , bn), ψp(v
1, v2, . . . , vn)〉 =

n∑
j=1

bjv
j
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for all p ∈ Uα and for all elements (v1, v2, . . . , vn) and (b1, b2, . . . , bn) of Rn,
where

ψp(v
1, v2, . . . , vn) = ψ(p, (v1, v2, . . . , vn))

and
χp(b1, b2, . . . , bn) = χ(p, (b1, b2, . . . , bn)).

The map that sends each point p of U to the differential dxjp is a smooth
section of the cotangent bundle πT ∗M :T ∗M → M over U . We denote this
section by dxj. Then, given any section τ :V → T ∗M of the cotangent bundle
over an open subset V of U , there exist real-valued functions b1, b2, . . . , bn on

V such that τ =
n∑
j=1

bj dx
j. These functions b1, b2, . . . , bn are uniquely deter-

mined, because the values of dx1, dx2, . . . , dxn at any point p of U constitute
a basis of the cotangent space T ∗pM . The section τ is smooth on V if and
only if its components b1, b2, . . . , bn are smooth real-valued functions on V .

Definition Let M be a smooth manifold. A differential form of degree 1
on an open subset V of M is a section τ :V → T ∗M of the cotangent bundle
πT ∗M :T ∗M →M defined over the open set V . Differential forms of degree 1
are also known as 1-forms.

Lemma 6.14 Let M be a smooth manifold, let X:V → TM be a smooth
vector field defined over an open subset V of M and let τ :V → T ∗M be
a smooth differential form of degree 1 on V , and let Xp and τp denote the
values of X and τ at each point p of V . Then the real-valued function on V
that sends p ∈ V to 〈τp, Xp〉 is a smooth real-valued function on M .

Proof Let U be the domain of a smooth coordinate system on M . Then
there are uniquely-determined smooth real-valued functions v1, v2, . . . , vn and
b1, b2, . . . , bn on V ∩ U such that

X =
n∑
j=1

vj
∂

∂xj
and τ =

n∑
k=1

bk dx
k.

Then

〈τ,X〉 = τ(X) =
n∑
j=1

n∑
k=1

bkv
j

〈
dxk,

∂

∂xj

〉
=

n∑
j=1

n∑
k=1

bkv
jδkj =

n∑
j=1

bjv
j

on U ∩V , where δkj is the Kronecker delta that is equal to 1 when k = j, but
is equal to 0 otherwise. Thus the function on V ∩ U that sends points p of
V ∩ U to the corresponding value 〈τp, Xp〉 of τ(X) is a sum of products of
smooth real-valued functions, and is thus itself smooth.
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6.11 Tensor Fields on Smooth Manifolds

Definition Let M be a smooth manifold. A tensor field of type (r, s) on M
is a section of the smooth vector bundle T⊗rM ⊗ T ∗⊗sM that is the tensor
product

TM ⊗ TM ⊗ · · · ⊗ TM ⊗ T ∗M ⊗ T ∗M ⊗ · · · ⊗ T ∗M

of r copies of the tangent bundle TM and s copies of the cotangent bundle
T ∗M of M .

Let M be a smooth manifold of dimension n, let (x1, x2, . . . , xn) be a
smooth coordinate system defined over an open subset U of M , and let S be
a smooth tensor field of type (r, s) defined over U . Then there are smooth
real-valued functions Sj1,j2,...,jrk1,k2,...,ks

defined on U such that

S =
n∑

j1,j2,...,jr=1

n∑
k1,k2,...,ks=1

Sj1,j2,...,jrk1,k2,...,ks

∂

∂xj1
⊗ · · · ⊗ ∂

∂xjr
⊗ dxk1 ⊗ · · · ⊗ dxks .

Suppose that

S =
n∑

l1,l2,...,lr=1

n∑
m1,m2,...,ms=1

Ŝl1,l2,...,lrm1,m2,...,ms

∂

∂x̂l1
⊗ · · · ⊗ ∂

∂x̂lr
⊗ dx̂m1 ⊗ · · · ⊗ dx̂ms

where (x̂1, x̂2, . . . , x̂n) is another smooth coordinate system that is also de-
fined over the open set U . Then

∂

∂xji
=

n∑
l=1

∂x̂l

∂xji
∂

∂x̂l

for i = 1, 2, . . . , r, and

dxki =
n∑

m=1

∂xki

∂x̂m
dx̂m

for i = 1, 2, . . . , s. It follows that

Ŝl1,l2,...,lrm1,m2,...,ms
=

n∑
j1,j2,...,jr=1

n∑
k1,k2,...,ks=1

Sj1,j2,...,jrk1,k2,...,ks

(
r∏
i=1

∂x̂li

∂xji

) (
s∏
i=1

∂xki

∂x̂mi

)
.

Example Let M be a smooth manifold of dimension n and let g be a smooth
tensor field of type (0, 2) on M . Let (x1, x2, . . . , xn) be a smooth local coordi-
nate system defined over some open subset U of M . Then there are smooth
functions gij on U for i, j = 1, 2, . . . , n such that

g =
n∑
i=1

n∑
j=1

gij dx
i ⊗ dxj
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over U . Let (x̂1, x̂2, . . . , x̂n) be another smooth local coordinate system de-
fined over U , and let ĝkl be smooth real-valued functions on U such that

g =
n∑
k=1

n∑
l=1

ĝkl dx̂
k ⊗ dx̂l.

Then

ĝkl =
n∑
i=1

n∑
j=1

gij
∂xi

∂x̂k
∂xj

∂x̂l
.

Example Let M be a smooth manifold of dimension n and let R be a
smooth tensor field of type (1, 3) on M . Let (x1, x2, . . . , xn) be a smooth
local coordinate system defined over some open subset U of M . Then there
are smooth functions Ri

jkl on U for i, j, k, l = 1, 2, . . . , n such that

R =
n∑

i,j,k,l=1

Ri
jkl

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxl

over U . Let (x̂1, x̂2, . . . , x̂n) be another smooth local coordinate system de-
fined over U , and let R̂a

bcd be smooth real-valued functions on U such that

R =
n∑

a,b,c,d=1

R̂a
bcd

∂

∂x̂a
⊗ dx̂b ⊗ dx̂c ⊗ dx̂d

Then

R̂a
bcd =

n∑
i,j,k,l=1

Ri
jkl

∂x̂a

∂xi
∂xj

∂x̂b
∂xk

∂x̂c
∂xl

∂x̂d
.

6.12 Sections of Tensor Product Bundles Determined
by Multilinear Operators

Definition Let Ẽ, E1, E2, . . . , Ek be smooth vector bundles over a smooth
manifold M , and let Q be an operator that, over each open set U on
M , assigns to smooth sections s1, s2, . . . sk of the respective vector bundles
E1, E2, . . . , Ek defined over U a smooth section Q(s1, s2, . . . , sk) of the vector
bundle Ẽ defined over this open set U . The operator Q on sections is said
to be R-multilinear if

Q(as1 + bt1, s2, . . . , sk) = aQ(s1, s2, . . . , sk) + bQ(t1, s2, . . . , sk),

Q(s1, as2 + bt2, . . . , sk) = aQ(s1, s2, . . . , sk) + bQ(s1, t2, . . . , sk),

etc.
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for all real numbers a and b, and for all s1, s2, . . . , sk and t1, t2, . . . , tk, where
sj and tj are smooth sections of the vector bundle Ej defined over U for
j = 1, 2, . . . , k.

Proposition 6.15 Let Ẽ, E1, E2, . . . , Ek be smooth vector bundles over a
smooth manifold M , and let Q be an operator that, over each open set U on
M , assigns to smooth sections s1, s2, . . . sk of the respective vector bundles
E1, E2, . . . , Ek defined over U a smooth section Q(s1, s2, . . . , sk) of the vector
bundle Ẽ defined over this open set U . Suppose that this operator Q on
sections is R-multilinear, so that

Q(as1 + bt1, s2, . . . , sk) = aQ(s1, s2, . . . , sk) + bQ(t1, s2, . . . , sk),

Q(s1, as2 + bt2, . . . , sk) = aQ(s1, s2, . . . , sk) + bQ(s1, t2, . . . , sk),

etc.

for all real numbers a and b, and for all s1, s2, . . . , sk and t1, t2, . . . , tk, where
sj and tj are smooth sections of the vector bundle Ej defined over U for
j = 1, 2, . . . , k. Suppose also that

Q(f1s1, f2s2, . . . , fksk) = f1 · f2 · · · fkQ(s1, s2, . . . , sk)

for all smooth functions f1, f2 · · · fk on U , and for all s1, s2, . . . , sk, where sj
is a smooth section of the vector bundle Ej defined over U for j = 1, 2, . . . , k.
Then there exists a smooth section Q of the vector bundle

Ẽ ⊗ E∗1 ⊗ E∗2 ⊗ · · · ⊗ E∗k

such that
Q(s1, s2, . . . , sk) = Q(s1, s2, . . . , sk)

for all s1, s2, . . . , sk, where sj is a smooth section of the vector bundle Ej over
U for j = 1, 2, . . . , k.

Proof Let U be an open set in M over which each of the vector bundles
πEj :Ej → M and πẼ: Ẽ → M is trivial, let ej,1, ej,2, . . . , ej,rj be smooth
sections of πEj :Ej →M for j = 1, 2, . . . , rj, where rj the rank of this vector
bundle, and where the values ej,1(p), ej,2(p), . . . , ej,rj(p) of these sections at
each point p of U constitute a basis for the fibre (Ej)p of the vector bundle Ej
over p, and let ẽ1, ẽ2, . . . , ẽr be smooth sections of πẼ: Ẽ → M for j =
1, 2, . . . , rj, where r the rank of this vector bundle, and where the values
ẽ1(p), ẽ2(p), . . . , ẽ2(p) of these sections at each point p of U constitute a basis
for the fibre Ẽp of the vector bundle Ẽ over p.
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Let sj:U → Ej be a smooth section of πj:Ej → M defined over U for
j = 1, 2, . . . , k. Then there exist smooth real-valued functions f

αj
(j) on U for

j = 1, 2, . . . , k and αj = 1, 2, . . . , rj such that

sj =

rj∑
αj=1

f
αj
(j)ej,αj .

