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5 Tensors and Multilinear Algebra

5.1 The Dual of a Finite-Dimensional Vector Space

Let V be a vector space over a field K. (In applications to differential geom-
etry and theoretical physics, the field K is usually the field of real numbers,
though sometimes it is appropriate to take the field K of scalars to be the
field of complex numbers.) The dual space V* of V' is the vector space over
the field K consisting of all linear functionals from V' to K. We define

(g, v) = o(v)

forall p e V*and v e V.

Suppose that the vector space V is finite-dimensional. Let eq,e,,...,e,
be a basis for V', where n is the dimension of V. Then there is a corresponding
dual basis €', €2, ..., " of the dual space V*. The elements of this dual basis
satisfy the identities

(e ex) = &' (er) = 4,

for j,k=1,2,...,n, where (5% is the Kronecker delta, defined such that

g [ 1=k
E=1 0 otherwise.

The dual space (V*)* of V* can be identified with the vector space V
itself. Indeed each element v of V determines a linear functional on V*
which sends w to (w,v) for all w € V*. Moreover every linear functional
on V* is determined in this fashion by some element of the vector space v.

Let e1,es, ..., e, be a basis of V, and let !, £2,...," be the corresponding
dual basis of V*. Then the basis of V' that is the dual basis of the basis
el e? ..., " of V* is the original basis e;, e, ..., e, of the vector space V.

5.2 Multilinear Forms on Finite-Dimensional Vector
Spaces

Let V4, V5, ..., V, and W be vector spaces over some field K. A function
SVixVox- -V, —W
is said to be multilinear (or K-multilinear) if

S(avi + Bv],va, vz, ..., v,)

= aS(v],va,vs, ..., v,) + BS(V],va,v3, ..., V,)
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S(vi,avh+ vy, vs, ..., Vv,)

= aS(vy, vy, vs, ..., v,) + BS(vi, vy, V3, ..., V,)
S<V17V27 V3,... 7OZV;“ + BV;‘I>
= aS(vi, vy, Vs, ..., V) + BS(vi, Vo, Vs, ..., V)
forall v, v, v € Vi, vo, v, vl € Vo, ... v, vl vl €V andforalla,f € K.
The collection of all K-multilinear maps (or functions) from Vi, V5, ..., V, to

W is a vector space over the field K, which we denote by
MK(‘/la‘/Q77‘/7'7W>

In particular, we denote by Mg (V4, Va, ..., V,; K) the vector space consisting
of all multilinear maps from V; x V5 x --- x V. to the field K.
We define

V1®V2®'®VT€MK(‘/1*7‘/2*77‘/;‘*’K)

and
W1®W2®"'®WTEMK(%,%,...,W;K)
for all
(Vi,ve,...,v,) € Vi x Vo, ...V,
and
(Wi ,way o ywy) €V XV X oo X VT
such that

(Vi®ve® -+ @ v,)(wy,wa,...,w)
(W Qwa® -+ Q@ wy)(V, Vo, ..., V;)
= <W1,V1> <w2,V2> <wr,Vr>

= wi(vy)wa(va) - wp(v,).
The multilinear map
Vi@Ve®- - Qv VI x V) - x V= K
represents the tensor product of vi,vs,...,v,, and the multilinear map
W RWR - QuwVix V- xV, = K

represents the tensor product of wi,ws, ..., w,.
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Proposition 5.1 Let K be a field, let Vi, Vs, ..., V, be finite-dimensional
vector spaces over K, let V", Vif ... V¥ be the corresponding dual spaces,
and, for each integer q between 1 and r, let

(e(qm Ij: 1,2,...,nq)

be a basis of the vector space V,, where n, = dimg V;, and let

be the corresponding dual basis of the dual space V. Let
Se MgV, Va,.... Vi K),
be a multilinear map from Vi X Vo x -+ x Vi to K, and let
Sizir = S(€1).j1> €@) g1 -+ €. 4)
for all (41,72, ..., jr) € J, where
J={(1,J2,---sJr) €EZ":1<j,<mn, forq=1,2,...,1}.

Then

niy  ne2 Ny
S=D0 D Shineinh) @ty ® - Oy,

Jj1=172=1 Jr=1
Thus if (Vay, Vi), - V@) € Vi x Vo x -+ X V., and if
qu) - <€%q)’ Vo) = % (Vo)
forq=1,2,...;rand j=1,2,...,n,, so that
nq )
Vi = D0 e,
Jg=1

forq=1,2,...,r then

ni n2 Ny

S(Vay, V@), -+ Vi) = Z Z T Z thjQ,---,erﬁ)U@) - 'Ug;y
J1=1j2=1 jr=1
Proof The definition of 5{1) ® eg) QKRR 8(';) ensures that
1 j2 jr

() @03 @ @) (Vay, Vi) -5 V() = VU - vy
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for all (j1,72,...,7) € J. It follows from the multilinearity of S that

= Y S(eayj vy Vi)l
J1=1
ni na o
= Z Z S(e(l)m 1€(2),520 V(3)s - - - 7V(r))”ﬁ)vgg)
s1=1j2=1
ni N9 nr

= Z Z T Z S(e(l)JU €(2),j2 e(r),erﬁ)”g) a 'U(j;)

J1=172=1 Jr=1

= ZZZ Sjl,jz,...,jrvﬁ)"’g)' (;)

s1=1lje=1  jr=1
- Z Z T Z Sjmz,--.,yr (1) ® 5(2) Q- 5%;)) (V(1)7V(2), e 7V(7“))‘
Jji=1j2=1 Jr=1
The result follows. |}

Remark In order to simplify notation slightly, it is convenient to denote a
summation such as

Z Z Z J15525e00r € ® €€2) Q- ® 6{;)

J1=1j2=1 Jr=1

simply as
Z thjz,..mgu) ® 5(2) Q- ® 5(7")7
J1,J25e50r
where it is understood that each index j, ranges over the set of all integers
between 1 and the dimension n, of the corresponding vector space V.

Corollary 5.2 Let Vi, Vs, ..., V. be finite-dimensional vector spaces over a
field K, let V¥,V ..., V.* be the corresponding dual spaces, and, for each

integer q between 1 and r, let S%q), 5%(1), co,E ;) be a basis of the dual space V;

of V,. Then the collection of all tensor products of the form
Sy @) ® D,
with (j1,72, .., jr) € J constitutes a basis for the vector space

My(Vi,Va,...,Vis K)
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of multilinear maps from Vi x Vo x -+ x V,. to K, where
J={(r,Jos- s Jr) €EZ": 1 < Gy <mg forq=1,2,...,r}.

Thus My (Vi, Va, ..., V., K) is vector space of dimension nins - - -n, over the
field K.

Proof It follows from Proposition 5.1 that the collection of all tensor prod-
ucts of the form

J1
5(1) X 5(2) PSRNy 5(7~)
spans the vector space Mg (Vy, Va, ..., V,; K). Suppose that
D Sty @y ® @y =0.
J1:J255Jr

where Sj, j, ;. € K for each (ji1,J2,...,7,) € J. For each ¢ € {1,2,...,r},
let (e €(g),j : j = 1, 2,...,n,) be the basis of V, that has as its dual basis the

basis efq Jj=1,2,...,ng) of V. Then
0 = Z Sjt gz m(gu) ® 8(2) Q- ® 5?:))(9(1),k1> €(2) Jezs - - - » €(r) o)
J15J25-dr
= Sk ko r

for all (ky, ko, ..., k) € J. We conclude from this that the elements
J1 J2 Jr
of Mg (Vi, Vs, ..., V,; K) are linearly independent, and therefore constitute

a basis of this vector space. It follows immediately that this vector space is
of dimension nyng---n,. |

Corollary 5.3 Let Vi, V5, ..., V, be finite-dimensional vector spaces over a
field K, let Vi,V ..., V.* be the corresponding dual spaces, and, for each
integer q between 1 and r, let €g)1,€(g) 2, - -, €(q).n, bE a basis of the vector
space V. Then the collection of all tensor products of the form

€)1 X €25 @ O €,
with (j1, j2, -, Jr) € J constitutes a basis for the vector space
MgV VY VS K)

of multilinear maps from V", V;' ... . V* to the field K of scalars, where of
multilinear maps from V¥ x V5f x -+ x V* to K, where

J:{(jlaj27'--7jr) GZT:1§jq§an07nq:1,2,...,7“}.
Thus Mg (Vi Vo' ..., VE5 K) is vector space of dimension ning---n, over

the field K. '
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Proof The dual space of V' is the vector space Vi, for ¢ = 1,2,... 7.

Moreover if 5%{1),5%(1),...,5?;) is the basis of V* that is dual to the basis

€(¢),1,€(q),2> - - - 1 €(q),n, then the latter basis is also the dual of the former.
The result therefore follows directly on applying Corollary 5.2. |}

Corollary 5.4 Let Vi, Vs, ..., V. and W be finite-dimensional vector spaces
over a field K, and let Vi*, VS, ..., V* be the dual spaces of V1, Vs, ..., V.

Then every multilinear map
XVixVox oo xV,—-W
from Vi x Vo x -+ x V. to W determines a unique linear transformation
AMMg(VEVE, . VEK) > W
from Mg (V5 VS . VE K) to W which satisfies
5\(V(1) R V@)@ ® V) = AvVay, V@), Vi)
for all (V1y, V), ... V() € Vi x Vo x -+ x V.

Proof Let e(y)1,€(q).2, - -,€(g)n, Pe a basis of the vector space V. Then the
collection of all tensor products of the form

€(1),j1 @ €(2),j, @+ D €() j,,

where j, € {1,2,...,r} for ¢ = 1,2,...,r, constitutes a basis for the vector
space Mg (V5 Vof ..., V¥ K). It follows that, given any multilinear map

AVixVox-o-xV,— W,
there exists a unique linear transformation
N Mg (V Vo VS E) — W

characterized by the property that

Mew i ® e @ ® e()5,) = AC()s )+ €(r)ir)
for all (j1,72,...,7:) € J, where

J={(,Jo,--dr) €Z" 1< j,<nm,forq=1,2,...,r}
The multilinearity of A and the linearity of A then ensure that

S\(V(l) R V)@ - @ V) = AVay, V@), - Vi)

for all (vay,ve),...ve)) € Vi x Vo X --- x V,, as required. |
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5.3 Tensor Products of Finite-Dimensional Vector
Spaces

Definition Let Vi, V5, ..., V, be finite-dimensional vector spaces over some
field K. We define the tensor product Vi @ Vo ® --- @ V,. of Vi, V5,...,V, to
be the vector space Mg (V" V5, ..., V¥ K) whose elements are multilinear

) r

maps from V" x V5 x --. x V* to the field K of scalars.

Let V4, V5, ..., V. be finite-dimensional vector spaces over a field K. Then
there is a well-defined multilinear map

pVixVox-o o xV,=>Vieahe -V,
which is defined such that
1(V), V), Vi) = V1) ® Vi) @ - @V

for all (V(l),V(g), ..Vvy) € Vi x Vo x oo x V,. Moreover it follows from
Corollary 5.4 that, given any finite-dimensional vector space W, and given
any multilinear map

AMVIixVox oo xV, — W,

there exists a unique linear transformation

~

AV, -V, - W

such that A = Ao p. This property is the universal property that characterizes
tensor products of finite-dimensional vector spaces.

Proposition 5.5 Let T e ViR Vo®---QV,., where Vi, Vs, ...V, are finite-
dimensional vector spaces over a field K, let

(e d=12,....ng) and (fpr:k=12,...,n4)
be bases of the vector space Vy for ¢ = 1,2,...,r, where n, = dimg V,, and
let Tivizir ¢ K and T**2k ¢ K be defined for all (j1,j2,...,75.) € J
and (k1, ko, ..., k) € J, where
J={(1,J2,--sJr) €EZ" 1< j,<my forq=1,2,...,1},
so that
To= ), ThETen); ey, ® ®epy,,

(jl’j27"'7j7“)€‘]

= Z Tkl,k27...,k7"f(1)7k1 ® f(2),k‘2 ® PP ® f(’f‘),k‘r-
(k1,k2,....kr)ET
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Suppose that

Tq
fr = ) _(Aw)ie.
j=1
forq=1,2,...,r, where (A(q))i € K forj,k=1,2,...,n,. Then
i =S (A (A - (A T

(k1,k2,....kr)e]
for all (j1, ja, ... jr) € J.

Proof It follows from the multilinearity of the tensor product that

f(1)1k1 ® f(2)7k2 ® U ® f(T)va
- Y (A (A - (Aw)ien)y ® ey, ® -+~ @ e,
(J15925--5Jk ) EJ

for all (k1, ko, ..., k) € J. The required result follows directly, by substitut-
ing in the above equation into the equation

T = Z Tk "k @ f)k © - @ ok,
(k1 koo ) €T

and then equating coefficients of

€(1),51 ®€(2),5, @ - Qen);,

in the resulting formula for 7. |

5.4 Tensors

Definition Let V' be a finite-dimensional vector space over a field K. A
tensor of type (r,s) on V' is an element of the vector space V& @ V*®5 that
is the tensor product of r copies of the vector space V and s copies of the
dual vector space V'*.

Let V' be a vector space of dimension n over a field K, let ey, e,, ..., e,
be a basis of V, and let !, €2, ..., " be the dual basis of V*, which is defined
so that (¢, e;) = 5}“ for j,k = 1,2,...,n, where 5;“ is the Kronecker delta.
Let T' be a tensor of type (r,s) on V. Then there exist scalars T} 72" € K
such that

T= 3 > Tiiie,0e,0--0e,0fae -k

J1,J250+0r k1,k2,....ks
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Let fi,f,,...,f, be another basis for V, and let n',n?, ...,n" be the corre-
sponding dual basis for V*, so that (n?,f,) = 62 for p,¢ =1,2,...,n. Then
there exist non-singular matrices A and B, with coefficients Ag; and B} in K,

such that . .
= Z Ale; and 7’ = Z Biek
j=1 k=1

for p,g=1,2,...,n. Then

n n

b = Z Z BiAl(e" e;) = > BiAIsk = i BIA]
j=1

j=1 k=1 j=1 k=1

for p,q = 1,2,...,n. It follows that the matrix product BA is the identity
matrix, and thus B = A~'. We may therefore write B} = (A~1)i.

Proposition 5.6 Let V' be a vector space of dimension n over a field K, let
e, e, ...,e, and f £ ... f,

be bases of V, let

1 2 n 1,2
e, .., and nunT,. .M

n

be the corresponding dual bases of V*, and let A be the n x n matrix with

coefficients A; in K such that £, = > Alej forp=1,2,...,n. LetT € V"*
j=1
be a tensor of type (r,s) on 'V, and let

T = Y Y ThEie,®e,®--0e, 8100 06"

J1,92,0r k1,k2,... ks

= Y Y et 0f, 008, @t @90 0%,

P1,P25---5 Pr q1,92;---,9s

where the coefficients T“’”’ ’ﬁ and Ttﬁlg? Proof T with respect to the relevant

bases are scalars belongmg to the field K. Then

9153250 +5Jr
klkaa'":ks

= >, D ANAR AR (ATHR(ATHE (AT T e

P1,P25--+,Pr 41,92,---,9s

for all values of the indices ji,ja,...,J, and ki, ko, ..., ks as these indices
range from 1 to n.
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Proof This result follows directly on applying Proposition 5.5. |}

Let V' be a vector space over a field K. A covariant tensor of rank s on
V is a tensor of type (0,s). A covariant tensor of rank s corresponds to a
multilinear map from V?® to K. Covariant tensors thus represent multilinear
forms on the vector space V.

A contravariant tensor of rank r on V is a tensor of type (r,0). A con-
travariant tensor of rank r corresponds to a multilinear map from V*" to K.
Contravariant tensors thus represent multilinear forms on the dual V* of the
vector space V.

The space V10 of tensors of rank (1,0) on the vector space V' is isomor-
phic to the vector space V itself.

The space V%V of tensors of rank (0, 1) on the vector space V' is isomor-
phic to the dual V* of the vector space V.

Tensors of type (1, 1) on the vector space V represent linear operators on
V.

A tensor of type (1, s) represents a multilinear map from V* to V.

