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1 Topological Spaces and Smooth Manifolds

1.1 Euclidean Spaces

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Now (
n∑
j=1

xjyj

)2

≤

(
n∑
j=1

x2
j

)(
n∑
j=1

x2
j

)
for all real numbers x1, x2, . . . , xn and y1, y2, . . . , yn. It follows that |x · y| ≤
|x||y| for all x,y ∈ Rn. This basic inequality is known as Schwarz’s Inequal-
ity. It follows easily from Schwarz’ Inequality that |x + y| ≤ |x|+ |y| for all
x,y ∈ Rn. Indeed

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

It follows that
|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality is known as the
Triangle Inequality. It expresses the geometric fact that the length of any
side of a triangle in a Euclidean space is less than or equal to the sum of the
lengths of the other two sides.
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1.2 Continuity

Definition Let X and Y be subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some real
number δ satisfying δ > 0 such that |f(x) − f(p)| < ε for all
points x of X satisfying |x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

It is a straightforward exercise to verify from this formal definition of
continuity that any composition of continuous functions is continuous (in the
particular case under consideration here where the domains and codomains
of the functions in question are subsets of Euclidean spaces). Moreover sums,
differences, products and quotients of continuous real-valued function defined
over subsets of of Euclidean spaces are themselves continuous.

Let X and Y be a subset of Euclidean spaces Rm and Rn respectively, and
let f :X → Y be a function from X to Y . Then the function f is determined
by its components f1, f2, . . . , fn, where each component fj:X → R is a real-
valued function on X, and where

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X. It is a straightforward exercise to verify from the definition
of continuity that the function f :X → Y is continuous if and only if all its
components f1, f2, . . . , fn are continuous.

1.3 Limits of Functions

The concept of the limit of a function is closely related to continuity. Let
f :X → Rn be a function defined on some subset X of Rm, and let p be
a point of Rm. We seek to define the concept of the limit of f(x) as the
point x tends to p within the set X. Now, in order to get a sensible and
useful definition of the limit, we must impose a restriction on the location
of the point p in relation to the domain X of the function. Specifically, we
require the point p to be a limit point of X: a point p of Rm is a limit point
of X if and only if, given any positive real number δ, there exists at least one
point of the set X which is not equal to p but which lies within a distance δ
of the point p. It is not difficult to prove that a point p of Rm is a limit
point of a subset X of Rm if and only if there exists an infinite sequence of
distinct points of X which converges to the point p.
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Example Let B be the open unit ball in R3 consisting of all points that lie
within the sphere of unit radius centred on the origin, so that

B = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}.

Then all points of the ball B are limit points of B. Also all points on the
unit sphere

{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

are limit points of B, though these points do not belong to B itself.

Definition Let X be a subset of a Euclidean space Rm, let f :X → Rn

mapping X into a Euclidean space Rn, let p be a limit point of X, and let
q be a point of Rn. We say that q is the limit of f(x) as x tends to p in X
if, given any real number ε satisfying ε > 0, there exists some real number δ
satisfying δ > 0 such that |f(x) − q| < ε for all points x of X satisfying
0 < |x−p| < δ. If the point q is the limit of f(x) as x tends to p in X, then
we denote this fact by writing: q = lim

x→p
f(x).

Let X and Y be subsets of Euclidean spaces Rm and Rn of dimensions m
and n respectively, let f :X → Y be a function from X to Y , let p be a limit
point of the domain X of this function, and let q be a point of Rn. Then the
function f :X → Y determines a function f̃ :X ∪ {p} → Y ∪ {q}, where

f̃(x) =

{
q if x = p;
f(x) if x ∈ X \ {p}.

On comparing the definition of limits of functions with the definition of conti-
nuity, one can verify that lim

x→p
f(x) = q if and only if the associated function f̃

is continuous at the point p. In consequence of this, many standard results
concerning limits of functions can be deduced as consequences of correspond-
ing results that concern continuity.

1.4 Open Sets in Euclidean Spaces

Given a point p of Rn and a non-negative real number r, the open ball B(p, r)
of radius r about p is defined to be the subset of Rn given by

B(p, r) ≡ {x ∈ Rn : |x− p| < r}.

(Thus B(p, r) is the set consisting of all points of Rn that lie within a sphere
of radius r centred on the point p.)
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Definition A subset V of Rn is said to be open in Rn if and only if, given
any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of Rn.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

Example Let p be a point of n-dimensional Euclidean space Rn. Then, for
any positive real number r, the open ball B(p, r) of radius r about p is an
open set in Rn. Indeed let x be an element of B(p, r). If we set δ = r−|x−p|
then δ > 0, and B(x, δ) ⊂ B(p, r). Indeed if y ∈ B(x, δ) then the Triangle
Inequality ensures that

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

and therefore y ∈ B(p, r). This shows that the open ball B(p, r) is indeed
an open set.