Then

Q(s1, s2, . . . , sk)

= Qp

(
r1∑

α1=1

fα1

(1)e1,α1 , . . . ,

rk∑
αk=1

fαk(k)ek,αk

)

=

r1∑
α1=1

· · ·
rk∑

αk=1

Qp(fα1

(1)e1,α1 , f
α2

(2)e2,α2 , . . . , f
αk
(k)ek,αk)

=

r1∑
α1=1

· · ·
rk∑

αk=1

fα1

(1)f
α2

(2) · · · f
αk
(k)Qp(e1,α1 , e2,α2 , . . . , ek,αk)

Now there exist smooth functions Qβ
α1,α2,...,αk

on U such that

Qp(e1,α1 , e2,α2 , . . . , ek,αk) =
r∑

β=1

Qβ
α1,α2,...,αk

ẽβ

for all k-tuples (α1, α2, . . . , αk) of integers that satisfy 1 ≤ αj ≤ rj for j =
1, 2, . . . , k. Then

Q(s1, s2, . . . , sk) =
r∑

β=1

r1∑
α1=1

· · ·
rk∑

αk=1

Qβ
α1,α2,...,αk

fα1

(1)f
α2

(2) · · · f
αk
(k)ẽβ.

Let Q be the smooth section of the vector bundle

Ẽ ⊗ E∗1 ⊗ E∗2 ⊗ · · · ⊗ E∗k

over U defined by the equation

Q =
r∑

β=1

r1∑
α1=1

· · ·
rk∑

αk=1

Qβ
α1,α2,...,αk

ẽβ ⊗ εα1

(1) ⊗ ε
α2

(2) ⊗ · · · ⊗ ε
αk
(k),

where ε1
(j), ε

2
(j), . . . , ε

rj
(j) are the smooth sections of πE∗j :E

∗
j →M over U whose

values at each point p of U constitute the basis of the fibre (E∗j )p over p that
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is the dual basis to the basis of (Ej)p determined by the values of the sections
ej,1, ej,2, . . . , ej,r of Ej at p. Then 〈εαj(j), ej,βj〉 = δ

αj
βj

, where δ
αj
βj

denotes the
Kronecker delta, and thus

〈εαj(j), sj〉 =

rj∑
βj=1

f
βj
(j)〈ε

αj
(j), ej,βj〉 = f

αj
(j)

for j = 1, 2, . . . , k and αj = 1, 2, . . . , rj. It follows that

Q(s1, . . . , sk)

=
r∑

β=1

r1∑
α1=1

· · ·
rk∑

αk=1

Qβ
α1,α2,...,αk

〈εα1

(1), s1〉 〈εα2

(2), s2〉 · · · 〈εαk(k), sk〉 ẽβ

=
r∑

β=1

r1∑
α1=1

· · ·
rk∑

αk=1

Qβ
α1,α2,...,αk

fα1

(1)f
α2

(2) · · · f
αk
(k) ẽβ

= Q(s1, . . . , sk),

as required.

Corollary 6.16 Let M be a smooth manifold, and let Q be an operator on
M which, given smooth vector fields X1, X2, . . . , Xk defined over an open
subset U of M , determines a smooth real-valued function Q(X1, X2, . . . , Xk)
on U . Suppose that this operator is R-multilinear, and that

Q(f1X1, f2X2, . . . , fkXk) = f1 · f2 · · · fkQ(X1, X2, . . . , Xk)

for all smooth real-valued functions f1, f2, . . . , fk and smooth vector fields
X1, X2, . . . , Xk defined over the open set U . Then there is a smooth tensor
field Q of type (0, s) on M such that

Q(X1, X2, . . . , Xk) = Q(X1, X2, . . . , Xk)

for all open subsets U of M and for all smooth vector fields X1, X2, . . . , Xk

defined over U .

Corollary 6.17 Let M be a smooth manifold, and let S be an operator on
M which, given smooth vector fields X1, X2, . . . , Xk defined over an open
subset U of M , determines a smooth vector field S(X1, X2, . . . , Xk) on U .
Suppose that this operator is R-multilinear, and that

S(f1X1, f2X2, . . . , fkXk) = f1 · f2 · · · fk S(X1, X2, . . . , Xk)
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for all smooth real-valued functions f1, f2, . . . , fk and smooth vector fields
X1, X2, . . . , Xk defined over the open set U . Then there is a smooth tensor
field S of type (1, s) on M such that

S(X1, X2, . . . , Xk) = S(X1, X2, . . . , Xk)

for all open subsets U of M and for all smooth vector fields X1, X2, . . . , Xk

defined over U .

6.13 Subbundles of Vector Bundles

Definition Let πE:E → M and πF :F → M be smooth vector bundles
over a smooth manifold M . We say that πF :F → M is a subbundle of
πE:E → M if F is a smooth submanifold of E, πF = πE|F and, for each
p ∈M , the fibre Fp of πF :F →M over p is a vector subspace of the fibre Ep
of πE:E →M over p.

Proposition 6.18 Let πE:E →M be a smooth vector bundle over a smooth
manifold M , and, for all p ∈M , let Fp be a vector subspace of the fibre Ep of
πE:E →M over the point p, and let F =

⋃
p∈M Fp and πF be the restriction

πE|F of the projection map πE to the submanifold F of E. Suppose that,
given any point p0 of M there exists some open set U in M , where p0 ∈ U ,
and smooth sections s1, s2, . . . , sk of πE:E →M defined over U such that the
values s1(p), s2(p), . . . , sk(p) at each point p of U constitute a basis for the
subspace Fp of Ep. Then F is a smooth submanifold of E, and πF :F → M
is a smooth vector bundle which is a subbundle of πE:E →M .

Proof Let p0 ∈M . Then there exists an open set U in M , where p0 ∈ U , and
smooth sections s1, s2, . . . , sk of πE:E → M defined over U1 such that the
values s1(p), s2(p), . . . , sk(p) at each point p of U1 constitute a basis for the
subspace Fp of Ep. It then follows from basic linear algebra and the definition
of smooth vector bundles that there exist smooth sections sk+1, . . . , sr, of
πE →M defined over some open subset V2 of U1, where r is the rank of the
vector bundle E, and where p0 ∈ U2, such that the values

s1(p0), s2(p0), . . . , sk(p0), sk+1(p0), . . . , sr(p0)

of the smooth sections s1, s2, . . . , sr at the point p0 constitute a basis of Ep0 .
The continuity of these smooth sections then ensures that there exists some
open subset U of U , where p0 ∈ U , such that the values of the sections
s1, s2, . . . , sp at each point p of U constitute a basis of the fibre Ep of the
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vector bundle E over the point p. Let ψ:U × Rr → E be the smooth map
defined such that

ψ(p, (v1, v2, . . . , vr)) =
r∑

α=1

vαsα(p)

for all p ∈ U and (v1, v2, . . . , vr) ∈ Rr. Then ψ maps U×Rr diffeomorphically
onto π−1

E (U). Moreover

ψ−1(F ) = ψ−1

{
k∑

α=1

vαsα(p) : v1, v2, . . . , vk ∈ R

}
= {(p, (v1, v2, . . . , vk, 0, . . . , 0) : v1, v2, . . . , vk ∈ R} .
= U ×K,

where K is the k-dimensional vector subspace of Rr defined such that

K = {(v1, v2, . . . , vr) ∈ Rr : vk+1 = · · · = vr = 0}.

Clearly ψ−1(F ) is a smooth submanifold of the domain U × Rr that is a
smooth product bundle over U . It follows from this that F is a smooth
submanifold of the total space πE:E → M of the smooth vector bundle E,
and that if πF :F → M is the restriction of the projection map πE:E → M
to the submanifold F of E, then πF :F →M is itself a smooth vector bundle
over M , as required.
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7 Vector Fields, Lie Brackets and Flows

7.1 Smooth Vector Fields

Let M be a smooth manifold, and let πTM :TM →M be the tangent bundle
of M . The total space TM of this tangent bundle is a smooth manifold, and
the fibre π−1

TM({p}) of this bundle over any point p on M is the tangent space
TpM to M at the point p. A vector field on M associates to each point p of
M a corresponding tangent vector Xp to M at the point p. It is therefore
represented by a function X:M → TM from M to TM . Moreover the com-
position function πTM ◦X:M → M is the identity map of the manifold M .
A vector field on M is thus represented by a section X:M → TM of the
tangent bundle πTM :TM →M of M .

Definition Let M be a smooth manifold. A continuous vector field X on M
is a continuous section X:M → TM of the tangent bundle πTM :TM → M
of M .

Definition Let M be a smooth manifold. A smooth vector field X on M is
a smooth section X:M → TM of the tangent bundle πTM :TM →M of M .

A subset U of a smooth manifold M is itself a smooth manifold, and
moreover the tangent bundle πTU :TU → U satisfies TU = π−1

TM(U) and
πTU = πTM |TU . A vector field X on U is thus represented by a function
X:U → TM that satisfies πTM(Xp) = p for all p ∈ U , where Xp denotes the
value of the function X at p. The vector field X on U is continuous if and
only if X:U → TM is a continuous map. This vector field is smooth if and
only if X:U → TM is a smooth map.

We now show that a vector field X on a smooth manifold is smooth if
and only if its components with respect to any smooth coordinate system are
smooth functions on the domain of that coordinate system.

Proposition 7.1 Let M be a smooth manifold of dimension n, let U be an
open set in M , and let x1, x2, . . . , xn be a smooth coordinate system defined
over U . Let X be a vector field on U , and let v1, v2, . . . , vn be real-valued
functions such that

X =
n∑
j=1

vj
∂

∂xj
.