Example Let V be a vector space of dimension n over a field K, and let R
be a tensor of type (1,3) on V. Let e;,ey,...,€, be a basis of V, and let
el,e?, ... €" be the dual basis of V*, which is defined so that (¢*,e;) = 5;-“
for 5,k =1,2,...,n, where 5;“ is the Kronecker delta. Then

R= Z Rhijkeh®€i®€j®€k,

h’i7.j7k

where the above summation is taken over all values of the indices h, 7, j and k
between 1 and n. This tensor determines a trilinear map from VxV xV to V.
This trilinear map sends (u, v, w) to R(u,v,w) for all (u,v,w) € VxV xV,
where

R(u,v,w) ZR”keu@J v) (", w)ep.

h,i,5,k
Let w”, vP and w, denote the pth components of the vectors u, v and w for
p=1,2,...,n, where these components are taken with respect to the basis
e, ey, ...,e,, so that

n n n
_§ P _ § D _ E D
u= ue,, V= v'e,, W = wrep,.
p=1 p=1 p=1

Then . ‘ ‘ '
(e u) =u', (g, v)y =1/, (5k,w> = w”,
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and therefore
R(u,v,w) = g Rhijkuzvjwk ey.
h7i7j7k“

Remark The Riemann curvature tensor of Riemannian geometry and Gen-
eral Relativity is a tensor of type (1, 3) on each tangent space of a Riemannian
or pseudo-Riemannian manifold. The Riemann curvature tensor on the tan-
gent space at any point of a Riemannian manifold thus determines a trilinear
map sending a triple of tangent vectors at that point to a single tangent vec-
tor.
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6 Vector Bundles

6.1 Smooth Vector Bundles

Definition Let £ and M be a smooth manifolds, let & be a non-negative
integer, and let mg: ' — M be a smooth surjective map. Suppose that, for
each point p of M, the subset E, of E consisting of those elements e of £ that
satisfy mg(e) = p has operations of addition and scalar multiplication defined
on it, with respect to which it is a real vector space of dimension k. Suppose
also that, given any point py of M, there exists an open set U containing py
and a smooth map ©: U x R¥ — E which satisfies the following conditions:

(i) the function ¢ maps U x R¥ diffeomorphically onto 75" (U);
(ii) 7 (p,v)) =p for all p € U and v € R¥;

(iii) for each p € U, the map t,: R¥ — FE, is an isomorphism of real vector
spaces, where

Yp(v) = ¥(p,v)
for all v € R”.

The smooth manifold £ and the smooth map ng: E — M then constitute a
smooth real vector bundle over M of rank k with total space E, base space M
and projection map ng: B — M.

Definition Let 75: E — M be a smooth vector bundle over a smooth man-
ifold M. Given any point p of M, the fibre of the vector bundle 7g: E — M
over the point p of M is the real vector space E,, where

E, =g ({p}) = {e € E: mp(e) = p}.

Definition Let mp: ' — M and 7. E — M be smooth vector bundles over

a smooth manifold M. A function pF — E between the total spaces of
these vector bundles is said to be an isomorphism of vector bundles over M
provided that it satisfies the following conditions:

(i) ¢: E — E is a diffeomorphism;

(ii) given any point p of M, the restriction of ¢ to the fibre £, of the vector
bundle 7g: 2 — M over the point p yields an isomorphism ¢,: £, — Ep
of vector spaces between £, and the corresponding fibre Ep of the vector
bundle 7z: E — M over the point p.
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Vector bundles mg: £ — M and mg: E — M are said to be 1somorphic as
vector bundles over M if there exists an isomorphism between them.

Let mg: £ — M and mg: E — M be smooth vector bundles over M, and
let the smooth map ¢: E — E be an isomorphism of vector bundles over M.
Then 75 0 ¢ = 7g.

Definition Let M be a smooth manifold. The product bundle of rank k over
M is the smooth vector bundle 7: E — M, where E = M xR* 7p(p,v) =p
for all p € M and v € R¥, and where, for each point p of M, the vector space
structure on the fibre 7' ({p}) is defined such that

AV, + uw, = (AV + uw),,

for all p € M, v,w € RF and A\, 1 € R, where v, = (p,v) for all p € M and
VeRk.

Definition A smooth vector bundle 7wr: £ — M of rank k& over a smooth
manifold M is said to be (topologically) trivial if it is isomorphic (as a smooth
vector bundle) to the product bundle of rank k over M.

Lemma 6.1 A smooth vector bundle mg: E — M over a smooth manifold M
is trivial if and only if there exists a diffeomorphism 1: M xR¥ — E such that
(¥ (p,v)) =p and ,: R¥ — E, is an isomorphism of real vector spaces for
all p € M, where E, = w5 ({p}) and ,(v) = ¢(p,v) for allp € M and v.

Proof This result follows immediately from the relevant definitions. |

Definition Let 7g: E — M be a smooth vector bundle over a smooth mani-
fold M, and let U be an open subset of M. Then 7gy: E|U — U is a smooth
vector bundle over U, where E|U = 7' (U) and 7gy = mg|m5' (U) (so that
E|U is the union of the fibres of mg: E — M that project to points of U,
and gy is the restriction of the projection map 7 to E|U). We refer to
this smooth vector bundle 7gy: E|U — U as the restriction of the vector
bundle mg: E — M to the open set U.

Lemma 6.2 Let mp: E — M be a smooth vector bundle over a smooth man-
ifold M, and let p € M. Then there exists an open set U in M, where p € U,
such that the restriction 7TE|U:E|U — U of this vector bundle to the open
set U 1s isomorphic to a product bundle over U, and is thus a trivial bundle
over U.
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Proof The result follows immediately from the relevant definitions and from
Lemma 6.1. |}

Definition Let 75: E — M be a smooth vector bundle over a smooth man-
ifold M, and let U be an open set in M. A continous map s: U — E is said
to be a continuous section of the vector bundle over U if mx(s(p)) = p for all
peU.

Lemma 6.3 A smooth vector bundle mg: E — M of rank r over a smooth
manifold M s trivial of and only if there exist smooth sections sy, Sz, ..., S,
of mg: B — M such that, for each point p of M, the elements

Sl(p)v 32(p)7 cee 737"(p)

of the fibre E, of the bundle over p constitute a basis of the real vector space
E,.
Proof Suppose that there exist smooth sections s, s9,...,s, of mg: B — M
such that, for all p € M, the elements s;(p), s2(p), ..., s,(p) of the fibre E,
of the vector bundle over the point p constitute a basis of the real vector
space F,. Define 1: M x R" — E so that

U(p, (v1,v2, ..., vk)) = v181(p) + v2sa(p) + -+ + V,5.(p)

for all p € M and (vq,vs,...,v,) € R". Then ¢¥: M x R" — F is a diffeomor-
phism. Moreover this diffeomorphism is an isomorphism of smooth vector
bundles over M, where we regard M x R" as a product bundle over M with
fibre R". Thus the smooth vector bundle 7g: £ — M is trivial.

Conversely if the smooth vector bundle mg: £ — M is trivial then there
exists a diffeomorphism ¢: M x R™ — E which is an isomorphism of smooth

vector bundles over M. Let Let s1,89,...,s, be the smooth sections of
mg: B — M defined such that

Sl(p) = w(pa(lvoﬂ"'70))7
52(p) = ¢(p7(0v1""70))7

se(p) = %(p,(0,1,...,7))

for all p € M. Then the elements s;(p), s2(p), ..., s.(p) of E, constitute a
basis of the real vector space £, at each point of M, as required. |}
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6.2 Patching Constructions

Let k be a non-negative integer. We denote by GL(k,R) the group of all non-
singular k£ X k matrices with real coefficients. This group is an open subset
of the real vector space consisting of all k£ x k matrices with real coefficients.
The operation of matrix multiplication determines a smooth function from
GL(k,R) x GL(k,R) to GL(k,R), and the operation of matrix inversion is
a smooth function from GL(k,R) to itself. Each element B of the group
GL(k,R) determines an isomorphism of real vector spaces from R to itself
that sends v € R* to Bv for all v € R¥. Moreover every vector space
isomorphism from R* to itself is determined in this fashion by some element
of the group GL(k,R).

Proposition 6.4 Let ng: E — M be a smooth vector bundle of rank k over
a smooth manifold M. Then there exists an open cover (U, : a € A) of M,
indezed by some indexing set A, and smooth maps

Va: Uy x RF = B,

and
ga,g: Ua N Ug — GL(k, R)

forall a, B € A, where these smooth maps satisfy the following properties:—
(i) 76(alp,v)) =p for allp € U, and v € R;
(ii) ¥o maps Uy x R¥ diffeomorphically onto 75 (Uy)

(iii) for each p € Uy, the map (¥a),:R¥ — E, is an isomorphism of real
vector spaces, where

(Ya)p(V) = Ya(p, V)
for all v € R¥;
(iv) ¥(p, V) = Ya(p, gas(P)V) for alla,B € A, p € U, NUs and v € R¥;
(V) Gap(p) = (o), (Ws), for all o, B € A and p € Uy N Ug;
(vi)
)

(p) =
Ja.a(p) is the identity matriz for all € A and p € Uy;
(p) =

(vil) gga(p wp(p)t foralla,f € A and p € U, N Up;

(Vill) Ga,58(P)98~(P) = Gar(p) for all o, B,y € A and p € U, NUg N U,,.
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Proof The existence of the open cover (U, : « € A) and the smooth func-
tions 1), satisfying conditions (i), (ii), (ii) follows immediately from the defi-
nition of a smooth vector bundle, and is a mere restatement of that definition.
Then functions g, s can be defined by the equation given in (v), and these
functions will satisfy propertites (iv), (vi), (vii) and (viii). [

Proposition 6.5 Let M be a smooth manifold, let E be a set, let mg: B — M
be a surjective function, let (U, : o € A) be collection of open sets in M
indezed by a set A, let k be a non-negative integer, and, for all a, 5 € A, let
Va: Uy x R¥ — E and g 53: Uy, N Uz — GL(k,R) be functions that satisfy the
following conditions:—

(1) UaeA UOC = M7
(ii) me(va(p,v)) =p foralla € A, p € U, and v € R¥;

(iil) the function 1y U, x R¥ — E maps U x R* bijectively onto 75" (Uy)
for all o € A;

(iv) Vs(p, V) = Va(D; 9o s(p)V) for all a, 3 € A, p € UyNUsz and v € R¥;
(v) the function g, 5:Us N Uz — GL(k,R) is smooth for all o, 3 € A.

Then there exists a topology and smooth structure on the set E with respect
to which E is a smooth manifold, ng: E — M is a smooth map, and the
function ¥y Uy x R¥ — E maps U, x R* diffeomorphically onto n5"(Uy,) for
all « € A. The smooth manifold E and the smooth map wg: E — M then
constitute a smooth vector bundle of rank k over the smooth manifold M .

Proof Let 7,5: (U, N Us) x R¥ — R¥ be defined for all a, 3 € A such that

Ta,8(D; V) = Gas(p)Vv

for all a,3 € A, p € U, NUs and v € R*. Then these functions 7,4 are
smooth functions, and ¥g(p, v) = VYo (p, Tap(p,v)) for all a, 5 € A, p € U, N
Us and v € R*. The result therefore follows on applying Proposition 4.6. [}

Corollary 6.6 Let M be a smooth manifold, let (U, : a € A) be an open
cover of M indexed by a set A, let k be a non-negative integer, and, for all
a,B € A, let gop: Uy, NUz — GL(k,R) be a smooth map that satisfy the
following conditions:—

(1) Gaa(p) is the identity matriz for all « € A and p € U,;
(i1) 95.a(p) = gaps(p)~" for all a, B € A and p € U, NUg;

77



(il1) Ga,3(P)98~(P) = Gar(p) for all o, B,y € A and p € U, NUg N U,

Then there exists a smooth vector bundle mp: £ — M over M and smooth
maps
Vo: Uy x R¥ - E

which satisfy the following properties:
(iv) me(¥a(p,v)) = p for allp € U, and v € R¥;
(V) Yo maps U, x RE diffeomorphically onto w5 (Uy);

(vi) for each p € U,, the map (¥,),:R¥ — E, is an isomorphism of real
vector spaces, where

(Ya)p(v) = Ya(p, V)
for all v e R";

(vii) ¥s(p,v) = Ya(p, gas(p)v) for al a,3 € A, p € U, NUgs and v € R*.

Proof Let

X ={(a,p,v) e Ax M xRF:p e U,}.
We define a relation ~ on X, where elements («,p,v) and (3,q,w) of X
satisfy (o, p,v) ~ (8, ¢, w) if and only if

p=qand w = gg.(p)v.

Conditions (i), (ii) and (iii) ensure that the relation ~ on X is reflexive,
symmetric and transitive, and is thus an equivalence relation. Let E be the
set of equivalence classes of elements of X under the equivalence relation ~.
We denote by [a, p, v] the equivalence class of an element (o, p,v) of X. The
definition of the equivalence relation ~ ensures that there is a well-defined
function 7g: E — M, where mg([a, p,v]) = p for all (o, p, v)inX.

Let ¥q(p,v) = [a,p,v] for all « € A, p € U, and v € R*¥. Then

Vsp,w) = [B,p, W] = [8,p,98,a(P)(9as(P)(W))] = [, P, ga,6(p) W]
= Ya(p, Jas(P)W)

for all p € U, NUs and w € R¥. Let E, = 7' ({p}) for all p € M. Then
Ep = {[a,p,v] rve Rk}

for all p € U,. Now if elements («, p,v1), (o, p,v2), (6,p, wy) and (3, p, wa)
are elements of X, and if o, p, vi| =[G, p, w1] and [« p, vo] = [, p, Wa] then

[, p, Mivi + Aava] = [B,p, MW1 + AW
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for all A, s € R, because

AMW1 4+ AowWo = A1 g8.a(P) (V1) + X298,4 (D) (V2) = 93,0 (D) (A1Vi + Aava).

It follows that, for all p € M, the fibre E, of mg: E — M over p can be given
the structure of a real vector space, where

)\l[aapv Vl] + )\2[04,]9, VQ] - [&7]97 )\lvl + AZVQ]

for all vi, vy € R¥ and A\;, Ay € R. The function that sends v € R to ¢, (p, v)
is then an isomorphism of vector spaces for all @« € A and p € U,. The
conditions of Proposition 6.5 are then satisfied by the smooth manifold M,
the set F, the surjective function 7g: B — M, the open cover (U, : a € A)
and the functions v, and g, g. The result therefore follows immediately from
that proposition. |

6.3 The Tangent Bundle of a Smooth Manifold

Proposition 6.7 Let M be a smooth manifold of dimension n, let TM be
the set whose elements are the tangent vectors to M, and let wpp;: TM —
M be the function that satisfies mrp(X,) = p for all points p of M and
for all tangent vectors X, belonging to the tangent space T,M to M at the
point p. Then the set T'M can be given a topology and smooth structure so
that it becomes a smooth manifold. The surjective function wpy;: TM — M
1s then a smooth map, and TM and mwpry:TM — M are the total space
and projection function of a smooth vector bundle over M. Moreover, given
any smooth coordinate system (x*, 2%, ..., a") for M, defined over some open
subset U of M, there is a smooth map ¢: U x R™ — T'M which maps U x R"
diffeomorphically onto w71, (U) and sends (p, (v',v%,...,v")) € U x R" to

the tangent vector 1 (p, (v',v%, ... v™)) determined by the following equation:

1,2 ny) — J
U(p, (v,v7, ... 0")) E v e

Jj=1

p

The inverse of the diffeomorphism from U x R™ to W;}V[(U) determined by ¢

is thus a smooth chart for T M which sends each tangent vector E v Ee
x
j=1

p
in w7y, (U) to the element

(2 (p), 2%(p), ..., z"(p),v", v?, ..., 0"

of R*™.  These requirements uniquely determine the topology and smooth
structure on the smooth manifold T M .
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Proof Let (z!,22,...,2") and (2',2%,...,2") be a smooth coordinate sys-
tems for M, defined over open subsets U and U respectively of M, where
Unv is non-empty. Let ¢: U x R* — T'M and 7,@: U x R" — TM be defined
such that

.0
1,2 n o i
U(p, (v, 0% .. v ))—Zv 57|
7j=1 p
and
. .0
1 2 n _ 7
U(p, (W w?, ... w")) = 577
j=1
Then
U(p, (v*,v? V")) = ivi i
Y Y Y Y j:1 ax‘]
) Y
= oxJ » otk
= &(p7 w17w27 7wn))7
where .
E_
v Z ozl |, Z
Jj=1 =
. Otk . . .
where (J(p))] = e for all p € UNU. Now the entries of the Jacobian

p
matrix J(p) depend smoothly on P. The result therefore follows on applying
Proposition 6.5. |}

Definition Let M be a smooth manifold. A smooth wvector field defined
over an open subset V' of M is a smooth section X:V — T'M of the tangent
bundle wpp: TM — M of M defined over the open set V.