Example Let p be a point of n-dimensional Euclidean space Rn. Then, for
any non-negative real number r, the set {x ∈ Rn : |x − p| > r} is an open
set in Rn. Indeed let x be a point of Rn satisfying |x − p| > r, and let
δ = |x−p| − r. Then δ > 0 and the Triangle Inequality can be used to show
that B(x, δ) ⊂ B(p, r).

Proposition 1.1 The collection of open sets in n-dimensional Euclidean
space Rn has the following properties:—

(i) the empty set ∅ and the whole space Rn are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole space Rn. Thus (i) is satisfied.

Let A be any collection of open sets in Rn, and let U denote the union of
all the open sets belonging to A. We must show that U is itself an open set.
Let x ∈ U . Then x ∈ V for some open set V belonging to the collection A.
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Therefore there exists some δ > 0 such that B(x, δ) ⊂ V . But V ⊂ U , and
thus B(x, δ) ⊂ U . This shows that U is open. Thus (ii) is satisfied.

Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in Rn, and
let V = V1 ∩ V2 ∩ · · · ∩ Vk. Let x ∈ V . Now x ∈ Vj for all j, and therefore
there exist strictly positive real numbers δ1, δ2, . . . , δk such that B(x, δj) ⊂ Vj
for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection
of open sets.) Moreover B(x, δ) ⊂ B(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus B(x, δ) ⊂ V . This shows that the intersection V of the open sets
V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each natural number k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all natural
numbers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
natural numbers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.

1.5 Continuous Functions and Open Sets

Let f :X → Y be a function from a set X to a set Y . Given any subset V of
Y , we denote by f−1(V ) the preimage of V under the map f . This preimage
is defined such that

f−1(V ) = {x ∈ X : f(x) ∈ V }.
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Proposition 1.2 Let X be an open subset of Rm, and let f :X → Rn be a
function from X to Rn. The function f is continuous if and only if f−1(V )
is an open subset of Rm for every open subset V of Rn.

Proof Suppose that f :X → Rn is continuous. Let V be an open set in Rn.
We must show that the subset f−1(V ) of X is an open set. Let p ∈ f−1(V ).
Then f(p) ∈ V . But V is open, hence there exists some ε > 0 with the
property that the open ballB(f(p), ε) of radius ε centred on f(p) is contained
in V . But X is an open set in X, and the function f :X → Rn is continuous
at p. Therefore there exists some δ > 0 such that the open ball B(p, δ)
of radius δ is contained in X and |f(x) − f(p)| < ε for all points x of X
satisfying |x − p| < δ. Then f(x) ∈ V for all x ∈ B(p, δ) and therefore
B(p, δ) ⊂ f−1(V ). This proves that f−1(V ) is an open subset of Rm for
every open subset V of Rn.

Conversely suppose that f :X → Rn is a function with the property that
f−1(V ) is an open set for every open subset V of Rn. Let p ∈ X. We
must show that f is continuous at p. Let some positive real number ε be
given. Then the open B(f(p), ε) of radius ε about p is an open set in Rn

and therefore the subset f−1 (B(f(p), ε)) of X is an open set in Rn which
contains the point p. It then follows that there exists some positive real
number δ such that BX(p, δ) ⊂ f−1 (B(f(p), ε)). Thus, given any ε > 0,
there exists some δ > 0 such that f maps BX(p, δ) into B(f(p), ε). But then
|f(x)− f(p)| < ε for all points x of X that satisfy |x−p| < δ. We conclude
that the function f :X → Rn is continuous at p, as required.

Proposition 1.2 is applicable to functions whose domain is an open set
in a Euclidean space Rm. The result can be generalized so as to apply to
functions whose domain is a subset of Rm, irrespective of whether or not that
subset is open in Rm. It can be shown that a function f :X → Rn, defined
over some subset X of Rm, and mapping that subset into Rn, is continuous
if and only if, given any open set V in Rn, there exists some open set W of
Rm such that f−1(V ) = X ∩W .

The relationship between open sets and continuous functions described
in Proposition 1.2 motivates the introduction of the concept of a topological
space. A topological space is a set which is provided with a special collection
of subsets. This collection of subsets is required to satisfy certain conditions
that satisfied by the collection of open sets in a Euclidean space. A function
f :X → Y between topological spaces X and Y is then said to be continuous
if and only if the preimage of every open set in Y is an open set in X.
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1.6 Topological Spaces

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

Let X, Y and Z be topological spaces, and let f :X → Y and g:Y → Z
be continuous functions. It follows directly from the definition of continuity
given above that the composition g ◦ f :X → Z of the functions f and g is
continuous.