Then the vector field X is continuous on U if and only if the component
functions v1, v2, . . . , vn are continuous. Also the vector field X is smooth on
U if and only if these component functions are smooth.
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Proof The smooth chart (U,ϕ) for M whose components are the smooth
coordinate functions x1, x2, . . . , xn determines a corresponding smooth chart
(π−1

TM(U), ϕ̃) for the smooth manifold TM , where ϕ̃: π−1
TM(U)→ R2n is defined

such that

ϕ̃

(
n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

)
= (x1(p), x2(p), . . . , xn(p), a1, a2, . . . , an)

for all p ∈ U and a1, a2, . . . , an ∈ R (see Proposition 6.7). Now X:U → TM
is continuous if and only if ϕ̃ ◦ X:U → R2m is continuous. Similarly X is
smooth if and only if ϕ̃ ◦X is smooth. Now

ϕ̃(Xp) = (x1(p), x2(p), . . . , xn(p), v1(p), v2(p), . . . , vn(p))

for all p ∈ U . The result follows.

Let M be a smooth manifold, let X:U → TM be a vector field defined
over an open set U in M , and let f :V → R be a continuously differentiable
real-valued function defined over an open set V in M . We denote by X[f ]
the real-valued function on U ∩ V defined such that X[f ](p) = Xp[f ] for all
p ∈ U∩V . If x1, x2, . . . , xn is a smooth coordinate system defined over U∩V ,
and if

X =
n∑
j=1

vj
∂

∂xj
,

throughout U ∩ V , where the components v1, v2, . . . , vn of X on are real-
valued functions on U ∩ V , then

X[f ] =
n∑
j=1

vj
∂f

∂xj
.

Lemma 7.2 Let M be a smooth manifold, and let X be a vector field defined
over an open subset U of M . Then the vector field X is smooth if and only
if X[f ] is a smooth function on U ∩ V for any smooth real-valued function
f :V → R whose domain is an open set V in M .

Proof It follows directly from Proposition 7.1 that if the vector field X is
smooth, then so is X[f ] for all smooth real-valued functions f defined over
open sets in M .

Conversely suppose that X is a vector field on U with the property that
X[f ] is smooth for all smooth real-valued functions f defined over open sets
in M . Let (x1, x2, . . . , xn) be a smooth local coordinate system for M defined
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over an open subset V of M . Then X[xj] is a smooth function on U ∩ V
for j = 1, 2, . . . , n. Now there are real-valued functions v1, v2, . . . , vn defined
over U ∩ V such that

X =
n∑
j=1

vj
∂

∂xj

on U ∩V . Then X[xj] = vj|U ∩V for j = 1, 2, . . . , n. But X[xj] is smooth for
j = 1, 2, . . . , n. Therefore the components v1, v2, dots, vn of X are smooth
functions on U ∩ V . It then follows from Proposition 7.1 that X:U → TM
is a smooth map, and thus X is a smooth vector field on U , as required.

Lemma 7.3 Let M be a smooth manifold, let U and V be open sets in M ,
and let X:U → TM be a vector field over U . Then

X[f · g] = X[f ] · g + f ·X[g]

on U ∩ V for all smooth real-valued functions f and g defined over V , where
(f · g)(v) = f(v)g(v) for all v ∈ V .

Proof This property of vector fields follows directly from the corresponding
property characterizing the action of tangent vectors on smooth functions.

7.2 Lie Brackets of Vector Fields

Proposition 7.4 Let M be a smooth manifold and let X and Y be smooth
vector fields on M . Then there is a well-defined smooth vector field [X, Y ]
on M characterized by the property that

[X, Y ][f ] = X[Y [f ]]− Y [X[f ]]

for all smooth real-valued functions f defined over open sets in M .

Proof Let L denote the linear differential operator on M that sends any
smooth real-valued function f defined over an open subset U of M to the
function L(f) on U , where

L(f) = X[Y [f ]]− Y [X[f ]].

Let U be an open set in M . Then

L(αf + βg) = αL(f) + βL(g)
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for all smooth real-valued functions f and g on U and for all real numbers α
and β. Also

X[Y [f · g]] = X[(Y [f ] · g + f · Y [g])]

= X[Y [f ]] · g + Y [f ] ·X[g] +X[f ] · Y [g] + f ·X[Y [g]],

and therefore

L(f · g) = X[Y [f · g]]− Y [X[f · g]]

= X[Y [f ]] · g − Y [X[f ] · g + f ·X[Y [g]]− f · Y [X[g]]

= L(f) · g + f · L(g).

for all smooth real-valued functions f and g on U , where f · g denotes the
product of the functions f and g. Moreover if f and g are smooth real-
valued functions on U that satisfy f(w) = g(w) for all points w of some
open subset W of U , then L(f)(p) = L(g)(p) for all p ∈ W . It follows from
the definition of tangent vectors that there is a well-defined tangent vector
[X, Y ]p at each point p of M which is characterized by the property that

[X, Y ]p[f ] = Xp[Y [f ]]− Yp[X[f ]]

for all smooth real-valued functions defined around the point p. The function
sending each point p of M to the tangent vector [X, Y ]p is a vector field on
M . Moreover this vector field [X, Y ] is a smooth vector field since [X, Y ][f ]
is a smooth function for all smooth real-valued functions f defined over open
subsets of M (see Lemma 7.2). The result follows.

Let X and Y be smooth vector fields defined over some open set U in a
smooth manifold M . Now U is itself a smooth manifold. It therefore follows
from Proposition 7.4 that there is a well-defined vector field [X, Y ] on U
which is characterized by the property that [X, Y ][f ] = X[Y [f ]] − Y [X[f ]]
for all smooth real-valued functions f whose domain is an open subset of U .

Definition Let U be an open set in a smooth manifold M , and let X and
Y be smooth vector fields on U . The Lie Bracket [X, Y ] of the vector fields
X and Y is the smooth vector field on U characterized by the property that

[X, Y ][f ] = X[Y [f ]]− Y [X[f ]]

for all smooth real-valued functions f whose domain is an open subset of U .

Lemma 7.5 (Jacobi Identity) Let X, Y and Z be smooth vector fields on a
smooth manifold M . Then

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0
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Proof Let f be a smooth real-valued function defined over some open subset
of M . Then

[[X, Y ], Z][f ] + [[Y, Z], X][f ] + [[Z,X], Y ][f ]

= [X, Y ][Z[f ]]− Z[[X, Y ][f ]] + [Y, Z][X[f ]]−X[[Y, Z][f ]]

+ [Z,X][Y [f ]]− Y [[Z,X][f ]]

= X[Y [Z[f ]]]− Y [X[Z[f ]]]− Z[X[Y [f ]] + Z[Y [X[f ]]

+ Y [Z[X[f ]]]− Z[Y [X[f ]]]−X[Y [Z[f ]] +X[Z[Y [f ]]

+ Z[X[Y [f ]]]−X[Z[Y [f ]]]− Y [Z[X[f ]] + Y [X[Z[f ]]

= 0.

The result follows.

Lemma 7.6 Let M be a smooth manifold. Let X and Y be smooth vector
fields on M and let f and g be smooth real-valued functions on M . Then

[fX, gY ] = (f · g)[X, Y ] + (f ·X[g])Y − (g · Y [f ])X.

Proof Let h be a smooth real-valued function whose domain is some open
subset of M . Then

[fX, gY ][h] = f ·X[g · Y [h]]− g · Y [f ·X[h]]

= (f · g) ·X[Y [h]] + f ·X[g] · Y [h]

− (f · g) · Y [X[h]]− g · Y [f ] ·X[h]

= ((f · g)[X, Y ] + (f ·X[g])Y − (g · Y [f ])X) [h].

The result follows.

Lemma 7.7 Let M be a smooth manifold of dimension n, let x1, x2, . . . , xn

be a smooth coordinate system defined over some open subset U of M , and
let X and Y be smooth vector fields on U . Suppose that

X =
n∑
i=1

vi
∂

∂xi
, Y =

n∑
i=1

wi
∂

∂xi
.

where v1, v2, . . . , vn and w1, w2, . . . , wn are smooth real-valued functions on
U . Then

[X, Y ] =
n∑
i=1

n∑
j=1

(
vj
∂wi

∂xj
− wj ∂v

i

∂xj

)
∂

∂xi
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Proof Let f be a smooth real-valued function on U . Then

[X, Y ][f ] = X

[
n∑
i=1

wi
∂f

∂xi

]
− Y

[
n∑
i=1

vi
∂f

∂xi

]

=
n∑
i=1

n∑
j=1

(
vj

∂

∂xj

(
wi
∂f

∂xi

)
− wj ∂

∂xj

(
vi
∂f

∂xi

))

=
n∑
i=1

n∑
j=1

(
vj
∂wi

∂xj
− wj ∂v

i

∂xj

)
∂f

∂xi
,

since

n∑
i=1

n∑
j=1

(vjwi − wjvi) ∂2f

∂xj∂xi
=

n∑
i=1

n∑
j=1

vjwi
(

∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
= 0.

The result follows.

Corollary 7.8 Let M be a smooth manifold, and let x1, x2, . . . , xn be a
smooth coordinate system defined over some open subset U of M . Then[

∂

∂xi
,
∂

∂xj

]
= 0

on U for i, j = 1, 2, . . . , n.