6.4 Examples of Vector Bundles

Example Let S™ be the unit sphere centred on the origin in R™™!, so that

S"={peR"":|p| =1},
where |p|> = p.p, and let

E={(p,v) e R"™ x R""!: |p| =1 and p.v = 0}.
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Now R x R"*! is a (2n+2)-dimensional Euclidean space, and the subset £
of R™1 x R is a 2n-dimensional submanifold of this Euclidean space.
Indeed let (p,v) be an element of F. Then at last one of the components

DP1,P2, - - -, Pny1 18 non-zero. We may suppose, without loss of generality, that
Pni1 #0. Then p € E\ (H,y1 x R*™™), where

Hn+1 = {(.1'1,1'2, Ce 73:n+1) c RnJrl P Tpy1 = 0} s
and

E\ (Hypi x R™)

_ 2n+2 |
= {(xl,xz,...,xn+1,21,22,...,an) eR .
xn“:\/l—x%—---—m% and
, xlzl—l—x222+~~—|—xnzn}
n+l — — .
22
\/1 Ty Ty

There is a smooth surjective map ng: E — S™, where mg(p,v) = p for all
(p,v) € E. Then 7g: E — S™ is the projection map of a fibre bundle over
S™ with total space S™.

Let E, = 7' ({p}) for all p € S", and, for each element v of R"! for
which (p,v) € E, let us denote by v, the element of E, represented by the
ordered pair (p,v). We give the fibre £}, of mg: E'— S™ over the point p of
S™ the structure of a vector space, where

AVp + Wy = (AV + iw)p

for all v, wp € Ep, and for all real numbers A and p. Then the fibre bundle
mg: ' — S™ acquires thereby the structure of a smooth vector bundle over
S

Now an element v of R"*! represents the Cartesian components of a
vector in R™™!. This vector is tangent to the submanifold S™ of R"*! at
some point p of S™ if and only if p.v = 0, in which case (p,v) € E, and thus
vp € Ep. It follows that the tangent space 7T,S™ to S™ at the point p is natu-
rally isomorphic to the fibre £}, of the smooth vector bundle 7p: ' — S™ over
the point p. These natural isomorphisms between the fibres of the respective
bundles over S™ give rise to a smooth map ¢:TS™ — FE that is an isomor-
phism of vector bundles over S™. Thus the tangent bundle mpgn: T'S™ — S™
of the n-dimensional sphere S™ is naturally isomorphic to the smooth vector
bundle 7g: E — S™ constructed above.
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Example Consider the tangent bundle mpgi: T'ST — S* of the unit circle S*
in R?, where
St ={(z,y) e R*: 2® + 4> = 1}.

Let my: ST x R — S! be the projection map of the product bundle with total
space S! x R, fibre R and base space S*, where my((x,y),t) = (x,y) for all
(z,y) € S' and R, and where the vector space structure on each fibre of
is defined such that, for all (z,y) € S, the function from R to S' x R that
sends t € R to (z,y),t) is an isomorphism of one-dimensional real vector
spaces. Then there is an isomorphism ¢: S! x R — T'S' of smooth vector
bundles over S! that sends each element ((x,y),t) of S' x R to the tangent
vector to S' at the point (x,y) whose Cartesian components are (—yt, xt).
(Thus, for each point p of S', and for each real number ¢, the smooth map v
sends (p,t) € S' x R to the tangent vector at p obtained on rotating the
displacement vector p of the point anticlockwise through a right angle, and
then multiplying the resulting vector by the real number ¢ so as to obtain a
tangent vector to S' at the point p.) We have thus shown that the tangent
bundle mpg1: T'ST — St of the circle S! is isomorphic to a product bundle
over S', and is therefore (topologically) trivial.

Example We now construct a non-trivial smooth vector bundle of rank 1
over the circle S'. Let

S' = {(r,y) €RZ 2P 447 = 1),
let
M = {(z,y,u,v) € R*: 2% +9* = 1 and y(u® — v?) = 22uv},
and let my: M — S! be defined so that

WM(l.?yau? U) = (x7y>

for all (z,y,u,v) € M.
Let (z,y,u,v) € M. Then there exist real numbers 6, ¢ and z such that
x =cosf, y=sinf, u = zcosp and v = zsin . Then

y(u? —v?) = 2% sinf(cos® ¢ — sin® p) = z%sin H cos 2

and
2zuv = 22° cos f cos psin ¢ = 2% cos fsin 2,

and therefore
sin 6 cos 2 = cos 6 sin 2¢.
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It follows that 2 — 6 is an integer multiple of 2. Thus, given any point q
of M, there exist real numbers 6 and z such that

0 0
q=|cosf,sinf, zcos -, zsin — | .
2 2

It follows easily from this that mp;: M — S! is a smooth fibre bundle over the
circle. We can give each fibre of this map the structure of a real vector space
of dimension 1. This vector space structure is determined by the requirement
that, for all (z,y,u,v) € M, the function from R to M that sends z € R to
(7,9, zu, 2v) is a linear transformation from R to the fibre of my;: M — S*
over the point (z,y) of S'. Then my: M — S* carries the structure of a
smooth vector bundle of rank 1 over S*.

Let s:S' — M be a continuous section of my;: M — S'. Then s de-
termines a continuous real-valued function f:R — R characterized by the
property that

s(cosf,sinf) = (COS 0, sind, f(0) Cosg, f(0)sin g)

for all 8 € R. But then

s(cos @, sin f)
= s(cos(f + 2m),sin(0 + 27))

2 2
= (cos&, sin 6, f(9+27r)cos0+2 7?, f(«9—|—27r)sin0+2 W)

= (cos 0, sinf, —f(6 + 2m) Cosg7 —f(0 4 27) sin g)

and therefore f(6 4+ 2m) = —f(#) for all # € R. Thus if the function f on
R is not identically equal to zero then it assumes both positive and negative
values. It follows from the Intermediate Value Theorem that there exists
0y € R for which f(6y) = 0. But then s(pg) is the zero element of the fibre
My, of mp: M — St over the point py of S, where py = (cos 6y, sinf).
We have thus shown that the smooth vector bundle my;: M — S* has no
continuous sections that are non-zero throughout the circle S'. It follows
from this that the vector bundle my;: M — St is not isomorphic to a product
bundle, and is therefore (topologically) non-trivial.

Example The tangent bundle of a two-dimensional sphere is not isomorphic
to a product bundle.
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Let S? be the unit sphere in R3, where
S?={(z,y,2) eR®: 2® +9* + 2% = 1}.

The Hairy Ball Theorem (or Hairy Dog Theorem) in two dimensions states
that there is no continuous vector field on S? that is everywhere tangential to
S? and that is non-zero everywhere on S?. We now give a somewhat informal
proof of this theorem.

Given any point p of the unit sphere S, let n,, denote the outward normal
at the point p. If the point p has cartesian components (x,y, z) then the
vector n;, also has components (z,y, z).

Also, given any point p of the unit sphere S?, there exist angles 6 € [0, 7]
and ¢ € (—m, 7] such that

p = (sinf cos ¢, sinf sin ¢, cosf).

Let Qp denote the tangent vector at p that is the velocity vector 7,(¢) of
the smooth curve v5: R — S? at time ¢, where

v(t) = (sin@ cost, sinf sint, cosf)
for all £ € R. Then Qp is a tangent vector to the sphere at the point p, and
Qp = (—sind siny, sinf cosy, 0).

It follows that the map p — Q, is a smooth vector field, defined over 52,
which is everywhere tangential to S?. It is zero at the points (0,0,1) and
(0,0,—1) and is non-zero everywhere else. If one imagines the unit sphere
being rotated at constant speed about the z-axis, where the angle of rotation
(measured in radians) increases at unit speed, then Qp will represent the
velocity vector of a particle currently at the point p of the sphere.

Let p — V), be a continuous vector field on the sphere S? which is
everywhere tangential to the sphere. Let 6 be an angle satisfying 0 < 6 < ,
and let

Cop = (2,y,2) € 5% : 2 = cosb}.

Then v4(t) € Cp for all t € R. Suppose that V,, # 0 for all p € Cy. Then
there exists a continous strictly positive function fs: R — (0,4+00) and a
smooth function 15: R — R with the property that

Vo) = fo(t) (cosp(t) Quyry + sin g (t) nyy 0y X Quy(r))

for all ¢t € R. Then, for all ¢ € R, the quantity 1 (t) represents the angle
between the tangent vectors Q.,) and V., at the point v(t). Now the
function 1y is not necessarily periodic. But

Yo(t +2m) — Yp(t)
2
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is an integer for all real numbers ¢ (because vg(t + 2m) = 75 (¢) and therefore
Yy(t + 27) and 1y(t) both represent the angle between the vectors Q,, ) and
V., at the point y4(t)). Moreover the function mapping real number ¢ to
the integer (27)7'(¢y(t + 2m) — 1y(t)) is a continuous function of ¢. It is
therefore a constant function of . We conclude therefore that there is an
integer ng with the property that

Vg (t + 2m) = 1Pg(t) + 2mny.

It is not difficult to see that if V(oo 1) # 0 then ng = —1 for values of
the angle 0 that are sufficiently close to 0. (Think of the unit sphere as
representing the surface of the earth, where the point (0,0, 1) represents the
north pole. If we have a continuous tangential vector field V which is non-
zero at the north pole then the angle between this vector field V and the
velocity vector in the direction of motion would increase through an angle
of 27 in the clockwise direction as one traverses a sufficiently small circle of
latitude in the anticlockwise direction around the north pole.) Similarly if
V(0,0,—1) # 0 then ny = 1 for values of the angle ¢ that are sufficiently close
to .

Now if the tangential vector field V were non-zero over the entire sphere
then the function sending 6 to ng for all # € (0,7) would be a continuous
integer-valued function of 6 on the open interval (0,7). It would therefore
be a constant function of 6 on this open interval. But this constant function
would have the value —1 when 6 was sufficiently close to 0, and it would
have the value 1 when 6 was sufficiently close to m. This however is clearly
impossible. 'We conclude therefore that there cannot exist any continuous
vector field on the two-dimensional sphere S? that is everywhere tangential
to the sphere, and that is non-zero at every point of the sphere. This proves
the Hairy Ball Theorem for vector fields on a two-dimensional sphere.

It follows immediately from the Hairy Ball Theorem that the tangent
bundle of the two-dimensional sphere S? is not isomorphic to a product
bundle over the sphere, and is therefore a non-trivial vector bundle.

Example The tangent bundle of a three-dimensional sphere is isomorphic
to a product bundle.
Let S® be the unit sphere in R*, defined such that

§° = {(w,x,y,z) cR*: w2+x2+y2+22 = 1}
We note that S? is diffeomorphic to the group SU(2) of 2 x 2 unitary ma-

trices A satisfying det A = 1. A 2 x 2 matrix A with complex coefficients
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belongs to the group SU(2) if and only if A~! = AT and det A = 1. Let

Az(iZ),
where a,b,c,d € C. Then A € SU(2) if and only if ad — bc = 1 and
(0)=(00) () - (3 5)
—c a c d c d b '
It follows that A € SU(2) if and only if ad —bc = 1, d = @ and ¢ = —b.

Moreover if d = @ and ¢ = —b then ad — bc = |a|*> + |b|2. We conclude
therefore that

SU(2) = “ E ca,b € Cand |a]* + b* =1
—-b a

B w—1z —T—yY \ 3
- {(—iw—l—y Wt ir ).(w,x,y,z)ES}

= {w] —ixo, —yo, —izo, : (w,x,y,2) € 53} ,

aul al

where the identity matrix I and the Pauli matrices o,, o, and o, are defined
as follows:

_(10 (01 (0 =i /1 0
“\o1) " \10) %= \i o) %7\o0 —-1)

The group SU(2) is a smooth submanifold of the algebra M(C) of 2 x 2
matrices with complex coefficients, and the tangent space to SU(2) at the
identity matrix I is the 3-dimensional real subspace of M(C) spanned by
the matrices —io,, —io, and —io,. The elements of this subspace are the
2 x 2 skew-Hermitian matrices whose trace is zero. Let

XA = —iAO’m YA = —iAUy, ZA = —iAO'Z

for all A € SU(2). Then the matrices X4, Y4, Z4 consitute a basis of the
tangent space T4SU(2) to SU(2) at each A € SU(2). Indeed let v: (—¢,¢) —
SU(2) be a smooth curve in SU(2) satisfying v(0) = I, and let

7 (0) = o = —iuo, — o, —iwo, = uX;+vY; +wZ;,
=0

where u,v,w € R. Then the map sending t € (—¢,¢) to Ay(t) is a smooth
curve in SU(2), and the velocity vector to this smooth curve at time ¢ = 0 is
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uX 4+vYs+wZa. Thus the function that sends (A, (u,v,w)) € SU(2) xR3 to
the tangent vector uX s+vY +wZ 4 at A is an isomorphism of smooth vector
bundles over SU(2), and thus the tangent bundle of SU(2) is isomorphic to
a product bundle.

We have thus shown that the tangent bundle of the three-dimensional
sphere S3 is isomorphic to a product bundle.

6.5 Dual Bundles

Proposition 6.8 Let mg: E — M be a smooth vector bundle over a smooth
manifold M. For each point p of M let E} be the real vector space that is
the dual space of the fibre E, of mg: E — M over the point p. Let E* be the
disjoint union of the vector spaces Ep, and let wgs: E* — M be the surjective
Junction on E* that maps elements of E; to p for all points p of M. Then
the set E* can be given the structure of a smooth manifold so as to ensure
that g« E* — M 1is a smooth vector bundle over M satisfying the following
condition:

if sV — E and 7:V — E* are smooth sections of the vector
bundles mg: E — M and wg«: E* — M defined over some open
subset V' of M, then the function on V that sends p € V to
(1(p), s(p)) is a smooth real-valued function on M.

Proof It follows from Proposition 6.4 that there exists an open cover (U, :
a € A) of M, indexed by some indexing set A, and smooth maps

Vo: Uy x R¥ = B,

and
gaﬁ: Ua N Ug — GL(]C,R)

for all a, B € A, where these smooth maps satisfy the properties listed in the
statement of Proposition 6.4. In particular the maps 1, satisfy the following
properties:

(i) 75(Yalp,v)) = p for all p € U, and v € R;
(ii) o maps U, x R¥ diffeomorphically onto 75" (Uy)

(iii) for each p € U,, the map (¢,),:R¥ — E, is an isomorphism of real
vector spaces, where

(Va)p(V) = Ya(p, V)

for all v € R*.
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The smooth maps ¢, g: UsNUz — GL(k,R) are then defined so that g, s(p) =
(o), (13)p, and therefore satisfy the identity

Vs(p, v) = Ya(p, Ga,3(P)V)

for all o, € A, p € U,NUs and v € R*.

Let p be a point of the open set U, for some o € A. The isomorphism
(ta)p: RF — E, determines an isomorphism (xaq),: R** — E* of the corre-
sponding dual spaces, where (xa)p(A) = Ao (¥),)," for all linear functionals
A:R* — R on R*. These isomorphisms of dual spaces then determine func-
tions xo:Uq X RM™ — E*, where xo(p,A) = (Xa)p(A) = Ao (¥q)," for all
p € U, and \ € R¥*. Clearly 7p«(xa(p,\)) = p for all p € U,. Moreover the
function Yo: U, X R¥ — E* maps U x R¥ bijectively onto 75 (U,) for all
a € A. Then

Xs(@:A) = (xp)p(X) = Ao (¥g),*
Ao (p), " 0 (Ya)p © (Vo) = A0 gap(p) ™ 0 (),
= Xa(p Ao gap(p) ™).

for all p € U, NUs and X € R**.

Let GL(R**) be the group of invertible linear operators on the dual space
R¥* of R¥. We define the standard basis on R** to be the dual basis de-
termined by the standard basis on R¥. The jth element of this standard
basis on R** is then the linear functional (x1,s,...,x)) — z; on R*. Let
hap: Uy N Uz — GL(R*™) be defined so that has(p)A = X o gas(p)~" for
all A\ € R*™ and p € U, NUs. Then h,ps is a smooth function on U,: Us.
Indeed the matrix that represents h, g(p) with respect to the standard ba-
sis on R** is the inverse of the transpose of the matrix g, s(p). The open
cover (U, : o € A) and the smooth maps x, and h, g then satisfy conditions
(i)—(v) of Proposition 6.5, (with 1, and g, s replaced by x, and h, g in the
statements of those conditions), and therefore there exists a topology and
smooth structure on 7g-: E* — M. Each function y,: U, x R¥ — E* is then
a smooth map which maps is domain diffeomorphically onto 75+ (U,).

Now

((Xa)pA, (Ya)pv) = (N o (), ) (Wa)pv) = AMV) = (A, V)

forallp € U,, A\ € R* and v € R*. If V is an open set in M and if s: V — FE
and 7:V — E* are smooth sections of the vector bundles ng: E — M and

mg: B* — M defined over V then, for each o« € A there exist smooth
functions u: V N U, — R* and w: V N U, — R such that s(p) = ¢,(u(p))
and 7(p) = xp(w(p)) for all p € VN U,. Then

(1(p),s(p)) = (xp(w(p)), Yp(u(p))) = (w(p), ulp))
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It follows that the real-valued function on V' which sends p € V' to (7(p), s(p))
restricts to a smooth function on V N U, for all & € A, and is thus itself
smooth, as required. |

6.6 Some Results concerning Local Trivializations

Lemma 6.9 Let M be a smooth manifold, and, for each integer q between 1
and k, let mg,: B, — M be a smooth vector bundle over M. Then, gien any
point pg of M, there exists an open set V' such that pg € V' and the vector
bundle Tp,: E, — M s trivial over V' for q = 1,2,... k. There then exists
smooth functions 1,:V xR" — E,, where r, is the rank of the vector bundle
T, By — M, which satisfy the following properties:—

(i) mg,(Vq(p,vq)) =p for allp € V and v, € R"4;
(ii) vy maps V x R" diffeomorphically onto WEQI(UQ)

(iii) for each p € V' the map (g),: R — (E,), is an isomorphism of real
vector spaces, where

(Vq)p(Ve) = 1g(ps vy)
for all v, € R".