Let X be a topological space, and let A be a subset of X. We say that
a subset U of A is open in A, if and only if there exists some open set W
in X such that U = A ∩W . The collection consisting of all subsets of A
that are open in A satisfies all the requirements stated in the definition of
a topological space, and thus constitutes a topology on A. This topology is
referred to as the subspace topology on A. In this fashion, every subset of a
topological space may be regarded as a topological space in its own right.

Let A be a subset of a topological space X. A subset of A that is open
in A need not be open in the larger topological space X. However, in the
special case where the subset A of X is itself open in X, a subset of A is
open in A if and only if it is open in X. This is an immediate consequence
of the fact that the intersection of any two open sets in a topological space
is guaranteed to be itself an open set.

In particular, let X be a subset of a Euclidean space Rm of dimension m.
Then X carries a natural topology, which is the subspace topology defined
in the manner described above: a subset U of X is open in X if and only if
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there exists some open set W in Rm such that U = X ∩W . This subspace
topology is referred to as the usual topology on X. In the special case where
X is an open set in the ambient Euclidean space Rm the subsets of X that
are open in X are those that are open in Rm.

1.7 Closed Sets

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

Now the complement of the union of some collection of subsets of some
set X is the intersection of the complements of those sets, and the comple-
ment of the intersection of some collection of subsets of X is the union of
the complements of those sets. The following result therefore follows directly
from the definition of a topological space.

Proposition 1.3 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

A function f :X → Y between topological spaces X to Y is continuous
if and only if the preimage of every open set in Y is an open set in X.
Now f−1(Y \ B) = X \ f−1(B) for all subsets B of Y (i.e., the preimage of
the complement of a subset of Y is the complement of the preimage of that
subset). Also subsets of a topological spaces are open if and only if their
complements are closed. On combining these observations, it follows directly
that a function f :X → Y between topological spaces X and Y is continuous
if and only if the preimage of every closed set in Y is a closed set in X.

1.8 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.
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A subset of a Euclidean space (with the usual topology) is guaranteed
to be a Hausdorff space. Indeed there is a more general class of topological
spaces known as metric spaces in which the collection of open sets is deter-
mined by a distance function satisfying appropriate axioms. The definition
of an open set in a metric space generalizes that of an open set in a Euclidean
space. All metric spaces are Hausdorff spaces.

Many basic properties of metric spaces are shared by Hausdorff spaces,
but may not hold in more general topological spaces. One such property is
the uniqueness property of limits of convergent infinite sequences. An infinite
sequence x1, x2, x3, . . . of points of a topological space X is said to converge
to some point p of that space if and only if, given any open set V containing
the point p, there exists some natural number N such that xj ∈ V whenever
j ≥ N . The limit of a convergent sequence in a Hausdorff topological space is
guaranteed to be unique. Indeed let p and q be distinct points of a Hausdorff
topological space X. Then there exist open sets U and V such that p ∈ U ,
q ∈ V and U ∩ V = ∅. A member xj of an infinite sequence x1, x2, x3, . . .
cannot belong to both U and V , since these open sets are disjoint. Therefore
the infinite sequence x1, x2, x3, . . . cannot simultaneously converge to both
p and q. Thus the uniqueness property of limits of convergent sequences is
guaranteed to hold in any Hausdorff space. But this property does not hold
in all topological spaces.

1.9 Homeomorphisms

Let f :X → Y be a function from a set X to a set Y . A function f−1:Y → X
from Y to X is said to be the inverse of the function f if and only if the
composition function f−1 ◦ f is the identity function of the set X and the
composition function f ◦ f−1 is the identity function of the set Y .

A function f :X → Y has a well-defined inverse if and only if it is both
injective and surjective. A function f :X → Y is said to be injective if it
maps distinct elements of the set X to distinct elements of Y . Thus, for
the function f :X → Y to be injective, we require that f(u) 6= f(v) for all
elements u and v of X with u 6= v. A function f :X → Y is said to be
surjective if f(X) = Y . Thus f :X → Y is surjective if and only if, given any
element y of Y , there exists some element x of X such that f(x) = y.

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is invertible;

• the function h:X → Y is continuous;
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• the inverse function h−1:Y → X is also continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being essentially identical as topological spaces.