Example Let X and Y be the smooth vector fields on R2 defined by the
equations

X = x
∂

∂x
+ y

∂

∂y
, Y = −y ∂

∂x
+ x

∂

∂y
,

and let f be a smooth real-valued function defined over an open set of R2.
We can calculate [X, Y ][f ] directly using the definition of the Lie bracket of
X and Y :

[X, Y ][f ] = X[Y [f ]]− Y [X[f ]]

= X

[
−y∂f

∂x
+ x

∂f

∂y

]
− Y

[
x
∂f

∂x
+ y

∂f

∂y

]
= x

∂

∂x

(
−y∂f

∂x
+ x

∂f

∂y

)
+ y

∂

∂y

(
−y∂f

∂x
+ x

∂f

∂y

)
+ y

∂

∂x

(
x
∂f

∂x
+ y

∂f

∂y

)
− x ∂

∂y

(
x
∂f

∂x
+ y

∂f

∂y

)
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= −xy∂
2f

∂x2
+ x2 ∂2f

∂x ∂y
+ x

∂f

∂y
− y2 ∂2f

∂y ∂x
− y∂f

∂x
+ yx

∂2f

∂y2

+ yx
∂2f

∂x2
+ y

∂f

∂x
+ y2 ∂2f

∂x ∂y
− x2 ∂2f

∂y ∂x
− xy∂

2f

∂y2
− x∂f

∂y
= 0

It follows that [X, Y ] = 0. We can also calculate [X, Y ] using the equation
established in Lemma 7.7:

[X, Y ] =

(
x
∂

∂x
+ y

∂

∂y

)
[−y]

∂

∂x
+

(
x
∂

∂x
+ y

∂

∂y

)
[x]

∂

∂y

−
(
−y ∂

∂x
+ x

∂

∂y

)
[x]

∂

∂x
−
(
−y ∂

∂x
+ x

∂

∂y

)
[y]

∂

∂y

= −y ∂
∂x

+ x
∂

∂y
+ y

∂

∂x
− x ∂

∂y
= 0.

We now calculate

[
∂

∂x
, Y

]
. Using Lemma 7.6 and Corollary 7.8, we find

that[
∂

∂x
, Y

]
=

[
∂

∂x
, −y ∂

∂x
+ x

∂

∂y

]
= −y

[
∂

∂x
,
∂

∂x

]
+

∂

∂x
[−y]

∂

∂x
+ x

[
∂

∂x
,
∂

∂y

]
+

∂

∂x
[x]

∂

∂y

=
∂

∂y
.

Similarly

[
∂

∂y
, Y

]
= − ∂

∂x
.

Now let (r, θ) be polar coordinates on R2, so that

x = r cos θ, y = r sin θ.

Then

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y
= cos θ

∂

∂x
+ sin θ

∂

∂y
=
x

r

∂

∂x
+
y

r

∂

∂y
=

1

r
X.

Thus X = r
∂

∂r
. Also

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
= −y ∂

∂x
+ x

∂

∂y
= Y.
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It follows that

[X, Y ] =

[
r
∂

∂r
,
∂

∂θ

]
= 0.

Also

∂

∂x
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+

1

r
cos θ

∂

∂θ
,

Therefore [
∂

∂x
, Y

]
=

[
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,
∂

∂θ

]
= − ∂

∂θ
(cos θ)

∂

∂r
+

∂

∂θ

(
1

r
sin θ

)
∂

∂θ

= sin θ
∂

∂r
+

1

r
cos θ

∂

∂θ

=
∂

∂y

Definition Let M and N be smooth manifolds and let ϕ:M → N be a
smooth map from M to N . Let X and X̃ be smooth vector fields on M and
N respectively. We say that X and X̃ are ϕ-related if X̃[g] ◦ ϕ = X[g ◦ ϕ]
for all smooth real-valued functions g on N .

Proposition 7.9 Let M and N be smooth manifolds and let ϕ:M → N be
a smooth map from M to N . Let X and Y be smooth vector fields on M , and
let X̃ and Ỹ be smooth vector fields on N . Suppose that the vector fields X
and X̃ are ϕ-related and that the vector fields Y and Ỹ are ϕ-related. Then
the vector fields [X, Y ] and [X̃, Ỹ ] are also ϕ-related.

Proof Let g be a smooth real-valued function defined over some open sub-
set V of N . Then the composition function g ◦ ϕ is a smooth real-valued
function defined over an open set U in M , where U = ϕ−1(V ), and

(ϕ∗[X, Y ])ϕ(p)[g] = [X, Y ]p[g ◦ ϕ]

for all p ∈ U . But

[X̃, Ỹ ][g] ◦ ϕ = X̃[Ỹ [g]] ◦ ϕ− Ỹ [X̃[g]] ◦ ϕ = X[Ỹ [g] ◦ ϕ]− Y [X̃[g] ◦ ϕ]

= X[Y [g ◦ ϕ]]− Y [X[g ◦ ϕ]] = [X, Y ][g ◦ ϕ].

The result follows.
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7.3 Integral Curves for Vector Fields

Definition Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M , and let γ: I → M be a smooth curve
defined over some open interval I, and mapping that interval into the open
set U . The smooth curve γ is said to be an integral curve for the vector
field X if

γ′(t) =
d

dt
γ(t) = Xγ(t)

for all t ∈ I.

When represented in smooth local coordinates on any smooth manifold,
the components of any integral curve of a smooth vector field are solutions to
a system of ordinary differential equations determined by that vector field.
Indeed let x1, x2, x3, . . . , xn be smooth local coordinates defined over some
open set U in a smooth manifold M of dimension n, and let X be a smooth
vector field on U . Then there exist smooth functions u1, u2, . . . , un, defined
over the open set V in Rn, where

V = {x1(p), x2(p), . . . , xn(p) : p ∈ U}

such that

Xp =
n∑
j=1

ui(x1(p), x2(p), . . . , xn(p))
∂

∂xi

∣∣∣∣
p

for all p ∈ U . Let γ: I →M be a smooth curve in U , and let gj(t) = xj(γ(t))
for j = 1, 2, . . . , n. Then

γ′(t) =
dγ(t)

dt
=

n∑
j=1

dgj(t)

dt

∂

∂xj

∣∣∣∣
γ(t)

for all t ∈ I. It follows the γ: I → M is an integral curve for the vector
field X if and only if

dgj(t)

dt
= uj(g1(t), g2(t), . . . , gn(t))

for j = 1, 2, . . . , n. It follows from this that standard existence and unique-
ness theorems for solutions of systems of ordinary differential equations give
rise to existence and uniqueness theorems for integral curves of smooth vector
fields on any smooth manifold.

The following result is an immediate consequence of a standard existence
theorem for solutions of systems of ordinary differential equations.
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Theorem 7.10 Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M , and let p be a point of U . Then there
exists a smooth curve γ: I → M , defined over some open interval I, which
passes through the point p and is an integral curve for the vector field X.

The following result is an immediate consequence of a standard unique-
ness theorem for solutions of systems of ordinary differential equations.

Theorem 7.11 Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M , and let γ1: I1 → M and γ2: I2 → M be
integral curves for X, defined over open intervals I1 and I2, where I1∩I2 6= ∅.
Suppose that γ1(t0) = γ2(t0) for some t0 ∈ I1∩I2. Then γ1|I1∩I2 = γ2|I1∩I2.

7.4 Local Flows

Let M be a smooth manifold, and let ϕ:W × I → M be a continuous map,
where W is an open set in M and I be an open interval in R. Suppose that
the function from I to M that sends t ∈ I to ϕ(w, t) is differentiable. Given

w ∈ W and t ∈ I, we define
∂ϕ(w, t)

∂t
to be the velocity vector to the curve

s 7→ ϕ(w, s) at s = t. This velocity vector is an element of the tangent space
Tϕ(w,t) to the smooth manifold M at the point ϕ(w, t).

Definition LetX be a vector field defined over an open subset U of a smooth
manifold M and let ϕ:W × I →M be a continuous map into M defined on
the product manifold W × I, where W is an open subset of U , I is an open
interval in R, and 0 ∈ I. The function ϕ is said to be a local flow for the
vector field X if the following conditions are satisfied:

(i) ϕ(W × I) ⊂ U ;

(ii) ϕ(w, 0) = w for all w ∈ W ;

(iii) for each w ∈ W , the map t 7→ ϕ(w, t) is differentiable on I and satisfies

∂ϕ(w, t)

∂t
= Xϕ(w,t)

for all (w, t) ∈ W × I.

Let X be a vector field defined over an open subset U of a smooth man-
ifold M and let ϕ:W × I → M be a continuous map into M defined on
the product manifold W × I, where W is an open subset of U , I is an open
interval in R, and 0 ∈ I. It follows from the definition of local flows that this
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map ϕ is a local flow for the vector field X if and only if, for every w ∈ W ,
the map t 7→ ϕ(w, t) is an integral curve for the vector field X, defined for
t ∈ I, which passes through the point w at time t = 0.

Example Let k be a real number. The function on R× R that sends (x, t)

to x+ kt for all x, t ∈ R is a (local) flow for the vector field k
∂

∂x
on the real

line R. This follows from the fact that

∂

∂t
f(x+ kt) = kf ′(x+ kt)

for all smooth real-valued functions f defined over open subsets of R.

Example Let k be a real number. The function on R× R that sends (x, t)

to xekt for all x, t ∈ R is a (local) flow for the vector field kx
∂

∂x
on the real

line R. This follows from the fact that

∂

∂t
f(xekt) = kxektf ′(xekt)

for all smooth real-valued functions f defined over open subsets of R.

Example Let Q be the vector field on R3 defined by the equation

Q = −y ∂

∂x
+ x

∂

∂y
,

where x, y, z are the standard Cartesian coordinates on R3. Let

ϕ((x, y, z), t) = (x̂(t), ŷ(t), ẑ(t))

= (x cos t− y sin t, x sin t+ y cos t, z)

for all x, y, z, t ∈ R. If f is a smooth real-valued function defined over some
open set in R3 then

df(x̂(t), ŷ(t), ẑ(t))

dt
=

∂f(ϕ((x0, y0, z0), t))

∂t

=
∂

∂t
f(x0 cos t− y0 sin t, x0 sin t+ y0 cos t, z0)

= −(x0 sin t+ y0 cos t)
∂f

∂x
(ϕ((x0, y0, z0), t))

+ (x0 cos t− y0 sin t)
∂f

∂y
(ϕ((x0, y0, z0), t))

= −ŷ(t)
∂f

∂x

∣∣∣∣
(x̂(t),ŷ(t),ẑ(t))

+ x̂(t)
∂f

∂y

∣∣∣∣
(x̂(t),ŷ(t),ẑ(t))

= Q(x̂(t),ŷ(t),ẑ(t))f.
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It follows that, for each point (x0, y0, z0) of R3, the smooth curve in R3 that
sends t ∈ R to (x̂(t), ŷ(t), ẑ(t)) is an integral curve for the vector field X, and
thus the map ϕ: R3 × R→ R is a (local) flow for the vector field Q on R3.