Proof Let (E,), = WE:({])}) forq=1,2,... kand for all p € M. Then each
fibre (E,), is a finite dimensional real vector space of dimension r,, where
rq denotes the rank of the corresponding vector bundle E,. Now given any
point p of M, there exist open sets V; in M for ¢ = 1,2,...,k, where py € V,
for all ¢, such that the smooth vector bundle 7, : £, — M is trivial over V.
Let V=ViNnVonN---NVg Then V is an open set in M, pg € V, and each
vector bundle 7 : £, — M is trivial over V. The restriction of each vector
bundle 7g, : E;, — M to this open set V' is then isomorphic to a product
bundle, and therefore there exist smooth maps 1,: V' x R™ — E, satisfying
the required properties. |

Lemma 6.10 Let M be a smooth manifold, and, for each integer q between
1 and k, let 7g,: By, — M be a smooth vector bundle over M. Then there
exists an open cover (U, : a € A) of M, indexed by some indexing set A,
and smooth maps

Vg a: Uy X R — E,

and
9g.05:Ua NUzg — GL(r4, R)

forq=1,2,... k and for all o, B € A, where these smooth maps satisfy the
following properties:—
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(i) 7g,(Vga(p,vq)) =p for allp € U, and v, € R"e;
(ii) g0 maps U, x R™ diffeomorphically onto ﬂqu(Ua)

(iii) for each p € U,, the map (Vg0)p: R — (E,), is an isomorphism of
real vector spaces, where

(Vg.a)p(Ve) = Yga(p; vy)
for all vy € R";

(iv) ¥y Ve) = Vqa (D, 9g.08(0)Vy) forq=1,2,...k and for alla, 5 € A,
peU,NUg and v, € R,

(V) Ggap(p) = (¢q,a);1(¢q,ﬁ)p forq=1,2,... .k and for all o, 3 € A and
pE Ua N Uﬂ.

Proof It follows from Lemma 6.9 that there exists an open cover (U, : a €
A) of M, indexed by some indexing set A, such that the smooth vector bundle
g, Bq — M is trivial over U, for ¢ = 1,2,...,k and for all « € A. There
then exist smooth maps

Vga: Uy X R — B,

where r, is the rank of the vector bundle 7 : £, — M, which satisfy prop-
erties (i), (ii), (ili). These functions 1,, then determine smooth maps
Gg0,8:Ua N Uz — GL(ry,R) that satisfy property (iv). Property (v) then
follows directly from properties (iii) and (iv). |

6.7 Direct Sums of Vector Bundles

k
Let € V, denote the direct sum
qg=1
VieVa®- - Vi
k
of real vector spaces Vi, Va, ..., Vi. The elements of @ V, may be represented
q=1

as ordered k-tuples (&1,&a,...,&), where , € V, for ¢ = 1,2,... k. Given
elements &, of V, for ¢ = 1,2,..., k, we shall denote by {; ©&{ @ - - - D&, the el-
k

ement of @ V, that is also represented by the ordered k-tuple (&1, &, - .., &k).

q=1

Then

(D& D)+ (Mm@ Om) = (1+m) D (Sat+m2) DD (§ + )
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and
Ma@Ld - @&) =) ® (M) @ & (A)

k

for all elements §; & @ --- B & and 1y B @ -+ - By of @V, and for all
q=1

A eR.

Proposition 6.11 Let M be a smooth manifold, and, for each integer q
between 1 and k, let mg,: Eq — M be a smooth vector bundle over M. For
each point p of M let E;B be the real vector space that is the direct sum of the
fibres of the given vector bundles over the point p, so that

E;e = @ (Eq)p = (E1)p @ (E2)p ® - - - (Ek)p,

where (E,), = qul({p}) forq=1,2,... k. Also let E® be the disjoint union
of the vector spaces ESB, and let Tge: E® — M be the surjective function,
defined on the disjoint union E® of all these vector spaces Ega, that sends
elements of E;B to p for all points p of M. Then E® can be given the structure
of a smooth manifold so as to ensure that mge: E® — M is a smooth vector
bundle over M satisfying the following condition:

if s:V — E% is a function mapping some open subset V of M
into E®, and if

s(p) = s1(p) ® s2(p) & - -~ @ si(p)

forallp € V, where s;: V. — E, is a smooth section of ng,: By —
M defined overV forq=1,2,...,k, then s:V — E® is a smooth
section of mge: E¥ — M defined over V.

Proof Let (U,:a € A) be an open cover of M, where the smooth vector
bundles 7g,: E;, — M are all trivial over each open set U,, and, for ¢ =
1,2,...,kand forall o, 8 € A, let ¢y 4: Uy xR — E, and gg03:UsNUg —
GL(ry,R) be smooth maps with the properties (i)-(v) listed in the statement

of Corollary 6.9.
k

Now the real vector space @ R is isomorphic to R™, where
g=1
m=ri+re+--+ 1.

k

Let v: @ R — R™ be an isomorphism between these vector spaces. Then
=1

q
the functions ,: U, X R™ — E® and g,4.4: Uy NUg — GL(r,,R) and the
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isomorphism v determine functions ¥?: U, x R™ — E% and gi’i 5:UaNUp —
GL(m,R) such that

wf(pv V(V1>V27 .o 7Vk)) = %,a(P, Vl) S ¢2,a(]7, VZ) DD ws,a(pa Vk)

and

9 s(@)W(vi,va, .., Vi) = v(91.0,8(0) (V1)) 92,0,8(P) (V2), - - -, Ga,8(P) (Vi)

k
for all o, € A, p € U, NUg and (vy,va,...,v;) € R Now, given
q=1

any v € R™, the function that sends p € U, x Up to g, 4(p)(v) is a smooth
function from U, x Us to R™. Tt follows that g 4 Us N Uz — GL(m, R) is a
smooth map on U, N Uz. Moreover

Ve (0, 95 5(0) (W (V1, Va2, ..., Vi)
= Y5 (0. v(91,05(P)(V1), 92.0,8(P) (V2), - - - G0, 3(D) (VE)))
= Y100 91,0,8(V1)) @ V24(P, 91,0,8(V2)) @ -+ © Vs a(P, 91,0,8(VK))
= V1P, V1) © Y25(p,v2) - @ Vs 5(p, Vi)
= wg(p, v(vi, Vo, ..., Vi),

k
for all o, 5 € A, p € U, NUgs and (vy, va,..., V) € @ R, and thus
q=1

Vg (0, V) = ¥y (g5 5(P) (V)

foralla, 5 € A,p € U,NUsz and v € R™. Thus the open cover (U, : a € A) of
M and the functions )F: Uy xR™ — E® and g7, 5: UaNUs — GL(m, R) satisfy
the conditions (i)—(v) in the statement of Proposition 6.5, and therefore there
is a topology and smooth structure on E® with respect to which E¥ is a
smooth manifold, 7ge: E® — M is a smooth vector bundle, and the function

k
V& U, x @R — E® maps its domain diffeomorphically onto ﬂgé(Ua) for

q=1
all « € A.
Let V be an open set in M, let s;:V — E, be a smooth section of
g, By — M for ¢ =1,2,... k, and let

s(p) = s1(p) @ s2(p) © - - © sk(p)

for all p € V. Then there are smooth functions f, ,: V NU, — R" such that
3¢(P) = Vg.0(D; fe.0(p)) for all p € VN U,. Let

Ja(p) = v(fra®), f2a(D), -, fra(p))
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forall p e VNU,. Then f,:V NU, — R™ is a smooth function on V N U,,
and

Ve (p, fap) = V20, v(fralD), f2a), - fraP)))
= Y1a® fr.a(D) ® V20D, f2u(P) D ® Via(p) fralp))
= s1(p) ® sa2(p) B -+ ® s1(p)
= s(p)

for all p € V N U,. Therefore the restriction of the section s:V — E® to
V N U, is smooth on V NU,. It follows that s:V — E? is a smooth section
of the smooth vector bundle mge: E¥ — M, as required. ||

Definition Let M be a smooth manifold, and, for each integer ¢ between 1

and k, let g, : £, — M be a smooth vector bundle over M. The direct sum

k
of the vector bundles Ey, Es, ..., Ej is denoted by € E,, or by

q=1
Ei®©E,@---® Ly,

and it is the smooth vector bundle mge: EY — M whose fibre over each
point p is the direct sum of the fibres of the given vector bundles over M,
where the topology and smooth structure on E® are as described in the
statement of Proposition 6.11

6.8 Tensor Products of Vector Bundles

Proposition 6.12 Let M be a smooth manifold, and, for each integer q
between 1 and k, let mp,: Eq — M be a smooth vector bundle over M. For
each point p of M let E]? be the real vector space that is the tensor product
of the fibres of the given vector bundles over the point p, so that

EZ(? - ® (Eq)p = (E1)p @ (E2)p ® - -+ (Ek)p,

q=1

where (E,), = qul({p}) forq=1,2,... k. Also let E® be the disjoint union
of the vector spaces Ef’, and let Tpe: E® — M be the surjective function,
defined on the disjoint union E® of all these vector spaces EE’, that sends
elements of EZ;@ to p for all points p of M. Then E® can be given the structure
of a smooth manifold so as to ensure that mge: E® — M is a smooth vector

bundle over M satisfying the following condition:
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if s:V — E® is a function mapping some open subset V of M
into E®, and if

s(p) = 51(p) @ s2(p) ® - - - @ sp(p)

forallp € V, where s;: V. — E, is a smooth section of mg,: Eq —
M defined overV forq=1,2,...,k, then s:V — E® is a smooth
section of Tge: E® — M defined over V.

Proof Let (U,:« € A) be an open cover of M, where the smooth vector
bundles 7g,: E, — M are all trivial over each open set U,, and, for ¢ =
1,2,...,kand forall o, 8 € A, let ¢y 0: Uy xR — E; and gg a5 UsNUg —
GL(r,, R) be smooth maps with the properties (i)—(v) listed in the statement
of Corollary 6.9. These smooth maps determine smooth maps

k
wff’:Ua X ®RT" — E®

q=1
and
k
92 5:Ua NUg — GL (@ qu)
q=1
k
for all a, 3 € A, where GL (@ R’"q) denotes the group of invertible linear
q=1

k
operators on the tensor product &) R"*. These smooth maps & and gfa 5(p)
q=1
are defined so that

¢§(p, VI®Ve® - @ V) =1U14(p, V1) @ Y2a(p,Ve) ® -+ @ Vs.0(p, Vi)
and

gig (P)(V1i®Ve® - - @ Vi) = g1,0,8(P) (V1) ® 92,0,8(P)(V2) @ - - - @ Gk, 5(P) (Vi)

for all o, € A, p € U, N Up and for all vy, vy,...,vg, where v, € R™ for
g=1,2,..., k. Moreover

V5 (0, v) = U3 (0, g4 5 (D) (V)

k
forall o, € A,pe U, NUsz and v € Q R™.

q=1
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Let eg1,€42,...,€4,, be a basis of the real vector space R™ for ¢ =
1,2,...,k, and let

J=(1,Jo,Jk) i Jg€Zand 1 < j, <r,forq=12,... k}.

Then these bases of vector spaces R together determine a basis for the
k

tensor product @ R consisting of all elements of this tensor product that
q=1
are of the form

€15, @ e€zj, @€y,

for some (j1,jo, ..., k) € J.

Let a, f € A. Then each function g, 3: Uy N U — GL(ry, R) is smooth,
and therefore there exist smooth real-valued functions (A,)%;,, where ¢ €
{1,2,...,k} and 1 <1, j, <1y, such that

Tq

Jaas(D)(€qs,) = Y _(Ag);, (p)eq,

ig=1

forq=1,2,..., k. Then

gig(p)(el,jl Resj, ® e )
k
= Z ((H(Aq)iqjq (p)) e, Vey;, @ -- 'ek,ik> .
(11,52, i) ET q=1
k
Thus the matrix that represents the linear operator gfi 5(17) on ® R with

q=1
respect to the basis

(el,jl ® ez, @ exj t (Ji,J2, -5 Jk) € J)
has entries that are products of the form H];:l(Aq)iq j.(p), where

(i1, %2, .- i), (J1,72,---,Jk) € J.

It follows that the entries of this matrix are smoooth functions of p as the
point p ranges over the open set U, N Uz in M. Thus the open cover (U, :
a € A) of M and the functions

k
U2 U x QR — E°

q=1
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and .
9% 5 Ua NUs — GL <® R“J)
qg=1
satisfy the conditions (i)—(v) in the statement of Proposition 6.5, and there-

fore there is a topology and smooth structure on E® with respect to which
E® is a smooth manifold, mge: E® — M is a smooth vector bundle, and

k
the function ¢2: U, x @ R"* — E® maps its domain diffeomorphically onto
q=1
Toe(Uy) for all a € A.
Let V' be an open set in M, let s,:V — E, be a smooth section of
g, By — M for g =1,2,... k, and let

s(p) = 51(p) @ s2(p) ® - - @ sp(p)

for all p € V. Then there are smooth real-valued functions fgf’a on VNU,
for j, =1,2,...,r, such that such that

W) = 3 )up.eus,)

Jq=1

for all p e VN U,. Then

k
sip) = Y ((H ;?a(p)) bjl,jg,...,jk(l?)> )

(J1,925--2Jk)ET q=1
where
R
bj17j2»~~-7jk (p) - dja (p7 €151 ® ©2,52 ® - 'ek,jk)

for all p € U, and (j1, jo2, ..., jr) € J. Now bj, j,. .. is a the smooth section
of Tpe: E® — M defined over U, for all (ji,j2,...,Jx) € J. It follows that
the section s: V' — E® of mge: E® — M is smooth, as required. |}

Definition Let M be a smooth manifold, and, for each integer ¢ between
1 and k, let mg,: £, — M be a smooth vector bundle over M. The tensor

k
product of the vector bundles Ey, Es, ..., Ej is denoted by @ E,, or by
q=1

E1® E®---® By,

and it is the smooth vector bundle mpe: E® — M whose fibre over each
point p is the tensor product of the fibres of the given vector bundles over
M, where the topology and smooth structure on E® are as described in the
statement of Proposition 6.12
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6.9 Pullbacks of Smooth Vector Bundles

Proposition 6.13 Let M and N be a smooth manifolds of dimensions m
and n respectively, let mg: & — N be a smooth vector bundle of rank k over
N, and let p: M — N be a smooth map. Let

¢'E={(p,e) e M x E:¢(p)=rg(e)}

and let Tpep: "B — M and ¢, " E — E be defined such that

Tep(p,e) =p and @.(p,e)=e

for all (p,e) € p*E. Then ¢*E is a smooth submanifold of M x E, the maps
Teep: ' — M and ¢,: o*E — E are smooth, and 7 «g: p*E — M is the
projection map of a smooth vector bundle of rank k over the manifold M
whose total space is ¢*F.

Proof Let py € M. Then there exists an open set U in N, where ¢(py) € U,
and a smooth map v: U x R¥ — E which satisfies the following properties:
7e(¥(q,v)) = q for all ¢ € U; the smooth map 1) maps its domain U x R¥
diffeomorphically onto 7' (U); for each ¢ € U, the function mapping v €
R* to (g, v) maps R¥ isomorphically onto the real vector space E,, where
B, = 75 ({a}).

We can choose the open set U so that it is the domain of a smooth
coordinate system (y',y?, ... ,y") for the smooth manifold N. Now ¢! (U)

is an open set in M, because ¢: M — N is continuous. Let (z!, 2%, ..., 2™)
be a smooth coordinate system on M whose domain W satisfies py € W and
W C o ().