When two topological spaces are homeomorphic, topological properties of
one space are replicated in the other. Let X and Y be topological spaces that
are homeomorphic, let h:X → Y be a homeomorphism between X and Y ,
and let Z be some topological space. Then, each continuous map f :X → Z
from X to Z determines a corresponding continuous map g:Y → Z from Y to
Z, where f = g ◦h and g = f ◦h−1. A similar correspondence exists between
continuous maps into the topological spaces X and Y . And any convergent
sequence in the topological space X corresponds under the homeomorphism
h:X → Y to a convergent sequence in the topological space Y , and vice
versa.

1.10 Countability

Sets may be categorized as finite sets and infinite sets. A finite set is only
that has only finitely many elements.

The mathematician Dedekind (1831–1916) came up with a characteriza-
tion of finiteness expressed in terms of functions from a set to itself.

We recall that a function f :X → Y is said to be injective if it maps
distinct elements of X to distinct elements of Y (so that if u, v ∈ X satisfy
u 6= v then f(u) 6= f(v)). Now an injective function f :X → Y determines
a one-to-one correspondence between the elements of the domain X of the
function and the elements of the range f(X) of the function. It follows that
if the domain X of the injective function f :X → Y is a finite set with m
elements, then the range f(X) of the function is also a finite set with m
elements. Thus if Y is a finite set with the same number of elements as X,
and if f :X → Y is an injective function, then this function is surjective,
since the range f(X) of the function is a subset of the codomain Y which
has exactly the same number of elements as the codomain, and is therefore
the whole of the codomain. In particular, any injective function from a finite
set to itself is guaranteed also to be surjective. It is also the case that any
surjective function from a finite set to itself is guaranteed also be injective.

The properties of functions from a finite set to itself stated above do not
hold for functions from an infinite set to itself. Let X be an infinite set.
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Then there exists an infinite sequence x1, x2, x3, . . . of distinct elements of X.
We can define a function f :X → X, such that f(xj) = xj+1 for all natural
numbers j, and f(z) = z for all elements z of X that are not included in
the infinite sequence x1, x2, x3, . . .. The function f :X → X defined in this
fashion is an injective function. But it is not surjective since the element x1

of X does not belong to the range of the function.
From these observations it follows that a set is infinite if and only if there

exists an injective function from the set to itself which is not surjective. This
is Dedekind’s characterization of infinite sets, expressed in contemporary
mathematical terminology.

Now, in addition to the dichotomy between finite sets and infinite sets,
there is an important dichotomy between countable sets and uncountable sets.

A set X is said to be countable if there exists some infinite sequence
x1, x2, x3, . . . that includes every element of the set. In other words, a set
is countable if there exists a surjection f : N → X from the set N of natural
numbers to the set X. All finite sets are countable. The sets N, Z and Q
of natural numbers, integers and rational numbers are also countable. Sets
that are not countable are said to be uncountable. Important examples of
uncountable sets are the sets R and C of real numbers and complex numbers
respectively. This distinction between countable and uncountable sets was
first explored by the mathematician Georg Cantor (1845–1918) who devel-
oped an extensive theory concerned with infinite sets and transfinite cardinal
and ordinal numbers. The proof of the uncountability of the set R of real
numbers is an important result that is due to Cantor.

Any superset of an uncountable set is uncountable. It follows that all
Euclidean spaces Rn with positive dimension n are uncountable sets. Also
any non-empty open set in a Euclidean space of positive dimension contains
an non-empty open ball, and such an open ball is homeomorphic to the entire
Euclidean space. It follows that any non-empty open set in a Euclidean space
of positive dimension is an uncountable set.

A collection may be considered to be a set whose elements are the mem-
bers of the collection. Thus collections can be countable or uncountable. It
can be shown that the union of any countable collection of sets is itself a
countable set. Also the Cartesian product of any finite number of countable
sets is a countable set. Subsets of countable sets are countable sets. And if
f :X → Y is a surjective function whose domain X is a countable set, then
the range Y of the function is also a countable set. With these results, it
becomes a trivial exercise to verify that the set Z of integers and the set Q
of rational numbers are countable sets.
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1.11 Topological Manifolds

Definition A topological manifold of dimension n is a Hausdorff topological
space M which is the union of a countable collection of open sets, where
each of the open sets in the collection is homeomorphic to an open set in
n-dimensional Euclidean space Rn.

Example The unit sphere Sn of dimension n is representable as the unit
sphere in Euclidean space Rn+1 of dimension n+ 1, and is defined as follows:

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

This space Sn is a topological manifold of dimension n. Indeed let n and s
be the points of Sn defined such that

n = (0, 0, . . . , 0, 1), s = (0, 0, . . . , 0,−1),

and let P be the hyperplane in Rn+1, defined so that

P = {(x1, x2, . . . , xn+1) ∈ Rn+1 : xn+1 = 0}.