The vector field Q is tangential to the unit sphere S2 at each point of S2,
where

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
since

Q[x2 +y2 + z2] = −y ∂
∂x

(x2 +y2 + z2) +x
∂

∂y
(x2 +y2 + z2) = −2yx+ 2xy = 0.

Moreover ϕ(p, t) ∈ S2 for all p ∈ S2 and t ∈ R. It follows that the restriction
of the smooth vector field Q to the unit sphere S2 is a vector field on S2, and
moreover this vector field generates a smooth flow on S2 which is obtained
by restricting the domain of the smooth map ϕ to S2 × R.

Example Let X be the vector field on the real line R given by

X = x2 ∂

∂x

for all x ∈ R. Let uc: Ic → R be an integral curve for this vector field, defined
on some open interval Ic in R, where 0 ∈ Ic and uc(0) = c. Then uc satisfies
the differential equation

duc(t)

dt
= uc(t)

2 for all t ∈ Ic.

It follows on solving this differential equation that uc(t) =
c

1− ct
for all

t ∈ Ic. It follows that Ic ⊂ (−∞, c−1) when c > 0, and Ic ⊂ (c−1,+∞) when
c < 0.

Let W be a bounded open set in the real line R. Choose ε > 0 small
enough to ensure that W ⊂ (−ε−1, ε−1). Then there is a local flow ϕ:W ×
(−ε, ε)→ R for the vector field X defined over W × (−ε, ε), where

ϕ(c, t) =
c

1− ct
for all c ∈ W and t ∈ (−ε, ε). However it is not possible to define a flow for
this vector field whose domain is W × R.

The theory of systems of ordinary differential equations guarantees the
existence of smooth local flows for smooth vector fields on smooth manifolds.
This result is significantly harder to prove than the existence and uniqueness
theorems for integral curves of smooth vector fields. We state the result
below.
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Theorem 7.12 Let X be a smooth vector field defined over an open subset U
of a smooth manifold M and let p be a point of U . Then there exists an open
set W , where p ∈ W and W ⊂ U , and a smooth local flow ϕ:W × (−ε, ε)→
M for the smooth vector field X defined over W × (−ε, ε) for some positive
real number ε.

Let X be a smooth vector field defined over an open subset U of a smooth
manifold M , and let ϕ:W×(−ε, ε)→M be a smooth local flow for X defined
over the product manifold W ×(−ε, ε), where W is an open set in M and ε is
a positive real number. Then, for each point w of W , the curve t 7→ ϕ(w, t) is
an integral curve for the vector field X. Moreover each t ∈ (−ε, ε) determines
a smooth map ϕt:W →M . We shall show that, for an appropriate choice of
W and ε, the open set W is mapped by ϕt diffeomorphically onto an open
set in M .

Let M be a smooth manifold, let X be a smooth vector field defined over
some open subset U of M , let p be a point of U , and let ϕ:U1×(−ε1, ε1)→M
be a smooth local flow for the vector field X, where p ∈ U1, U1 ⊂ U , ε1 > 0
and ϕ(U1 × (−ε1, ε1)) ⊂ U . The continuity of this local flow then ensures
that there exist an open set U2 in M and a positive real number ε2 such that
p ∈ U2, U2 ⊂ U1, 0 < ε2 < ε1 and ϕ(U2 × (−ε2, ε2)) ⊂ U1.

Proposition 7.13 Let M be a smooth manifold, let X be a smooth vector
field defined over some open subset U of M , let p be a point of U , and let
ϕ:U1 × (−ε1, ε1) → M be a smooth local flow for the vector field X, where
p ∈ U1, U1 ⊂ U , ε1 > 0 and ϕ(U1 × (−ε1, ε1)) ⊂ U . Also let U2 be an open
set in M , and let ε2 be a positive real number such that p ∈ U2, U2 ⊂ U1,
0 < ε2 < ε1 and ϕ(U2 × (−ε2, ε2)) ⊂ U1. Then ϕt(ϕs(u)) = ϕs+t(u) for all
u ∈ U2 and s, t ∈ (−ε2, ε2).

Proof Let v = ϕs(u) = ϕ(u, s) for some u ∈ U2 and s ∈ (−ε2, ε2). Then

∂

∂t
ϕ(u, s+ t) = Xϕ(u,s+t)

for all t ∈ (−ε2, ε2). But

∂

∂t
ϕ(v, t) = Xϕ(v,t)

for all t ∈ (−ε2, ε2), and ϕ(v, 0) = v = ϕ(u, s). It follows from the stan-
dard uniqueness theorem for solutions of differential equations determined
by smooth vector fields that

ϕs+t(u) = ϕ(u, s+ t) = ϕ(v, t) = ϕ(ϕ(u, s), t) = ϕt(ϕ(u, s)) = ϕt(ϕs(u))

for all t ∈ (−ε2, ε2) (see Theorem 7.11). The result follows.
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Corollary 7.14 Let M be a smooth manifold, let X be a smooth vector field
defined over some open subset U of M , and let p be a point of U . Then there
exists an open set W in M and a positive real number ε, where p ∈ W and
W ⊂ U and a smooth local flow ϕ:W × (−ε, ε) → M such that the map ϕt
maps W diffeomorphically onto an open subset of U for all t ∈ (−ε, ε), where
ϕt(w) = ϕ(w, t) for all w ∈ W and t ∈ (−ε, ε).

Proof It follows from Proposition 7.13 that there exists an open set W
containing the point p and a positive real number ε such that ϕ(w, s+ t) ∈ U
and ϕs+t(w) = ϕs(ϕt(w)) for all w ∈ W and s, t ∈ (−ε, ε). Let s = −t. Then

ϕ−t(ϕt(w)) = ϕ−t+t(w) = ϕ0(w) = w

for all w ∈ W and t ∈ (−ε, ε). It follows that, for all t ∈ (−ε, ε), the smooth
map ϕt maps W diffeormorphically onto an open set ϕt(W ) in M , and the
inverse of this diffeomorphism is given by the restriction to ϕt(W ) of the map
ϕ−t.

7.5 Global Flows

Definition Let X be a smooth vector field on a smooth manifold M . A
smooth function ϕ:M × R → M is said to be a (global) flow for the vector
field X if ϕ(p, 0) = p for all p ∈M and

∂

∂t
ϕ(p, t) = Xϕ(p,t).

Let M be a smooth manifold. If M is noncompact then smooth vector
fields on M do not necessarily have global flows.

Corollary 7.15 Let X be a smooth vector field on a smooth manifold M .
Suppose there exists a global flow ϕ:M → R → M for the vector field X.
Then ϕ(ϕ(p, s), t) = ϕ(p, s + t) for all p ∈ M and s, t ∈ R. Thus ϕt ◦ ϕs =
ϕs+t for all s, t ∈ R, where ϕt:M → M is the smooth map that satisfies
ϕt(p) = ϕ(p, t) for all p ∈M and t ∈ R.

Proof This result follows directly from Proposition 7.13 since the conditions
in the statement of that proposition are satisfied on taking U = U1 = U2 = M
(where U , U1 and U2 are the open sets in M referred to in the statement of
that proposition) and on taking arbitrary large values of ε1 and ε2 (where
0 < ε2 < ε1).
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Remark If a smooth manifold is noncompact then a smooth vector field
on the manifold is not guaranteed to have a global flow. Indeed there is is

no global flow for the vector field x2 ∂

∂x
on the real line R, since an integral

curves for this equation are of the form t 7→ c

1− ct
, where c is some real

constant, and an integral curve of this form is not defined over the whole real
line unless c = 0.

Let X be a smooth vector field on a smooth manifold M . Suppose that
there exists a global flow ϕ:M ×R→M for X. Let ϕt:M →M be defined
for all t ∈ R such that ϕt(p) = ϕ(p, t) for all p ∈ M and tR. Then each
smooth map ϕt:M → M is a diffeomorphism from M to itself with inverse
ϕ−t. The collection (ϕt : t ∈ R) is referred to as the one-parameter group of
diffeomorphisms of M generated by the vector field X.

A subset K of a topological space is said to be compact if every open
cover of K has a finite subcover.

Theorem 7.16 Let X be a smooth vector field on a smooth manifold M .
Suppose that there exists a compact subset K of M such that Xp = 0 whenever
p 6∈ K. Then there exists a smooth global flow ϕ:M ×R→M for the vector
field X. The smooth vector field X therefore generates a one-parameter group
(ϕt : t ∈ R) of diffeomorphisms of the smooth manifold M .

Proof The existence theorem for smooth local flows (Theorem 7.12) and the
compactness of the set K together ensure that there exists a finite collection

ϕi:Wi × (−εi, εi)→M (i = 1, 2, . . . , r)

of local flows for the vector field X, where Wi is an open set in M and εi is
a positive real number for i = 1, 2, . . . , r, and where

K ⊂ W1 ∪W2 ∪ · · · ∪Wr.

Let ε be the minimum of ε1, ε2, · · · εr. Now ϕi(p, 0) = p and

∂ϕi(p, t)

∂t
= Xϕi(p,t)

for all p ∈ Wi and t ∈ (−εi, εi). The uniqueness theorem for integral curves of
smooth vector fields (Theorem 7.11) then ensures the existence of a smooth
map

ψ:M × (−ε, ε)→M
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such that

ψ(p, t) = ϕi(p, t) whenever p ∈ Wi and t ∈ (−ε, ε)

and
ψ(p, t) = p whenever p 6∈ K and t ∈ (−ε, ε).