Let €162, ..., &* be the smooth functions from 7' (U) — R defined such
that

gl(w<Qa (1)17’027 s ,Uk))) =1
for | = 1,2,...,k and for all ¢ € U and (v,v,...,v;) in R¥. Also let

g4, 7%, ..., 9" be the smooth functions on 7;'(U) defined such that §7 =
y/ omp for j =1,2,...,n. Then the smooth functions

g17g27"'7gn7€17527"'7£k

represent a smooth coordinate system throughout the open subset wgl(U ) of
the (n+k)-dimensional manifold E. Given (p,e) € W x7y (U), let T'(p, e) =
zi(p) for i = 1,2,....,m, ¥ (p,e) = §’(e) = y/(ng(e)) for j = 1,2,...,n and
El(p, e) =¢&l(e) for [ =1,2,...,k Then

1 — o —1 — =l =2 —k
xl’x27"'7x7y17y27"'7y’£7€""75
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are smooth functions on M x E which represent a smooth coordinate system
throughout the open subset W x 7' (U) of M x E. Let

Z(pe) =7 (p.e) — ' (p(p) =y (6(e) — v (o(p)).

Then the smooth functions

—1 =2 - 1.2 71 72 zk
T,T, ..., T 2, 25,28, &

also represent a smooth coordinate system throughout W x 7' (U), and

(@ E) N (W x 75 (U))
= {(p,e) e W x 7" (U) : 2/ (p,e) =0 for j =1,2,...,n}.

We conclude from this that ¢*(FE) is a smooth submanifold of M x FE.

Now each fibre (¢*E), of the surjective map m,-p: @*E — M may be
given the structure of a vector space so as to ensure that the smooth map
0.9 — E maps (¢*E), isomorphically onto that fibre isomorphically
onto the corresponding fibre E .y of mp: £ — N.

Let ¢: W x RF — ¢*E be the smooth map defined such that

Y(p,v) = (p,¥(e(p),v)

for all p € W and v € R¥. Then 7,-g(¢(p,v) = p. Morover 1 maps
W x RF diffemorp&ically onto W;*lE(W), and, for each p € W, the map
sending v € R* to ¢(p, v is an isomorphism of real vector spaces. It follows
that m,«p: *E — M is a smooth vector bundle over M, as required. |

Definition Let M and N be a smooth manifolds of dimension m and n
respectively, let mg: E — N be a smooth vector bundle of rank k& over N,
and let ¢: M — N be a smooth map. The pullback of the smooth vector
bundle 7g: E — N along the smooth map ¢: M — N is the smooth vector
bundle 7 «g: p*E — M over M with total space ¢*F, where

Top(p,e) =p

for all (p,e) € ¢*E. The smooth map ¢.:p*E — E defined such that
v«(p,e) = e for all (p,e) € *F is then a morphism of smooth vector bundles
which induces vector space isomorphisms between corresponding fibres and
which covers the smooth map ¢: M — N.
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6.10 The Cotangent Bundle of a Smooth Manifold

Let M be a smooth manifold, and let wpy: T'M — M be the tangent bundle
of M. This tangent bundle is a smooth vector bundle. There is a correspond-
ing dual bundle 7+ T*M — M whose fibre over a point p of M is the dual
space Ty M of the tangent space T, M at the point p. This dual space T; M
is referred to as the cotangent space at the point p: its elements are linear
functionals on the tangent space T, M.

Definition The cotangent bundle of a smooth manifold is the smooth vector
bundle 7wp«p: T*M — M that is the dual of the tangent bundle mpp;: TM —
M of M.

Let (2, 2%, ...,2") be a smooth coordinate system defined over an open
set U in M. Then the differentials

1 2 n
dr,, dx,, ..., dz;

of these coordinate functions constitute a basis of the cotangent space T; M
at each point p of U, where
P

. 0
k
<d"ffw 2" g
for j =1,2,...,n. Then there are diffeomorphisms

k=1

V:UXR" — 751,(U) and x:U x R* — 7.}, (U)

that are isomorphisms of vector bundles over U, where

1 .2 n _2
w(p,(’l),’l),...,/l])—j:1vj 8xj

p

and

X, (b1, b2, ..., by)) = ij dIi)
j=1

for all p € U, and for all elements (v, v? ... v") and (b1, b, ..., b,) of R".
Moreover

(xp(b1,bas - by, b (Vh 02 0™)) = Z bv’
j=1
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for all p € U, and for all elements (v*,v? ... v") and (b1, b, ...,b,) of R",
where

1[11,(111, vE L ,0") = (p, (vl, v ,0™))
and
Xp(bla b2) s 7bn) - X(p7 (bh b27 s 7bn))

The map that sends each point p of U to the differential d:cg; is a smooth
section of the cotangent bundle 7wy« T*M — M over U. We denote this
section by dz?. Then, given any section 7: V' — T*M of the cotangent bundle
over an open subset V' of U, there exist real-valued functions by, bo, ..., b, on
n
V such that 7 = ) b;da’. These functions by, by, ..., b, are uniquely deter-
j=1
mined, because the values of dx', dx?, ..., dz" at any point p of U constitute
a basis of the cotangent space T M. The section 7 is smooth on V' if and
only if its components by, by, ..., b, are smooth real-valued functions on V.

Definition Let M be a smooth manifold. A differential form of degree 1
on an open subset V' of M is a section 7: V' — T*M of the cotangent bundle
sy 1M — M defined over the open set V. Differential forms of degree 1
are also known as 1-forms.

Lemma 6.14 Let M be a smooth manifold, let X:V — TM be a smooth
vector field defined over an open subset V' of M and let :V — T*M be
a smooth differential form of degree 1 on V', and let X, and 7, denote the
values of X and 7 at each point p of V. Then the real-valued function on V'
that sends p € V to (1,, X,) is a smooth real-valued function on M.

Proof Let U be the domain of a smooth coordinate system on M. Then

there are uniquely-determined smooth real-valued functions v, v2, ..., v™ and
bi,bs, ..., b, on V NU such that
X = ivji. and T = ibkd:ck.

: ox7

Jj=1 k=1
Then

(1,.X) =7(X) = Zzka] <d$k, %> = Z;me}](;f = ijvj
j=1 k=1 j=1 k=1 j=1

on UNV, where (5;? is the Kronecker delta that is equal to 1 when k = j, but
is equal to 0 otherwise. Thus the function on V N U that sends points p of
V' N U to the corresponding value (7, X,,) of 7(X) is a sum of products of
smooth real-valued functions, and is thus itself smooth. |}
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6.11 Tensor Fields on Smooth Manifolds

Definition Let M be a smooth manifold. A tensor field of type (r,s) on M
is a section of the smooth vector bundle T®"M ® T*®*M that is the tensor
product

TM@TM®---TMT"MIT"M®---@T"M

of r copies of the tangent bundle T'M and s copies of the cotangent bundle
T*M of M.

Let M be a smooth manifold of dimension n, let (x!,2% ... 2") be a
smooth coordinate system defined over an open subset U of M, and let S be
a smooth tensor field of type (r,s) defined over U. Then there are smooth
real-valued functions Sﬁ{;jkf defined on U such that

S= > d o SR @@ @dat @ @ dat,
L Faveks i i
J15J2sJr=1k1,k2,....ks=1

Suppose that

n n
- 0 0
_ Loyl . ~m
S= > > Stassme 7o @10 ® 5o @AET @ - @ A3
I1,l2,...,lp=1 m1,ma2,....ms=1
where (2',2%,...,2") is another smooth coordinate system that is also de-
fined over the open set U. Then
g "L 0zt 0
oxdi — O ozt
fori=1,2,...,r, and
n
Ok
da* = — di™
or™
m=1

fori=1,2,...,s. It follows that

n n r Al s .
R Ie S — E : Z G2 ox" Ox™
mi,ma,...,Ms - k1,k2,‘..,ks asz 8:i‘mz .
1

J1,J2,-dr=1k1,ka,....ks=1 i=1 ;

1=

Example Let M be a smooth manifold of dimension n and let g be a smooth
tensor field of type (0,2) on M. Let (z!,2?,...,2") be a smooth local coordi-
nate system defined over some open subset U of M. Then there are smooth
functions g;; on U for 7,j = 1,2,...,n such that

g:ZZgijdxindxj

i=1 j=1
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over U. Let (2',2?%,...,2") be another smooth local coordinate system de-
fined over U, and let ¢* be smooth real-valued functions on U such that

n

= Zzn:gkl di* ® di'.

k=1 1=1
Then N n , ,
Gkl :Zzgij%%~
i=1 j=1
Example Let M be a smooth manifold of dimension n and let R be a

smooth tensor field of type (1,3) on M. Let (z!,22 ... ,2") be a smooth
local coordinate system defined over some open subset U of M. Then there

are smooth functions R’ on U for i, j, k,1 =1,2,...,n such that
Z 25 @ de? @ da* ® da!
,5,k,l=1

over U. Let (2',2?%,...,2") be another smooth local coordinate system de-
fined over U, and let R, be smooth real-valued functions on U such that

Z RbcdaA ® di’ ® di® ® di?

a,b,c,d=1
Then
Z Rl 8mj 83Ek 31’
bed = Ikl 8x’ ozt 0zc ozd
3,9,k l=1

6.12 Sections of Tensor Product Bundles Determined
by Multilinear Operators

Definition Let E, Ey, Es, ..., Ey be smooth vector bundles over a smooth
manifold M, and let @ be an operator that, over each open set U on
M, assigns to smooth sections sy, S, ... s, of the respective vector bundles
Ey, Es, . .., By, defined over U a smooth section Q(s1, S2, - - ., Sg) of the vector

bundle E defined over this open set U. The operator Q on sections is said
to be R-multilinear if

Q(asy + bty, S2,...,8,) = aQ(sy,Sa,...,S) +bQ(t1, 82, ..., k),
Q(Sl,a82+bt2,...,sk) = (lQ(Sl,SQ,...,Sk)+bQ(51,t2,...,Sk),
etc.

102



for all real numbers a and b, and for all sy, so, ..., s, and tq,ts, ..., tx, where
s;j and t; are smooth sections of the vector bundle £} defined over U for
i=1,2,... k.

Proposition 6.15 Let E,Ei, E,...,Ey be smooth vector bundles over a
smooth manifold M, and let Q be an operator that, over each open set U on
M, assigns to smooth sections sy, Ss,...S, of the respective vector bundles
Ey, Es, ..., Ey defined over U a smooth section Q(s1, Sa, ..., Sk) of the vector
bundle E defined over this open set U. Suppose that this operator Q on
sections is R-multilinear, so that

Qasy +bt1,s2,...,8,) = aQ(s1,89,...,5,) +bQ(t1,S2, ..., k),
Q(s1,as2+bta,...,sx) = aQ(sy,Sa,...,8) +0Q(s1,ta,...,5k),
etc.

for all real numbers a and b, and for all s1, Sa, ..., s, and tq1,ts, ..., tx, where
s;j and t; are smooth sections of the vector bundle E; defined over U for
j=1,2,... k. Suppose also that

Q(fis1, fas2, - fusk) = f1- for - fe Q(51,52, ..., 5k)

for all smooth functions fi, fa--- fi, on U, and for all s1, ss, ..., s, where s;
is a smooth section of the vector bundle E; defined over U for j =1,2,... k.
Then there exists a smooth section () of the vector bundle

E®RFEQE® --QFE;

such that
Q(s1,52,...,5K) = Q(s1, 2, .., 5k)

for all sy, s9,. .., s, where sj is a smooth section of the vector bundle E; over
U forj=1,2,... k.

Proof Let U be an open set in M over which each of the vector bundles
g By — M and WEZE — M is trivial, let e;1,€;52,...,¢€;,, be smooth
sections of 7g;: B — M for j =1,2,...,r;, where r; the rank of this vector
bundle, and where the values e;1(p),e;2(p), - . -, €, (p) of these sections at
each point p of U constitute a basis for the fibre (£}), of the vector bundle E;
over p, and let €1,€s,...,€, be smooth sections of WESE — M for j =
1,2,...,r;, where r the rank of this vector bundle, and where the values
é1(p), é2(p), . .., €x(p) of these sections at each point p of U constitute a basis
for the fibre E’p of the vector bundle E over p.
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Let s;:U — E; be a smooth section of 7;: F/; — M defined over U for
7 =12 ... k. Then there exist smooth real-valued functions fgj) on U for
=1,2,...,kand a; = 1,2,...,7; such that

75
_ .,
55 = E fi)€ia;-

a;j=1

.

Then

Q(Sl,SQ, RN ,Sk)

1 Tk
_ o, (z I 5 f)

a;=1 ap=1

= Z Z Qp elauf eQ&Qa"'af&I;ek,ak)

ar1=1 akl

= Z Zf L F Op(rans C2mr - Chia)

0611 Ozkl

Now there exist smooth functions Q5 .~ on U such that

Qp(el,ap €2,005 - - - 76/6,0% Z Qa17042, o ©

for all k-tuples (o, ag, ..., ax) of integers that satisfy 1 < o < r; for j =
1,2,...,k. Then

Qs1, 52, -, 5k ZZ ZQ%% O IE T

510611 Otkl

Let @ be the smooth section of the vector bundle
EQFEQE,® ---QF;

over U defined by the equation

Q= ZZ ZQam, a8 O E) B e @ -+ ®eg,

=1 a1=1 ap=1
where 5%;‘)7 5%].), . ,58) are the smooth sections of wp:: EY — M over U whose

values at each point p of U constitute the basis of the fibre (E7), over p that
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is the dual basis to the basis of (E;), determined by the values of the sections
€j1,€j2,- -, of E; at p. Then (g ),ej 8;) = 5ﬁ , where 5 denotes the
Kronecker delta, and thus

8(] SJ Zf(J 8(] eJﬂJ f(]%

Bj=1

for j=1,2,...,kand o; = 1,2,...,7;. It follows that

Q(Slu . 7S/€)
r r1
= Z Z tee Z Qal Q2,0 Ol 8?11)7 Sl) <€?22)7 S2> e <€?]::)7 8k> éﬂ
B=1 a1=1 ap=1
r r1
= > > - Z Q5 s SO - 105
pA=1 a1=1 ap=1
= Q(s1,...,5k),

as required. |}

Corollary 6.16 Let M be a smooth manifold, and let () be an operator on
M which, given smooth vector fields Xy, Xs, ..., Xy defined over an open
subset U of M, determines a smooth real-valued function Q(X1, Xo, ..., X)
on U. Suppose that this operator is R-multilinear, and that

Q<f1X17f2X27---7kak) :fl'f2"'ka<XlaX2;---an)

for all smooth real-valued functions fi, fo,..., fr and smooth vector fields
X1, Xs, ..., Xy defined over the open set U. Then there is a smooth tensor
field Q of type (0,s) on M such that

Q(X17X27 s an‘) - Q(X17X27 . 7Xk)

for all open subsets U of M and for all smooth vector fields X1, Xo, ..., Xy
defined over U.

Corollary 6.17 Let M be a smooth manifold, and let S be an operator on
M which, given smooth vector fields X1, Xs, ..., Xy defined over an open
subset U of M, determines a smooth vector field S(X1, X, ..., Xx) on U.
Suppose that this operator is R-multilinear, and that

S(hXy, foXo, o fi Xe)=fie for [i S(X1, Xo, .., XG)
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for all smooth real-valued functions fi, fo,..., fr and smooth vector fields
X1, Xo, ..., Xy defined over the open set U. Then there is a smooth tensor
field S of type (1,s) on M such that

S(X1, Xo, .., Xg) = 5(Xy, X, .o, Xk)

for all open subsets U of M and for all smooth vector fields X1, Xo, ..., Xy
defined over U.

6.13 Subbundles of Vector Bundles

Definition Let 7g: £ — M and 7p: ' — M be smooth vector bundles
over a smooth manifold M. We say that np: ' — M is a subbundle of
mg: B — M if F is a smooth submanifold of E, 7 = mg|F and, for each
p € M, the fibre F, of mp: ' — M over p is a vector subspace of the fibre E,
of mg: E— M over p.

Proposition 6.18 Let np: E — M be a smooth vector bundle over a smooth
manifold M, and, for allp € M, let I, be a vector subspace of the fibre E, of
ng: B — M over the point p, and let F' = UpeM F, and 7 be the restriction
wg|F of the projection map g to the submanifold F' of E. Suppose that,
given any point py of M there exists some open set U in M, where py € U,
and smooth sections sy, Sg, ..., S, of 1p: E— M defined over U such that the
values s1(p), s2(p), - .., sk(p) at each point p of U constitute a basis for the
subspace F, of E,. Then I is a smooth submanifold of E, and mp: ' — M
s a smooth vector bundle which is a subbundle of mg: £ — M.