Now Sn is the union of the complements Sn \ {n} and Sn \ {s} of the points
n and s. And these two subsets of Sn are both homeomorphic to Rn. Indeed
there is a well-defined homeomorphism ϕ:Sn \ {n} → P defined so that,
for each x ∈ Sn \ {n}, the point ϕ(x) is the point where the line passing
through n and x intersects the hyperplane P . Similarly there is a well-
defined homeomorphism ψ:Sn \ {s} → P defined so that, for each x ∈
Sn \ {s}, the point ϕ(x) is the point where the line passing through s and
x intersects the hyperplane P . The geometric construction whereby the
open subsets Sn \ {n} and Sn \ {s} are mapped onto the hyperplane P by
means of the homeomorphisms ϕ and ψ is known as stereographic projection.
Straightforward calculations show that

ϕ(x1, x2, . . . , xn, xn+1) =

(
x1

1− xn+1

,
x2

1− xn+1

, . . . ,
xn

1− xn+1

, 0

)
and

ϕ−1(y1, y2, . . . , yn, 0) =

(
2y1

|y|2 + 1
,

2y2

|y|2 + 1
, . . . ,

2yn
|y|2 + 1

,
|y|2 − 1

|y|2 + 1

)
(where |y|2 = y2

1 + y2
2 + · · ·+ y2

n).
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Let M be a topological manifold of dimension n. Then, given any point m
of M , there exists an open set U containing the point m which is homeomor-
phic to an open set in Rn. Thus every point of a topological manifold has
open neighbourhoods that have the same topological properties as open sets
in Rn.

A topological manifold is also required to be a Hausdorff space. Were this
not the case, it would be possible to construct examples of topological mani-
folds in which an infinite sequence of points converges simultaneously to two
distinct limits. In classical mechanics and general relativity, one determines
the trajectory of moving particles by solving systems of ordinary differen-
tial equations on a smooth manifold. (A smooth manifold is a topological
manifold with extra structure that allows one to differentiate functions and
solve differential equations.) Provided that appropriate technical conditions
are met, one expects the solution of such a system of ordinary differential
equations to be completely determined by appropriate initial conditions. For
example, in classical mechanics and in general relativity, the trajectory of
a particle is determined by its initial position, its initial velocity, and by
the forces which act on it as it moves. There are basic theorems that ensure
that, under appropriate technical conditions, solutions to systems of ordinary
differential equations are uniquely determined by initial conditions. But if
the manifold upon which the motion takes place were not required to be a
Hausdorff space, then such theorems would fail to hold. And, as a result,
many standard results and techniques used in the study of differential geom-
etry and its applications to mechanics would no longer be valid. Thus the
requirement that topological manifolds be Hausdorff spaces is necessary to
ensure the validity of many results that play an important role in the study
of both geometrical problems and applications to mechanics.

A further topological requirement is that it should be possible to cover a
topological manifold with a countable collection of open sets, where each of
these open sets is homeomorphic to an open set in a Euclidean space. Given
the other topological conditions which a topological manifold must satisfy,
this countability condition is equivalent to the requirement that there must
exist a countable basis for the topology of the manifold. A collection of open
sets in a topological space is a basis for the topology if every other open set
can be expressed as a union of open sets belonging to the basis. For example
the collection of all open balls in n-dimensional Euclidean space Rn is a
basis for the (usual) topology on Rn. However this basis is not a countable
basis for the topology on Rn. But if we consider the collection of all such
open balls where the centres of the balls have Cartesian coordinates that
are rational numbers, and where the radii of the balls are positive rational
numbers, then the collection of all such open balls is a countable collection,
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and is a countable basis for the topology on Rn. Moreover the subcollection
consisting of those open balls that are contained in some open subset V
of Rn is a countable basis for the topology on V . It is a straightforward
exercise to verify from this that if a topological space is a union of a countable
collection of open sets, where each of those sets is homeomorphic to an open
set in Rn, then it has a countable basis. Conversely, if a Hausdorff space
has a countable basis, and if every point is contained in some open set that
is homeomorphic to an open subset of Rn, then it is possible to cover the
space by countably many such open sets, and therefore the Hausdorff space
is a topological manifold of dimension n. Topological manifolds are required
to satisfy this countability requirement in order to ensure the validity of
certain technical results that are necessary in order to develop the theory of
integration over manifolds, and to ensure certain other useful results.

1.12 Differentiability

The definition of a topological manifold gives meaning to the notion of a
continuous function that is defined on a manifold, or that maps into the
manifold. It also gives meaning to the notion of convergence of sequences of
points in a topological manifold. It also places restrictions on the topolog-
ical structure of the manifold, requiring in particular that sufficiently small
portions of the manifold have the topological properties of open subsets of
Euclidean spaces. However the definition of a topological manifold as a topo-
logical space with specified properties does not in itself provide the concept
of a topological manifold with sufficient structure to apply notions of dif-
ferentiability or smoothness to functions defined on a topological manifold,
or mapping into a topological manifold. The manifold needs to be endowed
with additional structure that enables the application of concepts of differ-
entiability and smoothness to functions between manifolds.