Moreover
∂ψ(p, t)

∂t
= Xψ(p,t)

for all p ∈M and t ∈ (−ε, ε). Choose some positive real number e satisfying
0 < e < 1

2
ε. Proposition 7.13 then ensures that ψ(ψ(p, s), t) = ψ(p, s+ t) for

all p ∈ M and s, t ∈ [−e, e]. This is sufficient to ensure the existence of a
well-defined smooth function ϕ:M × R→M , where

ϕ(p, t) = ψ(p, t) whenever − e ≤ t ≤ e;

ϕ(p, t) = ψ(ϕ(p, t− e), e) whenever t > e;

ϕ(p, t) = ψ(ϕ(p, t+ e),−e) whenever t < −e.

This smooth function ϕ is then a global flow for the smooth vector field X.
Thus if ϕt(p) = ϕ(p, t) for all p ∈ M and t ∈ R then (ϕt : t ∈ R) is a one-
parameter group of diffeomorphisms of the smooth manifold M generated by
the vector field X.

Corollary 7.17 Let X be a smooth vector field on a compact smooth mani-
fold M . Then there exists a smooth global flow ϕ:M ×R→M for the vector
field X. The smooth vector field X therefore generates a one-parameter group
(ϕt : t ∈ R) of diffeomorphisms of the smooth manifold M .

Proof This result is a special case of Theorem 7.16.

7.6 Lie Brackets and Commutativity of Flows

Proposition 7.18 Let X and Y be smooth vector fields on a smooth mani-
fold M , and let ϕ:W0× I →M be a smooth local flow for the vector field X,
where W0 is an open set in M , I is an open interval in the real line, and
0 ∈ I. Let W be an open subset of W0 and let ε be a positive real number,
where W and ε are chosen such that (−ε, ε) ⊂ I and

ϕ(W × (−ε, ε)) ⊂ W0.

Then
∂

∂t

(
ϕ−t∗Yϕ(p,t)

)
= ϕ−t∗[X, Y ]ϕ(p,t)

123



for all p ∈ W and t ∈ (−ε, ε), where ϕt(p) = ϕ(p, t) for all p ∈ W , and where

∂

∂t

(
ϕ−t∗Yϕ(p,t)

)
= lim

h→0

1

h

(
ϕ−(t+h)∗Yϕ(p,t+h) − ϕ−t∗Yϕ(p,t)

)
.

Proof Let W̃ = W × (−ε, ε), and let π: W̃ → W denote the projection map
defined such that π(p, t) = p for all p ∈ W and t ∈ (−ε, ε). Also for each
t ∈ (−ε, ε), let ιt:W → W̃ be the smooth map defined such that ιt(p) = (p, t)
for all p ∈ W . Then π(ιt(p)) = p and ιt(π(p, t)) = (p, t) for all (p, t) ∈ W̃ .

Let Z(p,t) be a tangent vector to W̃ at (p, t). Then there exists a real

number c and a tangent vector Ẑ(p,t) ∈ T(p,t)W̃ such that Ẑ(p,t) is tangential

to the submanifold ιt(W ) of W̃ and

Z(p,t) = Ẑ(p,t) + c
∂

∂t

∣∣∣∣
(p,t)

.

Now ιt ◦ π is the identity map on ιt(W ). It follows that

Ẑ(p,t) = ιt∗π∗Ẑ(p,t) = ιt∗π∗Z(p,t).

Also Ẑ(p,t)[t] = 0 and therefore Z(p,t)[t] = c. Therefore

Z(p,t) = ιt∗π∗Z(p,t) + Z(p,t)[t]
∂

∂t

∣∣∣∣
(p,t)

for all Z(p,t) ∈ T(p,t)W̃ .
Now

ϕ∗

(
∂

∂t

∣∣∣∣
(p,t)

)
=
∂ϕ(p, t)

∂t
= Xϕ(p,t)

for all (p, t) ∈ W̃ . It follows that the vector field
∂

∂t
on W̃ is ϕ-related to the

vector field X on M .
There is a smooth vector field Ỹ on W̃ characterized by the property that

Ỹ(p,t) = ιt∗ϕ−t∗Yϕ(p,t).

for all (p, t) ∈ W̃ . Then

π∗Ỹ(p,t) = ϕ−t∗Yϕ(p,t).

for all (p, t) ∈ W̃ . Also ϕt(p) = ϕ(ιt(p)) for all p ∈ W , and therefore

ϕ∗Ỹ(p,t) = ϕ∗ιt∗ϕ−t∗Yϕ(p,t) = (ϕ ◦ ιt)∗ϕ−t∗Yϕ(p,t) = ϕt∗ϕ−t∗Yϕ(p,t) = Yϕ(p,t)
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for all (p, t) ∈ W̃ . The vector field Ỹ on W̃ is therefore ϕ-related to the
vector field Y on M .

Now the vector fields
∂

∂t
and Ỹ on W̃ are ϕ-related to the vector fields

X and Y respectively on M . It follows from Proposition 7.9 that the vector

field

[
∂

∂t
, Ỹ

]
on W̃ is ϕ-related to the vector field [X, Y ] on M , and thus

ϕ∗

[
∂

∂t
, Ỹ

]
(p,t)

= [X, Y ]ϕ(p,t)

for all (p, t) ∈ W̃ . But[
∂

∂t
, Ỹ

]
[t] =

∂

∂t

(
Ỹ [t]

)
− Y

[
∂t

∂t

]
= 0,

since Ỹ [t] = 0 throughout W̃ . It follows that[
∂

∂t
, Ỹ

]
(p,t)

= ιt∗π∗

[
∂

∂t
, Ỹ

]
(p,t)

.

Therefore

[X, Y ]ϕ(p,t) = ϕ∗

[
∂

∂t
, Ỹ

]
(p,t)

= ϕ∗ιt∗π∗

[
∂

∂t
, Ỹ

]
(p,t)

= ϕt∗π∗

[
∂

∂t
, Ỹ

]
(p,t)

,

and thus

ϕ−t∗[X, Y ]ϕ(p,t) = π∗

[
∂

∂t
, Ỹ

]
(p,t)

.

But if f is any smooth function defined over some open neighbourhood
of p in M then〈

dfp, π∗

[
∂

∂t
, Ỹ

]
(p,t)

〉
= π∗

[
∂

∂t
, Ỹ

]
(p,t)

[f ] =

[
∂

∂t
, Ỹ

]
(p,t)

[f ◦ π]

=
∂

∂t

(
Ỹ(p,t)[f ◦ π]

)
− Ỹ(p,t)

[
∂(f ◦ π)

∂t

]
=

∂

∂t

(
π∗Ỹ(p,t))[f ]

)
=

∂

∂t

(
〈dfp, π∗Ỹ(p,t)〉

)
=

〈
dfp,

∂

∂t
(π∗Ỹ(p,t))

〉
,

because
∂(f ◦ π)

∂t
= 0.
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It follows that

ϕ−t∗[X, Y ]ϕ(p,t) = π∗

[
∂

∂t
, Ỹ

]
(p,t)

=
∂

∂t

(
π∗Ỹ(p,t)

)
=

∂

∂t

(
ϕ−t∗Yϕ(p,t)

)
,

as required.

Remark Let the smooth manifold M , the vector fields X and Y , the smooth
local flow ϕ:W0× I →M for X, the open set W , the positive real number ε
and the maps ϕt:W → M satisfy the conditions set out in the statement
of Proposition 7.18. Suppose also that the open set W is contained in the
domain of a smooth local coordinate system (x1, x2, . . . , xn) for M . Then
there are smooth real-valued functions v1, v2, . . . , vn on W × (−ε × ε) such
that

ϕ−t∗Yϕ(p,t) =
n∑
j=1

vj(p, t)
∂

∂xj

∣∣∣∣
p

.

W̃ = W × (−ε× ε), let π: W̃ → W be the projection function that satisfies
π(p, t) = p for all (p, t) ∈ W̃ , and let x̃j = xj ◦ π for j = 1, 2, . . . , n. Then
(x̃1, x̃2, . . . , x̃n, t) is a smooth coordinate system defined throughout W̃ . The
vector field Ỹ on W̃ employed in the proof of Proposition 7.18 is defined so
that

Ỹ(p,t) =
n∑
j=1

vj(p, t)
∂

∂x̂j

∣∣∣∣
(p,t)

.

Now [
∂

∂t
,
∂

∂x̂j

]
= 0

for j = 1, 2, . . . , n (see Corollary 7.8). It therefore follows from Lemma 7.6
(or from Lemma 7.7) that[

∂

∂t
, Ỹ

]
=

n∑
j=1

∂vj

∂t

∂

∂x̂j
.

The proof of Proposition 7.18 also exploits the fact that the vector fields
∂

∂t
and Ỹ on W are ϕ-related to the vector fields X and Y on M , and therefore

(as shown in Proposition 7.9)

[
∂

∂t
, Ỹ

]
is ϕ-related to the Lie bracket [X, Y ].

It follows that

ϕ−t∗[X, Y ]ϕ(p,t) =
n∑
j=1

∂(vj(p, t))

∂t

∂

∂xj

∣∣∣∣
p
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=
∂

∂t

(
n∑
j=1

vj(p, t)
∂

∂xj

∣∣∣∣
p

)

=
∂

∂t

(
ϕ−t∗Yϕ(p,t)

)
,

thus establishing the identity in the statement of Proposition 7.9.

Corollary 7.19 Let X and Y be smooth vector fields on a smooth mani-
fold M , and let ϕ:W × I →M be a smooth local flow for the vector field X,
where W is an open set in M , I is an open interval in the real line, and
0 ∈ I. Then

∂

∂t

(
ϕ−t∗Yϕ(p,t)

)∣∣∣∣
t=0

= [X, Y ]p

for all p ∈ W , where ϕt(p) = ϕ(p, t) for all p ∈ W , and where

∂

∂t

(
ϕ−t∗Yϕ(p,t)

)∣∣∣∣
t=0

= lim
h→0

1

h

(
ϕ−h∗Yϕ(p,h) − Yp

)
.

Proof Given any point p of W , we can find some open neighbourhood W0

of p and some positive real number ε such that (−ε, ε) ⊂ I and

ϕ(W0 × (−ε, ε)) ⊂ W.