Proof Let py € M. Then there exists an open set U in M, where p, € U, and
smooth sections si, Sa, ..., s of mg: E — M defined over U; such that the
values s1(p), s2(p), - . ., sk(p) at each point p of Uy constitute a basis for the
subspace I}, of E,. It then follows from basic linear algebra and the definition
of smooth vector bundles that there exist smooth sections sx,1,...,s,, of
mr — M defined over some open subset V5 of U, where r is the rank of the
vector bundle E, and where py € Us, such that the values

51(270), 52(]90), e 75k(p0), 5k+1(p0)7 cey Sv«(po)

of the smooth sections s1, s2,. .., s, at the point py constitute a basis of E,,.
The continuity of these smooth sections then ensures that there exists some
open subset U of U, where py € U, such that the values of the sections
51,82,...,5, at each point p of U constitute a basis of the fibre E, of the
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vector bundle E over the point p. Let ¢:U x R” — E be the smooth map
defined such that

Y(p, (v1,v2,...,0,)) = Zvo‘sa(p)

forallp € U and (vq, vy, ...,v,) € R". Then ¢ maps U x R" diffeomorphically
onto w5 (U). Moreover

k
PHEF) = ¢t {Zvasa(p):U17U2,...,UkER}

a=1
{(p, (v1,v2, ..., 0,0,...,0) : vy, v9,...,0p € R}.
Ux K,

where K is the k-dimensional vector subspace of R" defined such that
K ={(v1,v9,...,0,) ER" :vpyy =+ =0, =0}

Clearly ¢~*(F) is a smooth submanifold of the domain U x R" that is a
smooth product bundle over U. It follows from this that F' is a smooth
submanifold of the total space mg: E — M of the smooth vector bundle F,
and that if wp: F' — M is the restriction of the projection map 7np: £ — M
to the submanifold F' of E, then wp: F' — M is itself a smooth vector bundle
over M, as required. |
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7 Vector Fields, Lie Brackets and Flows

7.1 Smooth Vector Fields

Let M be a smooth manifold, and let 7wy : T'M — M be the tangent bundle
of M. The total space T'M of this tangent bundle is a smooth manifold, and
the fibre 773, ({p}) of this bundle over any point p on M is the tangent space
T,M to M at the point p. A vector field on M associates to each point p of
M a corresponding tangent vector X, to M at the point p. It is therefore
represented by a function X: M — T'M from M to T'M. Moreover the com-
position function 7wy 0 X: M — M is the identity map of the manifold M.
A vector field on M is thus represented by a section X: M — TM of the
tangent bundle 7wry,: TM — M of M.

Definition Let M be a smooth manifold. A continuous vector field X on M
is a continuous section X: M — T'M of the tangent bundle mpp;: TM — M
of M.

Definition Let M be a smooth manifold. A smooth vector field X on M is
a smooth section X: M — T'M of the tangent bundle 7py;: TM — M of M.

A subset U of a smooth manifold M is itself a smooth manifold, and
moreover the tangent bundle mpy: TU — U satisfies TU = 75,,(U) and
mry = mrp|TU. A vector field X on U is thus represented by a function
X:U — TM that satisfies mrp(X,) = p for all p € U, where X, denotes the
value of the function X at p. The vector field X on U is continuous if and
only if X:U — T'M is a continuous map. This vector field is smooth if and
only if X:U — T'M is a smooth map.

We now show that a vector field X on a smooth manifold is smooth if
and only if its components with respect to any smooth coordinate system are
smooth functions on the domain of that coordinate system.

Proposition 7.1 Let M be a smooth manifold of dimension n, let U be an
open set in M, and let x*, 22, ..., 2™ be a smooth coordinate system defined
over U. Let X be a vector field on U, and let v*,v?,...,v" be real-valued

functions such that
X = v —.
; oxJ

Then the vector field X is continuous on U if and only if the component
functions v', v, ..., v" are continuous. Also the vector field X is smooth on
U if and only if these component functions are smooth.
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Proof The smooth chart (U, ) for M whose components are the smooth
coordinate functions x!, 22, ..., 2" determines a corresponding smooth chart
(772,(U), @) for the smooth manifold TM, where ¢: 71, (U) — R?" is defined
such that

n

8 .0
9”(2“]@

Jj=1

) - (xl(p)7$2(p)’ tot ,x"(p),al,a2, e ’an)

for all p € U and a',a?,...,a™ € R (see Proposition 6.7). Now X:U — TM
is continuous if and only if $ o X:U — R?™ is continuous. Similarly X is
smooth if and only if p o X is smooth. Now

P(X,) = (2 (p), 2*(p), .., 2" (p), v' (), v* (p), - .., 0" ()
for all p € U. The result follows. |

Let M be a smooth manifold, let X:U — TM be a vector field defined
over an open set U in M, and let f:V — R be a continuously differentiable
real-valued function defined over an open set V' in M. We denote by X|f]
the real-valued function on U NV defined such that X|[f](p) = X,[f] for all
peUNV. Ifzt 22, ..., 2" is a smooth coordinate system defined over UNV,

and if .
x=% w2
, Oxd’
7j=1
throughout U NV, where the components v!,v?,...,v™ of X on are real-
valued functions on U NV, then
X = ]—..
N=3v"

J=1

Lemma 7.2 Let M be a smooth manifold, and let X be a vector field defined
over an open subset U of M. Then the vector field X is smooth if and only
if X[f] is a smooth function on U NV for any smooth real-valued function
f:V — R whose domain is an open set V in M.

Proof It follows directly from Proposition 7.1 that if the vector field X is
smooth, then so is X|[f] for all smooth real-valued functions f defined over
open sets in M.

Conversely suppose that X is a vector field on U with the property that
X|[f] is smooth for all smooth real-valued functions f defined over open sets
in M. Let (z!, 2%, ...,2") be a smooth local coordinate system for M defined
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over an open subset V' of M. Then X|[z7] is a smooth function on U NV
for j =1,2,...,n. Now there are real-valued functions v',v?%,...,v" defined

over U NV such that
n 9
X == J—,
jzl v oz’

on UNV. Then X[z7] = v/|UNV for j = 1,2,...,n. But X[27] is smooth for
j =1,2,...,n. Therefore the components v*,v%, dots,v™ of X are smooth
functions on U N V. It then follows from Proposition 7.1 that X:U — T'M
is a smooth map, and thus X is a smooth vector field on U, as required. |

Lemma 7.3 Let M be a smooth manifold, let U and V' be open sets in M,
and let X:U — TM be a vector field over U. Then

X[f-gl=X[f]-g+ [ X]g]

on UNYV for all smooth real-valued functions f and g defined over V', where
(f - 9)(w) = fv)g(v) for allv e V.

Proof This property of vector fields follows directly from the corresponding
property characterizing the action of tangent vectors on smooth functions. |}

7.2 Lie Brackets of Vector Fields

Proposition 7.4 Let M be a smooth manifold and let X and Y be smooth
vector fields on M. Then there is a well-defined smooth vector field [X,Y]
on M characterized by the property that

(X, Y]] = XY [f]] = YIXIS]
for all smooth real-valued functions f defined over open sets in M.
Proof Let L denote the linear differential operator on M that sends any

smooth real-valued function f defined over an open subset U of M to the
function L(f) on U, where

Let U be an open set in M. Then

L(ef + Bg) = aL(f) + BL(g)
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for all smooth real-valued functions f and g on U and for all real numbers o
and (. Also

X[Y[f-gll = X[Y[fl-g+f YIg))]
= X[Y[f]]-g+YI[f]- X[g] + X[f] - Y[g] + f - X[Y]g]],

and therefore

L(f-g9) = X[YI[f gl = Y[X[f -4l
= X[Y[f)l-g-YIX[fl-g+f - X[Y]gl] - - YV[X]g]]
= L(f)-g+ [ L(g)

for all smooth real-valued functions f and g on U, where f - ¢ denotes the
product of the functions f and g. Moreover if f and g are smooth real-
valued functions on U that satisfy f(w) = g(w) for all points w of some
open subset W of U, then L(f)(p) = L(g)(p) for all p € W. It follows from
the definition of tangent vectors that there is a well-defined tangent vector
[X,Y], at each point p of M which is characterized by the property that

(X Y[f] = X[V ] = Vo[ X[F]]

for all smooth real-valued functions defined around the point p. The function
sending each point p of M to the tangent vector [X,Y], is a vector field on
M. Moreover this vector field [ X, Y] is a smooth vector field since [ X, Y][f]
is a smooth function for all smooth real-valued functions f defined over open
subsets of M (see Lemma 7.2). The result follows. |}

Let X and Y be smooth vector fields defined over some open set U in a
smooth manifold M. Now U is itself a smooth manifold. It therefore follows
from Proposition 7.4 that there is a well-defined vector field [X,Y] on U
which is characterized by the property that [X,Y][f] = X[Y[f]] — Y[X[f]]
for all smooth real-valued functions f whose domain is an open subset of U.

Definition Let U be an open set in a smooth manifold M, and let X and
Y be smooth vector fields on U. The Lie Bracket [X,Y] of the vector fields
X and Y is the smooth vector field on U characterized by the property that

(X Y]] = XY[A] - YIX[S]]
for all smooth real-valued functions f whose domain is an open subset of U.

Lemma 7.5 (Jacobi Identity) Let X, Y and Z be smooth vector fields on a
smooth manifold M. Then

[X, Y], Z]+ Y, Z],X]|+[[Z,X],Y] =0
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Proof Let f be a smooth real-valued function defined over some open subset
of M. Then

X Y] 211 + (1Y, 2], XU+ (12, X YUS]
= X Y2 = 21X YU + Y, ZX01) = XY, 2171
+[2, XY = Y12, X][/]]
= X2l = YIX[ZI0] = 2IX[Y (/1] + 2V XS]]

= 0.
The result follows. |

Lemma 7.6 Let M be a smooth manifold. Let X and Y be smooth vector
fields on M and let f and g be smooth real-valued functions on M. Then

fX,gY]=(f-9IX, Y]+ (f  Xg)Y — (g-Y[f)X.

Proof Let h be a smooth real-valued function whose domain is some open
subset of M. Then

fX,gY][h] = f-X[g-Y[h]]—g-

The result follows. |}

Lemma 7.7 Let M be a smooth manifold of dimension n, let x*,z2, ..., 2"
be a smooth coordinate system defined over some open subset U of M, and
let X andY be smooth vector fields on U. Suppose that

n 9 n 9
X:;vla$i, Y:;wlaxi'

2

where v', V2, ... 0" and w',w

U. Then

, o, w™ are smooth real-valued functions on

" Ow' o'\ 0
= J_ 4
X¥1=2 2, (” oz " ij) oz

i=1 j=1
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Proof Let f be a smooth real-valued function on U. Then

xomn = x[gest] g

N AN AN )

= 23 (Vo (van) s (“55))
& Ow’ o'\ Of

B ZZG)J%_U}J&EJ) oxt’

since

n n

L 02 f
;Z(”]“’ —w axaaxz ZZ vt <awaxz &B"axj) =0

=1 j=1 i=1 j=1

The result follows. |

Corollary 7.8 Let M be a smooth manifold, and let x', 2%, ...,2" be a
smooth coordinate system defined over some open subset U of M. Then

o 0
[a—a—]—o
onU fori,7=1,2,...,n

Example Let X and Y be the smooth vector fields on R? defined by the
equations

0 0 0
X=0— Y = —y—
m@x+y8y yax +:an

and let f be a smooth real-valued function defined over an open set of R2.
We can calculate [X, Y][f] directly using the definition of the Lie bracket of
X and Y:

XY = XYL = YIX[f])

_”_q a_f}

9 of

IRRORH )
of 9 af of

+y3< yﬁy) 3_( +y3y)
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Y S T
Yor? ox Oy dy J Oy Ox Yor
f of L L, Pf 2 0f
+yx@+y£+y Ox Jy — Oy Ox _xyagf dy

=0

It follows that [X,Y] = 0. We can also calculate [X, Y] using the equation
established in Lemma 7.7:

9] 0 9] 0 0 9,
(X, Y] = <5U% +?Ja—y> [—y]% + (»T% +y8_y) [x](?_y

0
We now calculate {8_’ Y] . Using Lemma 7.6 and Corollary 7.8, we find
x
that

- otk
ox’ oxr’ 7 ox oy
o 0 0 0 o 0 0 0
:—y[a—x’%}wx [ ]
0
9
0
e

Now let (r,0) be polar coordinates on R?, so that

Similarly [8&, Y} =
)

xr=rcosf, y=rsind.

Then
0 Oxrd Oyod 0 .0 0 yo 1
ar orar Taray Ve TG T Tar T r ey T
9
Thus X = r—. Also
or
o drd oyo ) B 9
_ = — - = — —_— _— = =y — —:Y
90 " 00r " apay ~ Smlg, tresla = vg Ty,



It follows that

or’ 80
Also
0 0 0
- 00505—;8111989,
2 = s1n9£+1c089 0
oy or r 00’
Therefore
0 o 1. .0 0
{a—x,Yl = {COS@E—;SIHQ%, %]
0 0 o (1 . 0
= —%(COS@)E-F% <—sm0) 50
0
= 511105—1——0089%
_ 9
= 3

Definition Let M and N be smooth manifolds and let ¢: M — N be a
smooth map from M to N. Let X and X be smooth vector fields on M and
N respectively. We say that X and X are p-related if X[g] o ¢ = X[g o ¢]
for all smooth real-valued functions g on N.

Proposition 7.9 Let M and N be smooth manifolds and let o: M — N be
a smooth map from M to N. Let X andY" be smooth vector fields on M, and
let X and Y be smooth vector fields on N. Suppose that the vector fields X
and X are p-related and that the vector fields Y and Y are -related. Then
the vector fields [X,Y] and [X,Y] are also @-related.

Proof Let g be a smooth real-valued function defined over some open sub-
set V of N. Then the composition function g o ¢ is a smooth real-valued
function defined over an open set U in M, where U = ¢~ 1(V), and

(e[ X, Y] 9] = [X, Yplg 0 ]
for all p € U. But

(X, Ylglow = X[Y[gllo
— X[Y]g

The result follows. |}

o —Y[X[gllow=X[Y[g] o] - Y[X[g] o]
o] - Y[X

Jo

[—
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7.3 Integral Curves for Vector Fields

Definition Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M, and let v:I — M be a smooth curve
defined over some open interval I, and mapping that interval into the open

set U. The smooth curve v is said to be an integral curve for the vector

field X if
d

v'(t) = %v(t) = X,
forallt € I.

When represented in smooth local coordinates on any smooth manifold,
the components of any integral curve of a smooth vector field are solutions to
a system of ordinary differential equations determined by that vector field.
Indeed let a', 22 23,..., 2™ be smooth local coordinates defined over some
open set U in a smooth manifold M of dimension n, and let X be a smooth
vector field on U. Then there exist smooth functions u',u?, ..., u", defined
over the open set V' in R", where

V= {2'(p).2*(p),...a"(p) : p € U}

such that

X, =Y @ (). 20, B) o

p

for all p € U. Let y: I — M be a smooth curve in U, and let ¢/ (t) = 27 (y(t))
for j=1,2,...,n. Then
dy(t) _~dg’(t) 9
B Z dt  0xJ

j=1 ¥(t)

for all t € I. It follows the v: 1 — M is an integral curve for the vector
field X if and only if

dgj 13 1 n
O g 0).420)..... ")
for j =1,2,...,n. It follows from this that standard existence and unique-

ness theorems for solutions of systems of ordinary differential equations give
rise to existence and uniqueness theorems for integral curves of smooth vector
fields on any smooth manifold.

The following result is an immediate consequence of a standard existence
theorem for solutions of systems of ordinary differential equations.
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Theorem 7.10 Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M, and let p be a point of U. Then there
exists a smooth curve v:1 — M, defined over some open interval I, which
passes through the point p and is an integral curve for the vector field X .

The following result is an immediate consequence of a standard unique-
ness theorem for solutions of systems of ordinary differential equations.

Theorem 7.11 Let M be a smooth manifold, let X be a smooth vector field
defined over an open subset U of M, and let v,: Iy — M and ~9: I5 — M be
integral curves for X, defined over open intervals I and I, where Iy N1y # ().
Suppose that 1 (tg) = Y2(to) for some ty € [1NIy. Then yi|[1NIy = |1 NI;.

7.4 Local Flows

Let M be a smooth manifold, and let p: W x I — M be a continuous map,
where W is an open set in M and I be an open interval in R. Suppose that
the function from I to M that sends t € I to p(w,t) is differentiable. Given

Op(w,t)

w e W and t € I, we define to be the velocity vector to the curve

s+ @(w, s) at s = t. This velocity vector is an element of the tangent space
Tp(w,) to the smooth manifold M at the point ¢(w,?).

Definition Let X be a vector field defined over an open subset U of a smooth
manifold M and let p: W x I — M be a continuous map into M defined on
the product manifold W x I, where W is an open subset of U, I is an open
interval in R, and 0 € I. The function ¢ is said to be a local flow for the
vector field X if the following conditions are satisfied:

() oW x I) C U,
(i) ¢(w,0) =w for all w € W,
(iii) for each w € W, the map t — p(w,t) is differentiable on I and satisfies

Op(w, 1)
Tor e

for all (w,t) € W x 1.