We first review the definition of differentiability for functions of several
real variables.

Definition Let U be a subset of m-dimensional Euclidean space Rm, let
ϕ:U → Rn be a function mapping U into Rn, and let p be a point of U .
The function ϕ is said to be differentiable at p if there exists some linear
transformation T : Rm → Rn with the property that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0.

If a function ϕ:U → Rn is differentiable at some point p of its domain U ,
where U is an open set in Rm, then there is a unique linear transformation
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T : Rm → Rn for which

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0.

Indeed suppose that T : Rm → Rn and S: Rm → Rn are linear transforma-
tions, and that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = lim

h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Sh) = 0.

Then

lim
h→0

1

|h|
(Sh− Th)

= lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th)

− lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Sh)

= 0,

and therefore

lim
t→0+

1

t|h|
(S(th)− T (th)) = 0.

But S and T are linear transformations, and therefore

1

t|h|
(S(th)− T (th)) =

1

t|h|
(tS(h)− tT (h)) =

1

|h|
(S(h)− T (h)).

It follows that S(h)− T (h) = 0 for all h ∈ Rm, and therefore S = T .

Definition Let U be a subset of m-dimensional Euclidean space Rm, let
ϕ:U → Rn be a function mapping U into Rn, and let p be a point of U .
Suppose that the function ϕ is differentiable at p. The derivative (or total
derivative) of the function ϕ at p is defined to be the unique linear transfor-
mation T : Rm → Rn with the property that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0.

Let ϕ:U → Rn a function, defined over an open subset U of Rm, which
is differentiable, with derivative T : Rm: Rn, at some point p of U , and let
v ∈ Rm. Then

lim
t→0

1

t

(
ϕ(p + tv)− ϕ(p)

)
− Tv = lim

t→0

1

t

(
ϕ(p + tv)− ϕ(p)− T (tv)

)
= |v| lim

h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th)

= 0,
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and therefore

Tv = lim
t→0

1

t

(
ϕ(p + tv)− ϕ(p)

)
.

Linear transformations from Rm to Rn can be represented by n × m
matrices in the usual fashion. The entries of the matrix representing the
derivative of a differentiable function ϕ:U → Rn at a point p of U are the
partial derivatives of the components of the function ϕ. Indeed suppose that

ϕ(x) = (f1(x), f2(x), . . . , fn(x)),

for all x ∈ U , where f1, f2, . . . , fn are real-valued functions on U . Let
T : Rm → Rn be the derivative of ϕ at p, and let Tij denote the entry in the ith
row and jth column of the matrix representing the linear transformation T .
Then Tij is the ith component of the vector Tej, where e1, e2, . . . , . . . em is
the standard basis of the vector space Rm, defined such that

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . em = (0, 0, . . . , 0, 1).

But

Tej = lim
t→0

1

t

(
ϕ(p + tej)− ϕ(p)

)
.

It follows that

Tij = lim
t→0

fi(p + tej)− fi(p)

t
=
∂fi(x1, x2, . . . , xm)

∂xj

∣∣∣∣
x=p

.

Thus the derivative T : Rm → Rn of the function ϕ:U → Rn at the point p
is the linear transformation represented by the Jacobian matrix

∂f1

∂x2

∂f1

∂x2

· · · ∂f1

∂xm
∂f2

∂x2

∂f2

∂x2

· · · ∂f2

∂xm
...

...
...

∂fn
∂x2

∂fn
∂x2

· · · ∂fn
∂xm


evaluated at the point p.

If the function ϕ:U → Rn is differentiable at some point p of the open

set U then all partial derivatives
∂fi
∂xj

are well-defined at the point p. The

converse result is not generally true: there are examples of functions where all
these partial derivatives are well-defined at some point p, though the function
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itself is not differentiable at that point. Nevertheless it can be shown that if

the partial derivatives
∂fi
∂xj

of the components f1, f2, . . . , fn of the function

ϕ:U → Rn are continuous functions defined throughout the open set U , then
the function ϕ is differentiable at each point of p.

Let f :U → R be a real-valued function defined over some open set U in

Rm. Suppose that the partial derivatives
∂f

∂xj
are defined throughout U and

themselves have partial derivatives
∂

∂xk

(
∂f

∂xj

)
that are continuous functions

defined throughout U . Then

∂

∂xk

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xk

)
for all values of j and k between 1 and m, i.e.,

∂2f

∂xk∂xj
=

∂2f

∂xj∂xk
.