The result therefore follows directly from Proposition 7.18.

Remark Let the smooth manifold M , the vector fields X and Y , the smooth
local flow ϕ:W0× I →M for X, the open set W , the positive real number ε
and the maps ϕt:W → M satisfy the conditions set out in the statement of
Proposition 7.18. Then

∂

∂t

(
ϕ−t∗Yϕ(p,t)

)
= lim

h→0

1

h

(
ϕ−(t+h)∗Yϕ(p,t+h) − ϕ−t∗Yϕ(p,t)

)
= lim

h→0

1

h

(
ϕ−t∗ϕ−h∗Yϕ(p,t+h) − ϕ−t∗Yϕ(p,t)

)
= ϕ−t∗

(
lim
h→0

1

h

(
ϕ−h∗Yϕ(ϕ(p,t),h) − Yϕ(p,t)

))
.

It follows that if the identity in the statement of Corollary 7.19 has been
established (e.g., by some alternative proof to that given above), then the
result of Proposition 7.18 may be deduced from it.
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Corollary 7.20 Let X and Y be smooth vector fields on a smooth mani-
fold M , and let ϕ:W0× I →M be a smooth local flow for the vector field X,
where W0 is an open set in M , I is an open interval in the real line, and
0 ∈ I. Let W be an open subset of W0 and let ε be a positive real number,
where W and ε are chosen such that (−ε, ε) ⊂ I and

ϕ(W × (−ε, ε)) ⊂ W0.

Suppose that [X, Y ] = 0 on M . Then

Yϕ(p,t) = ϕt∗Yp

for all p ∈ W and t ∈ (−ε, ε), where ϕt(p) = ϕ(p, t) for all p ∈ W .

Proof This result follows immediately from Proposition 7.18.

Corollary 7.21 Let X and Y be smooth vector fields on a smooth mani-
fold M , let p0 be a point of M , and let ϕX :W × I →M and ϕY : Ŵ × Î →M
be smooth local flow for the vector fields X and Y respectively, where W and
Ŵ are open sets in M , I and Î are open intervals in the real line, p0 ∈ W∩Ŵ ,
0 ∈ I and 0 ∈ Î, and let ϕX,s(p) = ϕX(p, s) for all (p, s) ∈ W × I and

ϕY,t(p) = ϕY (p, t) for all (p, t) ∈ Ŵ × Î. Suppose that [X, Y ] = 0. Then
there exists some open set W0 and some positive real number ε such that
p ∈ W0, W0 ⊂ W ∩ Ŵ , ϕY,t ◦ ϕX,s and ϕX,s ◦ ϕY,t are defined throughout W0

for all s, t ∈ (−ε, ε), and

ϕX,s(ϕY,t(p)) = ϕY,t(ϕX,s(p))

for all p ∈ W0 and s, t ∈ (−ε, ε).

Proof It follows from Corollary 7.20 that there exists an open set W1 and
a positive real number ε1 such that YϕX(p,s) = ϕX,s∗Yp for all p ∈ W1 and
s ∈ (−ε1, ε1). Let γ: Iγ → M be an integral curve for the vector field Y ,
where Iγ is an open interval in R and γ(Iγ) ⊂ W1. Then

∂

∂t
(ϕX,s(γ(t))) = ϕX,s∗

dγ(t)

dt
= ϕX,s∗Yγ(t) = YϕX,s(γ(t)).

It follows that γ̂: Iγ → M is also an integral curve for the vector field Y ,
where γ̂(t) = ϕX,s(γ(t)) for all t ∈ Iγ. 0 ∈ Iγ and γ(0) = p then

ϕX,s(ϕY,t(p)) = ϕX,s(ϕY,t(γ(0))) = ϕX,s(γ(t)) = γ̂(t)

= ϕY,t(γ̂(0)) = ϕY,t(ϕX,s(γ(0)))

= ϕY,t(ϕX,s(p)),

as required.
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Theorem 7.22 Let X1, X2, . . . , Xr be smooth vector fields on a smooth man-
ifold M . Suppose that

[Xi, Xj] = 0 for i, j = 1, 2, . . . , r.

Then, given any point p0 of M , there exists a smooth map

F :W × (−ε, ε)r →M,

defined over W × (−ε, ε)r, where W is an open neighbourhood of p0 in M
and ε > 0, such that

∂

∂ti
F (p, t1, t2, . . . , tr) = (Xi)F (p,t1,t2,...,tr)

for all p ∈ W , t1, t2, . . . , tr ∈ (−ε, ε) and i ∈ {1, 2, . . . , r}.

Proof There exists an open set W1, where p0 ∈ W1, a positive real num-
ber ε1, and smooth maps ϕXi :W1×(−ε1, ε1)→M such that ϕX,i is a smooth
local flow for the vector field Xi for i = 1, 2, . . . , r. Then

∂

∂t
ϕXi(p, t) = (Xi)ϕXi (p,t)

for all p ∈ W1 and t ∈ (−ε1, ε1). Let ϕXi,t(p) = ϕXi(p, t) for all p ∈ W1 and
t ∈ (−ε1, ε1).

Let us define
F1(p, t

1) = ϕX1(p, t
1)

for all p ∈ W1 and t1 ∈ (−ε1, ε1). Then

∂

∂t1
F1(p, t

1) = (X1)F1(p,t1)

for all w ∈ W1 and t1 ∈ (−ε1, ε1).
Suppose that, for some integer k satisfying 1 < k ≤ r there exists an open

set Wk−1, where p0 ∈ Wk−1 and Wk−1 ⊂ W1, a positive real number εk−1,
where 0 < εk−1 ≤ ε1 and a smooth map

Fk−1:Wk−1 × (−εk−1, εk−1)
k−1 →M

with the property that

∂

∂ti
Fk−1(p, t

1, t2, . . . , tk−1) = (Xi)Fk−1(p,t1,t2,...,tk−1)
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for all w ∈ Wk−1, t
1, t2, . . . , tk−1 ∈ (−εk−1, εk−1) and i ∈ {1, 2, . . . , k − 1}.

Choose an open set Wk and a positive number εk such that p0 ∈ Wk, Wk ⊂
Wk−1 0 < εk < εk−1 ≤ ε1 and

Fk−1(Wk × (−εk−1, εk)
k−1) ⊂ W1.

Define
Fk(p, t

1, t2, . . . , tk) = ϕXk,tk(Fk−1(p, t
1, t2, . . . , tk−1))

for all p ∈ Wk and t1, t2, . . . , tk ∈ (−εk, εk). Then t 7→ Fk(p, t
1, t2, . . . , tk−1, t)

is an integral curve for the vector field Xk, and therefore

∂

∂tk
Fk(p, t

1, t2, . . . , tk) = (Xk)Fk(p,t1,t2,...,tk).

If i < k then it follows from Corollary 7.20 that

(Xi)ϕXk (q,tk) = ϕXk,tk∗(Xi)q

for all q ∈ W1 and t ∈ (−εk, εk). Therefore

∂

∂ti
Fk(p, t

1, t2, . . . , tk) =
∂

∂ti
(
ϕXk,tk(Fk−1(p, t

1, t2, . . . , tk−1))
)

= ϕXk,tk∗

(
∂

∂ti
(
Fk−1(p, t

1, t2, . . . , tk−1)
))

= ϕXk,tk∗
(
(Xi)Fk−1(p,t1,t2,...,tk−1)

)
= (Xi)ϕ

Xk,t
k (Fk−1(p,t1,t2,...,tk−1))

= (Xi)Fk(p,t1,t2,...,tk).

The result therefore follows by induction on k.

Remark The function F constructed in the proof of Theorem 7.22 can be
represented in the form

F (p, t1, t2, . . . , tr) = (ϕXr,tr ◦ ϕXr−1,tr−1 ◦ · · · ◦ ϕX2,t2 ◦ ϕX1,t1)(p)

(employing the notation in the statement and proof of that theorem), where
the point p lies within some sufficiently small open neighbourhood W of the
point p0, and where t1, t2, . . . , tr have absolute values small enough to ensure
that the map represented by the above formula is well-defined. The result
of Corollary 7.21 may be used in place of Corollary 7.20 to verify that this
function F satisfies the required differential equations. Indeed Corollary 7.21
ensures that, if the absolute values of t1, t2, . . . , tr are sufficiently small, then
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the order in which the maps ϕXi,ti are composed is immaterial, and therefore,
given any value of i between 1 and r, we can write

F (p, t1, t2, . . . , tr) = ϕXi,ti(G(p, t1, . . . , ti−1, ti+1, . . . , tr))

for some smooth function G that does not involve the real variable ti. It
follows directly from this that

∂

∂ti
F (p, t1, t2, . . . , tr) = (Xi)F (p,t1,t2,...,tr),

as required.

Theorem 7.23 Let X1, X2, . . . , Xn be smooth vector fields on a smooth man-
ifold M of dimension n. Suppose that

[Xi, Xj] = 0 for i, j = 1, 2, . . . , n.

Suppose also that the values of these vector fields at some point p0 of M
constitute a basis of the tangent space Tp0M to M at p0. Then there exists
a smooth coordinate system (x1, x2, . . . , xn), defined throughout some open
neighbourhood W of the point p0, such that

Xi =
∂

∂xi

on W for i = 1, 2, . . . , n.