Let X be a vector field defined over an open subset U of a smooth man-
ifold M and let o:W x I — M be a continuous map into M defined on
the product manifold W x I, where W is an open subset of U, I is an open
interval in R, and 0 € I. It follows from the definition of local flows that this
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map ¢ is a local flow for the vector field X if and only if, for every w € W,
the map t — ¢(w,t) is an integral curve for the vector field X, defined for
t € I, which passes through the point w at time ¢ = 0.

Example Let k be a real number. The function on R x R that sends (z,t)

to x + kt for all z,¢t € R is a (local) flow for the vector field l{:a2 on the real
x
line R. This follows from the fact that

% (x + kt) = kf'(x + kt)

for all smooth real-valued functions f defined over open subsets of R.
Example Let k be a real number. The function on R x R that sends (x, )

to zekt for all z,t € R is a (local) flow for the vector field kxa— on the real
T
line R. This follows from the fact that

% (:L‘ekt) — kxektf’(mekt)

for all smooth real-valued functions f defined over open subsets of R.
Example Let Q be the vector field on R? defined by the equation
0 0

Q:_y%—i_:pa—y’

where z,y, z are the standard Cartesian coordinates on R3. Let
p((@,y,2),t) = (2(t),9(1),2(@))
= (x cost —ysint,zsint + ycost, 2)

for all z,y,2,t € R. If f is a smooth real-valued function defined over some
open set in R? then

df ((t),9(t), 2(t)) _ O0f(e((zo, %0, 20), 1))
dt ot

= —f(xo cost — ypsint, zgsint + yo cost, z)

ot
) of
= —(xpsint + yo cos t)%(w((:cg, Yo, 20), 1))

o0
+ (xo cost — Yo smt)a—g(gO((SUo, Yo, Zo)y t))

. Of of

= =) Ee 9
(#(6),3(8),2(0)) Y (2,900,200

= Quw.am.2) ]

+ 2(t)
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It follows that, for each point (xg, 9o, z0) of R?, the smooth curve in R?® that
sends t € R to (z(t),y(t), 2(t)) is an integral curve for the vector field X, and
thus the map ¢:R?* x R — R is a (local) flow for the vector field @ on R?.
The vector field @ is tangential to the unit sphere S? at each point of S2,
where
S?={(z,y,2) ER®: 2® +¢y* + 2* =1},

since

0 0
Qr*+y* + 2% = —y%(yc2 +y?+2?) +xa—y(x2 +y?+27) = —2uyx +2xy = 0.
Moreover o(p,t) € S? for all p € S? and t € R. It follows that the restriction
of the smooth vector field Q) to the unit sphere S? is a vector field on S?, and
moreover this vector field generates a smooth flow on S? which is obtained
by restricting the domain of the smooth map ¢ to S? x R.

Example Let X be the vector field on the real line R given by

0
X ==
o ox
for all z € R. Let u.: I. — R be an integral curve for this vector field, defined
on some open interval I, in R, where 0 € I, and u.(0) = ¢. Then u, satisfies

the differential equation

du(t
udt( ) = u(t)? for all t € 1.
It follows on solving this differential equation that wu.(t) = ] ¢ ; for all
—c

t € I... Tt follows that I, C (—oo,c™!) when ¢ > 0, and I, C (¢™!, +00) when
c<0.

Let W be a bounded open set in the real line R. Choose ¢ > 0 small
enough to ensure that W C (—e~1, 7). Then there is a local flow ©: W x
(—e,e) — R for the vector field X defined over W x (—¢,¢), where

c
1—ct

90<C7 t) =

for all c € W and t € (—¢,¢). However it is not possible to define a flow for
this vector field whose domain is W x R.

The theory of systems of ordinary differential equations guarantees the
existence of smooth local flows for smooth vector fields on smooth manifolds.
This result is significantly harder to prove than the existence and uniqueness
theorems for integral curves of smooth vector fields. We state the result
below.
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Theorem 7.12 Let X be a smooth vector field defined over an open subset U
of a smooth manifold M and let p be a point of U. Then there exists an open
set W, where p € W and W C U, and a smooth local flow p: W X (—¢,¢) —
M for the smooth vector field X defined over W x (—e, ) for some positive
real number €.

Let X be a smooth vector field defined over an open subset U of a smooth
manifold M, and let p: W x (—¢,¢) — M be a smooth local flow for X defined
over the product manifold W x (—¢, ), where W is an open set in M and ¢ is
a positive real number. Then, for each point w of W the curve t — p(w,t) is
an integral curve for the vector field X. Moreover each t € (—¢, ) determines
a smooth map ¢;: W — M. We shall show that, for an appropriate choice of
W and €, the open set W is mapped by ¢, diffeomorphically onto an open
set in M.

Let M be a smooth manifold, let X be a smooth vector field defined over
some open subset U of M let p be a point of U, and let p: Uy X (—&1,61) — M
be a smooth local flow for the vector field X, where p € Uy, Uy C U, g1 > 0
and ¢(U; X (—e1,61)) C U. The continuity of this local flow then ensures
that there exist an open set U; in M and a positive real number €, such that
pE UQ, U; C Ul, 0 <ey<epand QO(UQ X (—82,52)) Cc Us.

Proposition 7.13 Let M be a smooth manifold, let X be a smooth vector
field defined over some open subset U of M, let p be a point of U, and let
©: Uy X (—e1,e1) — M be a smooth local flow for the vector field X, where
pe U, U CU,e >0 and p(U; X (—e1,e1)) C U. Also let Uy be an open
set in M, and let e5 be a positive real number such that p € Uy, Uy C Uy,
0 < ey <er and Uy X (—e2,62)) C Uy. Then ¢ (ps(u)) = wsre(u) for all
u € Uy and s,t € (—eq,€3).

Proof Let v = p(u) = ¢(u, s) for some v € Uy and s € (—ea,€3). Then

0
a@(uv s+ t) = X@(u,s—&-t)

for all t € (—e9,2). But

0
a (Ua t) = X@(th)

for all t € (—e9,69), and ¢(v,0) = v = @(u,s). It follows from the stan-
dard uniqueness theorem for solutions of differential equations determined
by smooth vector fields that

Psti(u) = (u, s + 1) = p(v,t) = p(p(u, 5),t) = eu(e(u, s)) = pi(ps(u))
for all t € (—&y,e9) (see Theorem 7.11). The result follows. |}

120



Corollary 7.14 Let M be a smooth manifold, let X be a smooth vector field
defined over some open subset U of M, and let p be a point of U. Then there
exists an open set W in M and a positive real number €, where p € W and
W C U and a smooth local flow o: W X (—e,e) — M such that the map ¢,
maps W diffeomorphically onto an open subset of U for allt € (—¢,¢€), where
or(w) = @(w,t) for allw € W and t € (—¢,¢).

Proof It follows from Proposition 7.13 that there exists an open set W
containing the point p and a positive real number ¢ such that p(w,s+t) € U
and s (w) = @s(pr(w)) for all w € W and s,t € (—¢,¢). Let s = —t. Then

-i(p(w)) = (W) = po(w) = w

for all w € W and t € (—¢,¢). It follows that, for all t € (—¢,¢), the smooth
map ¢; maps W diffeormorphically onto an open set (W) in M, and the
inverse of this diffeomorphism is given by the restriction to ¢; (W) of the map

LRV |

7.5 Global Flows

Definition Let X be a smooth vector field on a smooth manifold M. A
smooth function ¢: M x R — M is said to be a (global) flow for the vector
field X if ¢(p,0) = p for all p € M and

a (p> t) = X@(P,t)'
Let M be a smooth manifold. If M is noncompact then smooth vector
fields on M do not necessarily have global flows.

Corollary 7.15 Let X be a smooth vector field on a smooth manifold M.
Suppose there exists a global flow ¢: M — R — M for the vector field X.
Then ¢(@(p,s),t) = o(p,s+t) for allp € M and s,t € R. Thus ¢ 0 ps =
Ysit for all s,t € R, where p;: M — M 1is the smooth map that satisfies
wi(p) = p(p,t) for allp € M and t € R.

Proof This result follows directly from Proposition 7.13 since the conditions
in the statement of that proposition are satisfied on taking U = U; = Uy, = M
(where U, U; and U, are the open sets in M referred to in the statement of
that proposition) and on taking arbitrary large values of ¢; and €5 (where
O<eg<e 1). I
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Remark If a smooth manifold is noncompact then a smooth vector field
on the manifold is not guaranteed to have a global flow. Indeed there is is

no global flow for the vector field 2> — on the real line R, since an integral

ox

curves for this equation are of the form ¢ —

5 where ¢ is some real
—c
constant, and an integral curve of this form is not defined over the whole real

line unless ¢ = 0.

Let X be a smooth vector field on a smooth manifold M. Suppose that
there exists a global flow p: M x R — M for X. Let p;: M — M be defined
for all £ € R such that ¢;(p) = @(p,t) for all p € M and tR. Then each
smooth map p;: M — M is a diffeomorphism from M to itself with inverse
©_¢. The collection (g, : t € R) is referred to as the one-parameter group of
diffeomorphisms of M generated by the vector field X.

A subset K of a topological space is said to be compact if every open
cover of K has a finite subcover.

Theorem 7.16 Let X be a smooth vector field on a smooth manifold M.
Suppose that there exists a compact subset K of M such that X, = 0 whenever
p & K. Then there exists a smooth global flow ¢: M x R — M for the vector
field X. The smooth vector field X therefore generates a one-parameter group
(s 1 t € R) of diffeomorphisms of the smooth manifold M.

Proof The existence theorem for smooth local flows (Theorem 7.12) and the
compactness of the set K together ensure that there exists a finite collection

gDi:WZ‘X(—Ei,SZ')—)M (i:1,2,...,7“)

of local flows for the vector field X, where W; is an open set in M and ¢; is
a positive real number for ¢ = 1,2,...,r, and where

KcWiuWyU---UW,.
Let € be the minimum of €1, &9, - &,. Now ¢;(p,0) = p and

o - Xoipit)

forallp € W; and t € (—¢;,¢;). The uniqueness theorem for integral curves of
smooth vector fields (Theorem 7.11) then ensures the existence of a smooth
map

VM x (—e,e) > M
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such that

¥(p,t) = ¢i(p,t) whenever p € W; and t € (—¢,¢)

and
Y(p,t) = p whenever p ¢ K and t € (—¢,¢).
Moreover 81/)( t)
b,
at = X¢(P¢)

for all p € M and t € (—¢,¢). Choose some positive real number e satisfying
0 < e < 2e. Proposition 7.13 then ensures that ¢ (¢/(p, s),t) = ¥(p, s +1t) for
all p € M and s,t € [—e,e]. This is sufficient to ensure the existence of a
well-defined smooth function ¢: M x R — M, where

) = (p,t) whenever —e <t <e;

t
o(0,t) = W(p(p,t — ¢),e) whenever £ > ¢;
t) = Y(e(p,t+e), —e) whenever t < —e.

This smooth function ¢ is then a global flow for the smooth vector field X.
Thus if ¢;(p) = p(p,t) for all p € M and t € R then (¢; : t € R) is a one-
parameter group of diffeomorphisms of the smooth manifold M generated by
the vector field X. |}

Corollary 7.17 Let X be a smooth vector field on a compact smooth mani-
fold M. Then there exists a smooth global flow o: M x R — M for the vector
field X. The smooth vector field X therefore generates a one-parameter group
(o1 = t € R) of diffeomorphisms of the smooth manifold M.

Proof This result is a special case of Theorem 7.16. |

7.6 Lie Brackets and Commutativity of Flows

Proposition 7.18 Let X and Y be smooth vector fields on a smooth mani-
fold M, and let p: Wy x I — M be a smooth local flow for the vector field X,
where Wy is an open set in M, I is an open interval in the real line, and
0 € I. Let W be an open subset of Wy and let € be a positive real number,
where W and ¢ are chosen such that (—e,e) C I and

(W x (—e,¢e)) C Wy,

Then
0

a (QD—t*YsO(p,t)) = Ptx [Xa Y]so(p,t)
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forallp € W andt € (—e,¢), where ¢,(p) = w(p,t) for allp € W, and where

0 1
o (P-tYoip)) = lim = (Pt Yoirn) = P-xYo()) -

Proof Let W = W x (—¢,¢), and let 7: W — W denote the projection map
defined such that m(p,t) = p for all p € W and t € (—¢,¢). Also for each
t € (—e,¢), let 1;: W — W be the smooth map defined such that ¢;(p) = (p, t)
for all p € W. Then 7(14(p)) = p and (7 (p,t)) = (p,t) for all (p,1) € w.

Let Zy,1 be a tangent vector to W at (p, t). Then there exists a real
number ¢ and a tangent vector Z(p 0 € Tipp W such that Z(p ¢ is tangential
to the submanifold ¢,(W) of W and

0
Zpwy = Zipay + ¢ En

(pt

Now ¢; o 7 is the identity map on ¢(WW). It follows that

A

Z(p,t) = Lt*ﬂ-*ZA(p,t) = Lt*ﬂ-*Z(p,t)-

Also Z,p[t] = 0 and therefore Z, 5[t] = ¢. Therefore

0
Zpp) = s Zpay + Zpa [t BN
(p:t)
for all Zy,s € Tipy W
Now
0 o (pt)
P« | 5, = = Xy

for all (p,t) € W. It follows that the vector field 9 on W is g-related to the

ot
vector field X on M. ) )
There is a smooth vector field Y on W characterized by the property that

Yipt) = tixo—txYoo(p,t)-
for all (p,t) € W. Then
ﬂ-*i}(pvt) - SO_t*Yw(pﬂf)-

for all (p,t) € W. Also o¢(p) = ¢(1:(p)) for all p € W, and therefore

PiY(pt) = PuttsP—txYo(pt) = (9 0 tt)sP—txYo(pt) = PrxP—t:Yoo(pt) = Yop(prt)
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for all (p,t) € W. The vector field Y on W is therefore ¢-related to the
vector field Y on M.

P s 5
Now the vector fields g and Y on W are p-related to the vector fields
X and Y respectively on M. It follows from Proposition 7.9 that the vector

9 - 3
field [a, Y] on W is g-related to the vector field [X,Y] on M, and thus

v
Y| =XYoo
L(% (p:t) i
for all (p,t) € W. But
0 - 0 (- ot
Cyim=2(vi)-v|Z| =
[815’ } =7 (V14) [(%} .
since Y[t] = 0 throughout W. It follows that

l27 }7:| = LT s |:27 }7:| .
ot LA

Therefore

o 9 o -
X, Yl = 0 [—’ Y} P l‘? Y} s [_’ Y} |
ot LA ZL2

and thus 5
P —tx [X, Y]go(p,t) = T |:_a S}:| .
ot (p,t)

But if f is any smooth function defined over some open neighbourhood
of p in M then

0 -~ 0 -~ 0 -~
<dfp’ - [%Y]w) - {a— L@ {a””}w“ o

( olf o ) =Yoo [8(@2 ﬂ)]

*

Q3k<1

because




It follows that

0 -~ 0 ~ 0
P —tx [X7 Y]W(P,t) = T |:§7 Y:|( : = A (W*}/v(p,t)> = & (Spft*Ygo(p,t)) ;
p,t

as required. |

Remark Let the smooth manifold M, the vector fields X and Y, the smooth
local flow p: Wy x I — M for X, the open set W, the positive real number
and the maps ¢ W — M satisfy the conditions set out in the statement
of Proposition 7.18. Suppose also that the open set W is contained in the

domain of a smooth local coordinate system (z',22,...,2") for M. Then
there are smooth real-valued functions v, v?,... v on W x (—¢ X €) such
that

Pt op(pt) = ; vipt) 55
W =W x (—¢ x ¢), let n: IZV — W be the projection function that satisfies
m(p,t) = p for all (p,t) € W, and let i/ = 27 o for j = 1,2,...,n. Then
(z4,7% ... ;" t) is a smooth coordinate system defined throughout W. The
vector field Y on W employed in the proof of Proposition 7.18 is defined so
that

p

N no 0
}/(P,t) = Zvj (p7 t) 8.%]
j=1

g 0
[a’@}—o

for j = 1,2,...,n (see Corollary 7.8). It therefore follows from Lemma 7.6
(or from Lemma 7.7) that

(pst)

A L
ot — Ot 017
j=1

o : 0
The proof of Proposition 7.18 also exploits the fact that the vector fields e
and Y on W are -related to the vector fields X and Y on M, and therefore

9 -

(as shown in Proposition 7.9) {— Y} is ¢-related to the Lie bracket [X,Y].

ot’
It follows that

— d(v(p,t)) 0
Ot X, Yooy = Z ot oxI

J=1

p
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0 [ )
= — J —
0

)

thus establishing the identity in the statement of Proposition 7.9.