1.13 Smoothness

Definition A real-valued function f :U → R defined on an open subset U
of a Euclidean space Rm is said to be smooth if the partial derivatives of f
of all orders are defined throughout U .

A function ϕ:U → Rn mapping an open subset U of Rm into Rn is said
to be smooth if its components are smooth functions.

A smooth function is differentiable. Indeed the fact that the second order
partial derivatives of a smooth function f :U → R are defined throughout
its domain U ensures that the first order partial derivatives of the function
are continuous, and this in turn is enough to ensure that the function is
differentiable.

The space L(Rm,Rn) of linear transformations from a Euclidean space Rm

to a Euclidean space Rn may itself be regarded as a Euclidean space of
dimension mn. Thus if ϕ:U → Rn is a function defined over an open subset U
of Rm, and if ϕ is differentiable at each point of p, then the function which
maps points p to U to the derivative of ϕ at those points is itself a function
mapping U into a Euclidean space L(Rm,Rn). If this derivative function is
itself differentiable, then the original function ϕ is twice differentiable. This
function ϕ:U → R is smooth if and only if it is k-times differentiable for all
positive integers k.
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1.14 Diffeomorphisms

Definition Let U and V be open sets in n-dimensional Euclidean space Rn.
A function ϕ:U → V is said to be a diffeomorphism if it satisfies the following
conditions:

• the function ϕ:U → V is invertible;

• the function ϕ:U → V is smooth;

• the inverse function ϕ−1:V → U is also smooth.

Note that any diffeomorphism is a homeomorphism. Moreover a home-
omorphism is a diffeomorphism if and only if both it and its inverse are
smooth.

1.15 Continuous Charts and Transition Functions

Definition Let M be a topological manifold of dimension n. A continuous
chart (V, ϕ) for M consists of an open subset V of M together with a con-
tinuous map ϕ:V → Rn, where the range ϕ(V ) of the function is an open
set in Rn, and where the function ϕ establishes a homeomorphism between
V and ϕ(V ).

Let M be a topological manifold of dimension n, and let (V, ϕ) be a
continuous chart for M . Then V is an open set in M , and the continuous
map ϕ:V → Rn gives rise to an n-tuple of continuous real-valued functions
y1, y2, . . . , yn defined over the open set V , where

ϕ(m) = (y1(m), y2(m), . . . , yn(m)).

for all m ∈ V . Note that these functions are indexed by superscripts: this
is a standard notational convention in differential geometry; the reasons for
employing it should become apparent when we discuss tensor fields on smooth
manifolds. These functions y1, y2, . . . , yn constitute a continuous coordinate
system defined over V . If u and v are distinct points of V then at least one of
the functions y1, y2, . . . , yn takes on distinct values at u and v. (This ensures
that ϕ:V → Rn is injective.) Moreover, given any point p of ϕ(V ), there is
a unique point m of V for which

(y1(m), y2(m), . . . , yn(m)) = p,

and moreover the point m of V determined by p in this fashion depends
continuously on p as p ranges over the open set ϕ(V ).
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Given any continuous chart (V, ϕ) on a topological manifold M of di-
mension n, there is a one-to-one correspondence between open subsets of the
domain V of the chart and open subsets of the range ϕ(V ) of the chart: a
subset W of V is an open set in M if and only if ϕ(W ) is an open set in
Rn. This is an immediate consequence of the requirement that the function
mapping m ∈ V to ϕ(m) ∈ ϕ(V ) be a homeomorphism between V and ϕ(V ).

Let y1, y2, . . . , yn be continuous real-valued functions defined over an open
set V which determine a continuous chart (V, ϕ), where

ϕ(m) = (y1(m), y2(m), . . . , yn(m))

for all u ∈ V , and let g:V → R be a real-valued function defined over the
domain V of this continuous chart. Then the function g determines a real-
valued function G:ϕ(V )→ R defined over ϕ(V ), where

g(m) = G(y1(m), y2(m), . . . , yn(m))

for all m ∈ V . This function G:ϕ(V ) → R is continuous if and only if the
function g:V → R is continuous.