Proof It follows from Theorem 7.22 that there exists a smooth map

F :W0 × (−ε, ε)n →M,

defined over W0 × (−ε, ε)n, where W0 is an open neighbourhood of p0 in M
and ε > 0, such that

∂

∂ti
F (p, t1, t2, . . . , tn) = (Xi)F (p,t1,t2,...,tn)

for all p ∈ W0, t
1, t2, . . . , tn ∈ (−ε, ε) and i ∈ {1, 2, . . . , n}. Define

ψ: (−ε, ε)n →M

such that
ψ(t1, t2, . . . , tn) = F (p0, t

1, t2, . . . , tn)
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for all t1, t2, . . . , tn ∈ (−ε, ε). Then

ψ∗

(
∂

∂ti

∣∣∣∣
(t1,t2,...,tn)

)
=

∂

∂ti
(
ψ(t1, t2, . . . , tn)

)
= (Xi)ψ(t1,t2,...,tn)

for i = 1, 2, . . . , n. Now the values (X1)p0 , (X2)p0 , . . . , (X0)p0 of the vector
fields X1, X2, . . . , Xn at the point p0 constitute a basis of the tangent space
Tp0M . Therefore the derivative ψ∗:T(0,0,...,0)Rn → Tp0M of the map ψ at
(0, 0, . . . , 0) is an isomorphism. It follows from the Inverse Function Theorem
of multivariable real analysis that there exists an open neighbourhood of the
origin in (−ε, ε)n that is mapped diffeomorphically onto an open set W in
M . The inverse ϕ:W → Rn of this diffeomorphism is then a smooth chart
on M , and

ϕ∗(Xi) =
∂

∂ti

throughout W for i = 1, 2, . . . , n. Let ϕ(p) = (x1(p), x2(p), . . . , xn(p)) for all
p ∈ W . Then (x1, x2, . . . , xn) is a smooth coordinate system defined over W ,

and it follows from the definition of
∂

∂xi
that

ϕ∗

(
∂

∂xi

)
=

∂

∂ti

for i = 1, 2, . . . , n. Therefore Xi =
∂

∂xi
throughout W for i = 1, 2, . . . , n, as

required.

Theorem 7.24 Let X1, X2, . . . , Xr be smooth vector fields on a smooth man-
ifold M of dimension n. Suppose that

[Xi, Xj] = 0 for i, j = 1, 2, . . . , r.

Suppose also that the values of these vector fields at some point p0 of M are
linearly independent elements of the tangent space Tp0M . Then there exists
a smooth coordinate system (x1, x2, . . . , xn), defined throughout some open
neighbourhood W of the point p0, such that

Xi =
∂

∂xi

on W for i = 1, 2, . . . , r.
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Proof It follows from Theorem 7.22 that there exists a smooth map

F :W0 × (−ε, ε)r →M,

defined over W0 × (−ε, ε)r, where W0 is an open neighbourhood of p0 in M
and ε > 0, such that

∂

∂ti
F (p, t1, t2, . . . , tr) = (Xi)F (p,t1,t2,...,tn)

for all p ∈ W0, t
1, t2, . . . , tr ∈ (−ε, ε) and i ∈ {1, 2, . . . , r}.

Now there exists a diffeomorphism G:U →M , where U is an open neigh-
bourhood of the origin 0 in Rn, such that G(0) = p0 and

G∗

(
∂

∂ti

∣∣∣∣
0

)
= (Xi)p0 for i = 1, 2, . . . , r.

(This diffeomorphism may be constructed as the inverse of a smooth chart
around p0, composed with an appropriate non-singular linear transformation
of Rn.) Then the vectors

G∗

(
∂

∂ti

∣∣∣∣
0

)
(i = 1, 2, . . . , n)

constitute a basis of the tangent space Tp0M to M at p0. Define

H(t1, t2, . . . , tn) = F (G(0, 0, . . . , 0, tr+1, · · · , tn), t1, t2, . . . , tr)

for all points (t1, t2, . . . , tn) that lie within a sufficiently small neighbourhood
U0 of the origin in Rn.

Given u ∈ U0, where u = (u1, u
2, . . . , un) and given an integer i satisfying

1 ≤ i ≤ n, let λu,i: R→ Rn be defined such that the ith component of λu,i(t)
is ui + t and the jth component is uj for j 6= i. Thus t 7→ λu,i(t) is a path
which follows a straight line parallel to the ith coordinate axis, and passes
through the point u at time t = 0.

Now if 1 ≤ i ≤ r and if u ∈ U0 then

H(λu,i(t)) = F (G(0, 0, ur+1, . . . , un), u1, . . . , ui + t, . . . , ur)

and therefore the curve t 7→ H(λu,i(t)) is an integral curve for the vector
field Xi. It follows that

H∗

(
∂

∂ti

∣∣∣∣
u

)
=
∂H

∂ti

∣∣∣∣
u

=
dH(λu,t)

dt

∣∣∣∣
t=0

= (Xi)H(u)
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for i = 1, 2, . . . , r. In particular

H∗

(
∂

∂ti

∣∣∣∣
0

)
= (Xi)p0 = G∗

(
∂

∂ti

∣∣∣∣
0

)
for i = 1, 2, . . . , r. Moreover if i > r then H(λ0,i(t)) = G(λ0,i(t)).

H∗

(
∂

∂ti

∣∣∣∣
0

)
= G∗

(
∂

∂ti

∣∣∣∣
0

)
and thus the derivatives H∗ and G∗ of the maps H and G coincide at 0, and
thus the derivative H∗:T0Rn → Tp0M of the map H at 0 is an isomorphism
of vector spaces. It follows from the Inverse Function Theorem that H maps
some open neighbourhood U of 0 in Rn diffeomorphically onto some open
neighbourhood W of p0 in M . Let x1, x2, . . . , xn be the Cartesian components
of the inverse of the diffeomorphism from U to V determined by H, so that

u = (x1(H(u)), x1(H(u)), . . . , xn(H(u)))

for all u ∈ U . Then

H∗

(
∂

∂ti

∣∣∣∣
u

)
=

∂

∂xi

∣∣∣∣
H(u

for i = 1, 2, . . . , n. But

H∗

(
∂

∂ti

∣∣∣∣
u

)
=
∂H

∂ti

∣∣∣∣
u

=
dH(λu,t)

dt

∣∣∣∣
t=0

= (Xi)H(u)

for i = 1, 2, . . . , r. It follows that Xi =
∂

∂xi
throughout the open set W for

i = 1, 2, . . . , r.

Example Let X and Y be the smooth vector fields on R3 defined by the
equations

X = xz
∂

∂x
+ yz

∂

∂y
− (x2 + y2)

∂

∂z

Y = −y ∂
∂x

+ x
∂

∂y

A short computation shows that [X, Y ] = 0. Moreover these vector fields are
linearly independent throughout the complement of the z-axis. It transpires

that X =
∂

∂u
and Y =

∂

∂ϕ
, where (u, ϕ, r) is the smooth coordinate system

on the complement of {(x, y, z) : y = 0 and x ≤ 0} defined such that

x =
2reru cosϕ

1 + e2ru
, y =

2reru sinϕ

1 + e2ru
, z =

r(1− e2ru)
1 + e2ru

.
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Further calculation shows that, in the (u, ϕ, r) coordinate system,

∂

∂r
=

(
x

r
+
xz

2r2
log

r − z
r + z

)
∂

∂x
+

(
y

r
+
yz

2r2
log

r − z
r + z

)
∂

∂y

= +

(
z

r
− x2 + y2

2r2
log

r − z
r + z

)
∂

∂y

=
1

r

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
+

(
1

2r2
log

r − z
r + z

)
X

where r =
√
x2 + y2 + z2. Note that this vector is not directed radially out-

wards away from the origin. This is a consequence of the fact that curves
along which the functions ϕ and u are constant do not lie wholly within
straight lines passing through the origin. Indeed the cosine of the angle be-
tween the z-axis and the line joining the origin to the point with coordinates

r, ϕ, u in this curvilinear coordinate coordinate system is
1− e2ru

1 + e2ru
, and this

angle clearly varies along any curve along which the functions u and ϕ are
both constant.

The special case of Theorem 7.24 involving just one smooth vector field
on the smooth manifold is an important result in its own right, which we
now state.

Corollary 7.25 Let X be a smooth vector field on a smooth manifold M
of dimension r. Suppose that that the vector field X is non-zero at some
point p0 of M . Then there exists a smooth coordinate system (x1, x2, . . . , xn),
defined throughout some open neighbourhood W of the point p0, such that

X =
∂

∂x1
on W .

Remark Note that, in the special case addressed in Corollary 7.25, where
there is only one vector field involved, the function F employed in the proof
of Theorem 7.22 is a smooth local flow for this vector field X. Thus the
proof of Theorem 7.22 in this special case requires only the existence theorem
for smooth local flows (Theorem 7.12) and the Inverse Function Theorem.
Therefore the proof of the existence of the required smooth coordinate system
in the situation described in the statement of Corollary 7.25 does not require
the use of the results stated in Proposition 7.18 and its corollaries.

Example Let B be the vector field on {(x, y, z) ∈ R3 : x 6= 0} defined by
the equation

B =
∂

∂x
+ z

∂

∂y
+
−xz − x2y + c2y

x2

∂

∂z
,
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where c is a real constant. Let γ: I → R3 be an smooth integral curve
for the vector field B, where I is some open interval in R, and let γ(t) =
(u(t), v(t), w(t)) for all t ∈ I, where u, v and w are smooth real-valued
functions on I. Then γ′(t) = Bγ(t) for all t ∈ I, where

γ′(t) =
dγ(t)

dt
= u′(t)

∂

∂x
+ v′(t)

∂

∂y
+ w′(t)

∂

∂z
,

and therefore

u′(t) = 1, v′(t) = w(t), w′(t) =
−u(t)w(t)− u(t)2v(t) + c2v(t)

u(t)2
.

Then u(t) = t+ t0 for some constant t0. We may reparameterize the integral
curve I so that t0 = 0, and u(t) = t. Then

v′′(t) = w′(t) = −1

t
w(t)− t2 − c2

t2
v(t),

and thus

t2
d2v(t)

dt2
+ t

dv(t)

dt
+ (t2 − c2)v(t) = 0.

The function v(t) thus satisfies Bessel’s differential equation. The solutions
of this equation are Bessel functions.

Examples such as we have seen should indicate that, whilst it may be a
fairly trivial exercise to compute Lie brackets of smooth vector fields and draw
conclusions concerning the existence and behaviour of smooth coordinate
systems and flows, it may not be as easy to compute the flows and find
explicit formulae defining these coordinate systems.
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