=1

ot (90—t*y<p(p7t)) ;

Corollary 7.19 Let X and Y be smooth vector fields on a smooth mani-
fold M, and let : W x I — M be a smooth local flow for the vector field X,
where W is an open set in M, I is an open interval in the real line, and

0e€l. Then 5
ot (‘P—t*Y:p(p,t))

- [X7 Y]P

t=0
for all p € W, where pi(p) = @(p,t) for all p € W, and where

0 o1
ot (Sp—t*yso(p,t)) = ,llli% h (w—h*yso(p,h) - Y};) :

t=0

Proof Given any point p of W, we can find some open neighbourhood Wj
of p and some positive real number € such that (—¢,¢) C I and

e(Wy x (—¢g,¢e)) C W.
The result therefore follows directly from Proposition 7.18. |

Remark Let the smooth manifold M, the vector fields X and Y, the smooth
local flow ¢: Wy x I — M for X, the open set W, the positive real number ¢
and the maps p;: W — M satisfy the conditions set out in the statement of
Proposition 7.18. Then

0

1
ot (So—t*Yv(pvt)) = ,lg% h (90*(1‘/+h)*Y30(p,t+h) - Sp—t*Yw(p,t))

1
= }llil(l) E (@—t*%@—h*ycp(p,t-i-h) - @—t*Yw(pvt))

1
= Ptz (,1113% 7 (SO—h*Yw(so(p,t)yh) - Yw(p,t))) :

It follows that if the identity in the statement of Corollary 7.19 has been
established (e.g., by some alternative proof to that given above), then the
result of Proposition 7.18 may be deduced from it.

127



Corollary 7.20 Let X and Y be smooth vector fields on a smooth mani-
fold M, and let o: Wy x I — M be a smooth local flow for the vector field X,
where Wy is an open set in M, I is an open interval in the real line, and
0 €. Let W be an open subset of Wy and let € be a positive real number,
where W and ¢ are chosen such that (—e,¢) C I and

(W x (—e,¢e)) C Wy,
Suppose that [X,Y] =0 on M. Then
Yown = Py
forallp € W and t € (—¢,¢), where p(p) = p(p,t) for allp € W.
Proof This result follows immediately from Proposition 7.18. |}

Corollary 7.21 Let X and Y be smooth vector fields on a smooth mani-
fold M, let pg be a point of M, and let ox: W x I — M and py: WxI—M
be smooth local flow for the vector fields X and Y respectively, where W and
W are open sets in M, I and I are open intervals in the real line, pg € WﬂW
0eland0 € I, and let ox . (p) = goX(p, s) for all (p,s) € W x I and
oyvi(p) = @y (p,t) for all (p,t) € W x I. Suppose that [X,Y] = 0. Then
there exists some open set Wy and some positive real number £ such that
pe Wy, WoCWnN W, Yyt 0 px,s and px s o py, are defined throughout W
for all s,t € (—¢,¢), and

px,s(pvi(p)) = pyvi(px,s(p))

for allp € Wy and s,t € (—¢,¢).
Proof It follows from Corollary 7.20 that there exists an open set W; and
a positive real number £, such that Y, ¢, = @x Y, for all p € W; and

s € (—e1,€1). Let 421, — M be an integral curve for the vector field Y,
where I, is an open interval in R and v(I,) C Wj. Then

0 d~(t)
a(sﬂx,s(v(f))) = @X,s*w = wx,s*yw(t) = wa,s(v(t))-

It follows that 4:1, — M is also an integral curve for the vector field Y,
where 4(t) = px,s(7(t)) for all t € I,. 0 € I, and y(0) = p then

exs(evie(p)) = ex,s(evi(7(0))) = oxs(v(t)) =)
= @Y,t(ﬁ/(o)) = @Y,t(@X,sW(O)))
= pvilpxs(p),

as required. |
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Theorem 7.22 Let X, X5, ..., X, be smooth vector fields on a smooth man-
ifold M. Suppose that

(Xi, X;] =0 fori,j=1,2,...,r
Then, given any point pg of M, there exists a smooth map
F:W x (—e,e)" — M,

defined over W x (—e, )", where W is an open neighbourhood of py in M
and € > 0, such that

0
%F(pv t17 t27 cee atT) = (Xi)F(p,tl,tz,...,tr)

forallpe W, t'¢? ... t" € (—e,e) and i € {1,2,...,7}.

Proof There exists an open set W;, where p, € Wy, a positive real num-
ber €1, and smooth maps px,: Wi x (—e1,e1) — M such that ¢x; is a smooth
local flow for the vector field X; for i =1,2,...,r. Then

0
a@Xi (p7 t) = (Xi)soxi(p,t)

for all p € Wy and t € (—e1,¢1). Let ¢x,+(p) = ¢x,(p,t) for all p € W, and
t € (—e1,e1).
Let us define
Fl(patl) = ¥xy (pa tl)

for all p € Wy and t! € (—e1,&1). Then

0

gFl(Z% tl) = (XI)F1(1?¢1)

for all w € Wy and t' € (—¢y,&).

Suppose that, for some integer k satisfying 1 < k < r there exists an open
set Wy_1, where py € Wy_1 and Wy_; C Wi, a positive real number ¢;_,
where 0 < g,_1 < £; and a smooth map

. k—1
Fk—l- Wk—l X (_5k—175k—1) — M

with the property that

0 -
%Fk_ﬂp, tl, t2, PN ,tk 1) = (Xi)Fk_l(p,tl,tQ,...,tk—l)
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for all w € Wy, 1,2, t*" 1 € (—gp_1,6p1) and i € {1,2,...,k — 1}.
Choose an open set W), and a positive number ¢, such that po € Wy, Wy C
Wk—l O<ep<ep1<e and

Fk—l(Wk X (—€k_1,€k)k_1) C Wl.

Define
Fi(p,t' %, 1%) = ox, e (Fra(p £, 2%, 87 71)

for all p € Wy, and t1,¢%,...,tF € (—ep,ex). Then t — Fy(p, t1, 1%, ... %71 1)
is an integral curve for the vector field X}, and therefore

0
%Fk(pa tlv tQa s 7tk> = (Xk‘)Fk(p,tl,tz,...,tk)'

If © < k then it follows from Corollary 7.20 that

for all g € W, and t € (—&y, ex). Therefore

0

0 k k—
%Fk(p,tl,tQ,...,t) = %(@Xk’tk(Fk_l(p,tl,tQ,...,t )

0 _
= PXp,thx (% (Fk’—l(p7 t17 t27 s 7tk 1)))

= Px; thx ((X'L')Fk,l(p,tl,ﬁ,...,tk*l))
= (Xy)

P, ok (Fro1 (Dt 2,85 71))

- A k(DL ,17,..., °
(Xi) Fu(pr e2,...0)

The result therefore follows by induction on k. |}

Remark The function F' constructed in the proof of Theorem 7.22 can be
represented in the form

F(p, tl, t2, e ,tr> p— (@Xr,t’" (e) QOXT»,l,t’"fl O---0 ()OX27t2 (e) SOXl,tl)(p)

(employing the notation in the statement and proof of that theorem), where
the point p lies within some sufficiently small open neighbourhood W of the
point pg, and where t1, 2, ... " have absolute values small enough to ensure
that the map represented by the above formula is well-defined. The result
of Corollary 7.21 may be used in place of Corollary 7.20 to verify that this
function F’ satisfies the required differential equations. Indeed Corollary 7.21
ensures that, if the absolute values of t!, 2, ..., ¢" are sufficiently small, then

130



the order in which the maps ¢y, ; are composed is immaterial, and therefore,
given any value of ¢ between 1 and r, we can write

F(p,t' 6%, . t") = ox, (G, th, .. 7 8T L))

for some smooth function G that does not involve the real variable t*. Tt
follows directly from this that

0
%F(]% t17 t27 o 7tr) = (Xi)F(p,tl,t2,...,tT)a

as required.

Theorem 7.23 Let X, X5, ..., X, be smooth vector fields on a smooth man-
ifold M of dimension n. Suppose that

[(X:, X;] =0 fori,j=1,2,...,n.

Suppose also that the values of these vector fields at some point py of M
constitute a basis of the tangent space T, M to M at py. Then there exists

a smooth coordinate system (x', 2% ... 2"), defined throughout some open
netghbourhood W of the point pgy, such that
0
Xi - -
oxt

on W fori=1,2,...,n.
Proof It follows from Theorem 7.22 that there exists a smooth map
F:Wy x (—g,e)" — M,

defined over Wy x (—¢, )™, where Wy is an open neighbourhood of py in M
and € > 0, such that

9 n
%Fq)a t17 t27 v 7t ) = (X’L')F(p,tl,tQ,.,.,t”)

for all p € Wy, t1,t%,...,t" € (—e,e) and i € {1,2,...,n}. Define
Y (—e,e)" = M
such that
Yttt = F(po, t', 2, ... ")
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for all t1,#% ... t" € (—&,¢). Then

0
o2

for i = 1,2,...,n. Now the values (X1)p,, (X2)py,-- -, (Xo)p, Of the vector
fields X1, X5, ..., X,, at the point py constitute a basis of the tangent space
Ty, M. Therefore the derivative ,:Toy,. 0R" — T, M of the map v at
(0,0,...,0) is an isomorphism. It follows from the Inverse Function Theorem
of multivariable real analysis that there exists an open neighbourhood of the
origin in (—e&,e)" that is mapped diffeomorphically onto an open set W in
M. The inverse p: W — R" of this diffeomorphism is then a smooth chart
on M, and

8 n
> = % (w(tl, t2, . e ,t )) == (Xi)¢(t1,t2 77777 t")
(t1,82,...,t™)

0

Pi(X;) = e
throughout W for i = 1,2, ... ,n. Let o(p) = (z'(p),2*(p),...,x"(p)) for all
p € W. Then (2!, 22,...,2") is a smooth coordinate system defined over W,

and it follows from the definition of ; that
x’L

)y o
P \or )~ ot

0
for i =1,2,...,n. Therefore X; = pi throughout W for ¢« = 1,2,...,n, as
:L»Z

required. |

Theorem 7.24 Let X1, Xs, ..., X, be smooth vector fields on a smooth man-
ifold M of dimension n. Suppose that

[(Xi, X;] =0 fori,j=1,2,...,r

Suppose also that the values of these vector fields at some point py of M are
linearly independent elements of the tangent space T, M. Then there exists

a smooth coordinate system (x' 2% ... 2"), defined throughout some open
neighbourhood W of the point pgy, such that
0
X, = —
ox?

on W fori=1,2,...,r.
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Proof It follows from Theorem 7.22 that there exists a smooth map
F:Wy x (—e,e)" — M,

defined over Wy x (—¢,¢)", where W is an open neighbourhood of pg in M
and € > 0, such that

0 .
%F(Z% tlv t27 cee 7t ) = (Xi)F(p,tl,t2,...,t”)

for all p € Wy, t1,1%,... 1" € (—e,e) and i € {1,2,...,7}.
Now there exists a diffeomorphism G: U — M, where U is an open neigh-
bourhood of the origin 0 in R™, such that G(0) = p, and

0
G| =
ot'|,
(This diffeomorphism may be constructed as the inverse of a smooth chart

around pg, composed with an appropriate non-singular linear transformation
of R*.) Then the vectors

0
o(2

constitute a basis of the tangent space T),,M to M at py. Define

) = (Xj)p, fori=1,2,... r

0) (i=1,2,...,n)

H(th 2, ..., t") = F(G(0,0,...,0,t" . ™), ¢4 12, ... 17)

for all points (¢',#2 ... ") that lie within a sufficiently small neighbourhood
Uy of the origin in R™.

Given u € Uy, where u = (uy,u?, ..., u") and given an integer 7 satisfying
1 <i<mn,let A\y;: R — R” be defined such that the ith component of A, ;(t)
is u' + ¢ and the jth component is v’/ for j # i. Thus ¢t — A\,;(f) is a path
which follows a straight line parallel to the ith coordinate axis, and passes
through the point u at time ¢ = 0.

Now if 1 <7 <r and if u € U, then

H(M\ui(t) = F(G0,0,u" oo u™),uty w8, u")

and therefore the curve ¢ — H(Ay;(t)) is an integral curve for the vector
field X;. It follows that

0\ OH| _ dH(\y)
(] -] <

o dt

u
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fori=1,2,...,r. In particular

0 0
H, (@ 0) = (Xi)p, = G (%

for i =1,2,...,r. Moreover if i > r then H(Xo;(t)) = G(Xo,i(t)).

ati |, ati |,

and thus the derivatives H, and G, of the maps H and G coincide at 0, and
thus the derivative H,:ToR" — T, M of the map H at 0 is an isomorphism
of vector spaces. It follows from the Inverse Function Theorem that H maps
some open neighbourhood U of 0 in R™ diffeomorphically onto some open
neighbourhood W of pyin M. Let 2!, 22, ..., 2™ be the Cartesian components
of the inverse of the diffeomorphism from U to V determined by H, so that

u = (z'(H(n)),z' (H(w)),...,z"(H(u)))
for all u € U. Then

(2l )-2
ot |, or’ Hu
fori=1,2,...,n. But
0 oOH dH (Auy)
Ho\ 57 = : = — = X¢ u
(atl u) atl u dt t=0 ( )H( :

0

forv=1,2,...,r. It follows that X; = Ee throughout the open set W for
xZ

i=1,2,....,7. |}

Example Let X and Y be the smooth vector fields on R? defined by the
equations

0 0
X = asz£+yz——(m2+y2)—

ox oy 0z
0 0
Y = —ya—x—f—l’a—y

A short computation shows that [X, Y] = 0. Moreover these vector fields are
linearly independent throughout the complement of the z-axis. It transpires

that X = 0 and Y = e where (u, @, r) is the smooth coordinate system
u 2
on the complement of {(z,y,2) : y =0 and = < 0} defined such that
2re"™ cos ¢ 2re™ sin g r(l —e*)
:L‘ = —7 y = —7 Z = T o
1 + eQTu 1 + leu 1 + €2ru
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Further calculation shows that, in the (u, ¢, r) coordinate system,
0 r  xz r—z\ 0 y Yz r—zy\ 0
Y e i | il LA Al il
or <r+2r2 Ogr—i—z) 8x+<r+2r2 Ogr—i—z) oy
2z 4yP r—z\ 0
— c_ ] “
+<T 2r2 Ogr+z> dy
1 0 N 0 N 0 N 1 oe "2 x
= —|z— —+2z— — lo
r oz 7 dy 0z o2 B +z
where r = /22 + y? + 2z2. Note that this vector is not directed radially out-
wards away from the origin. This is a consequence of the fact that curves
along which the functions ¢ and u are constant do not lie wholly within

straight lines passing through the origin. Indeed the cosine of the angle be-
tween the z-axis and the line joining the origin to the point with coordinates

_ L2ru
, and this
eQru

r,,u in this curvilinear coordinate coordinate system is

angle clearly varies along any curve along which the functions v and ¢ are
both constant.

The special case of Theorem 7.24 involving just one smooth vector field
on the smooth manifold is an important result in its own right, which we
now state.

Corollary 7.25 Let X be a smooth vector field on a smooth manifold M
of dimension r. Suppose that that the vector field X is non-zero at some

point py of M. Then there exists a smooth coordinate system (zt, 2%, ..., a"),
defined throughout some open neighbourhood W of the point pg, such that
0
X=—onW.
Oxt

Remark Note that, in the special case addressed in Corollary 7.25, where
there is only one vector field involved, the function F' employed in the proof
of Theorem 7.22 is a smooth local flow for this vector field X. Thus the
proof of Theorem 7.22 in this special case requires only the existence theorem
for smooth local flows (Theorem 7.12) and the Inverse Function Theorem.
Therefore the proof of the existence of the required smooth coordinate system
in the situation described in the statement of Corollary 7.25 does not require
the use of the results stated in Proposition 7.18 and its corollaries.

Example Let B be the vector field on {(z,y,2) € R : x # 0} defined by
the equation

9, 8+—xz—:c2y—|—62y8

Ox oy 22 0z’
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where ¢ is a real constant. Let v:/ — R?® be an smooth integral curve
for the vector field B, where I is some open interval in R, and let ~(t) =
(u(t),v(t),w(t)) for all t € I, where u, v and w are smooth real-valued
functions on 1. Then +'(t) = B, for all t € I, where

—u(t)w(t) — u(t)v(t) + o(t)
u(t)? '

Then u(t) = t +t, for some constant ty. We may reparameterize the integral
curve [ so that to = 0, and u(t) = ¢t. Then

) , 1 2 — 2
V(1) = (1) = —wlt) — (o),
and thus () do(t)
qa u(t V(T 2 2 -
t e +t priy (t* —c)v(t) = 0.

The function v(t) thus satisfies Bessel’s differential equation. The solutions
of this equation are Bessel functions.

Examples such as we have seen should indicate that, whilst it may be a
fairly trivial exercise to compute Lie brackets of smooth vector fields and draw
conclusions concerning the existence and behaviour of smooth coordinate
systems and flows, it may not be as easy to compute the flows and find
explicit formulae defining these coordinate systems.
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