Let (V, ϕ) and (W,ψ) be continuous charts on a topological manifold M
of dimension n. Then then V ∩ W is an open subset of both V and W ,
and therefore ϕ(V ∩W ) and ψ(V ∩W ) are both open subsets of Rn, and
the function ϕ and ψ determine homeomorphisms from V ∩W to ϕ(V ∩W )
and ψ(V ∩W ). It follows that there is a homeomorphism θ:ϕ(V ∩W ) →
ψ(V ∩W ) between ϕ(V ∩W ) and ψ(V ∩W ) characterized by the requirement
that θ(ϕ(m)) = ψ(m) for all m ∈ V ∩ W . This homeomorphism θ is the
transition function determined by the charts ϕ and ψ. Now these charts can
be represented in terms of continuous real-valued functions y1, y2, . . . , yn and
z1, z2, . . . , zn, where

ϕ(m) = (y1(m), y2(m), . . . , yn(m))

for all m ∈ V , and

ψ(m) = (z1(m), z2(m), . . . , zn(m))

for all m ∈ W . Then the transition function θ:ϕ(V ∩W ) → ψ(V ∩W ) is
characterized by the requirement that

θ(y1(m), y2(m), . . . , yn(m)) = (z1(m), z2(m), . . . , zn(m))

for all m ∈ V ∩W .
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1.16 Smooth Atlases

In order to employ manifolds in the study of both differential geometry and
physics, where calculus is an essential tool, it is neccessary to formulate
concepts of differentiability and smoothness that can be applied to functions
defined over manifolds, and to functions mapping into manifolds. This would
in particular allow one to study trajectories on manifolds that are determined
by systems of ordinary differential equations, and to study functions over
manifolds that are solutions of partial differential equations. The necessary
structure is obtained by associating with the manifold an atlas of smoothly
compatible charts.

Definition Let (V, ϕ) and (W,ψ) be continuous charts on a topological man-
ifold M of dimension n, and let θ:ϕ(V ∩W )→ ψ(V ∩W ) be the homeomor-
phism from ϕ(V ∩W ) to ψ(V ∩W ) characterized by the requirement that
θ(ϕ(m)) = ψ(m) for m ∈ V ∩W . The continuous charts (V, ϕ) and (W,ψ)
are said to be smoothly compatible if and only if this transition function
θ:ϕ(V ∩W )→ ψ(V ∩W ) is a diffeomorphism.

If the domains V and W of the continuous charts (V, ϕ) and (W,ψ) are
disjoint (i.e., if V ∩W = ∅) then the charts are considered to be smoothly
compatible.

Let M be a topological manifold of dimension n, and let (V, ϕ) and (W,ψ)
be continuous charts on M which are smoothly compatible. Then there is a
diffeomorphism θ:ϕ(V ∩W )→ ψ(V ∩W ) between ϕ(V ∩W ) and ψ(V ∩W )
characterized by the requirement that θ(ϕ(m)) = ψ(m) for all m ∈ V ∩W .
Now the charts ϕ and ψ can be represented in terms of continuous real-valued
functions y1, y2, . . . , yn and z1, z2, . . . , zn, where

ϕ(m) = (y1(m), y2(m), . . . , yn(m))

for all m ∈ V , and

ψ(m) = (z1(m), z2(m), . . . , zn(m))

for all m ∈ W . Also there are smooth real-valued functions H1, H2, . . . , Hn

defined on ϕ(V ∩W ) such that

θ(x) = (H1(x), H2(x), . . . , Hn(x))

for all x ∈ ϕ(V ∩W ). Then

(z1(m), z2(m), . . . , zn(m)) = θ(y1(m), y2(m), . . . , yn(m))
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for all m ∈ V ∩W , and therefore

zj(m) = Hj(y1(m), y2(m), . . . , yn(m))

for j = 1, 2, . . . , n and for all m ∈ V ∩W . Thus if two continuous coordi-
nate charts are smoothly compatible then the values of coordinate functions
determining one chart can be expressed as smooth functions of the values
of the coordinate function determining the other chart. Indeed two contin-
uous coordinate charts are smoothly compatible if and only if the values
of the coordinate functions of either one of the charts can be expressed as
smooth functions of the values of coordinate functions of the other over the
intersection of the domains of the charts.

Definition Let M be a topological manifold of dimension n. A smooth atlas
on M is a collection of continuous charts on M where the domains of the
charts cover M , and where any two charts belonging to the atlas are smoothly
compatible.

Let M be a smooth manifold of dimension n. The requirement that the
domains of the charts belonging a smooth atlas on M cover the manifold M
ensures that each point of M belongs to the domain of at least one chart
belonging to the atlas.

Let A be a smooth atlas on a smooth manifold M of dimension n, let
f :U → R be a real-valued function defined over some open subset U of M ,
and let p ∈ U . Then the point p belongs to the domain V of some chart
(V, ϕ) belonging to the smooth atlas. There is then a real-valued function
F :ϕ(U ∩ V ) → R, defined over the open subset ϕ(U ∩ V ) of Rn, such that
f(m) = F (ϕ(m)) for all m ∈ U ∩ V .

Definition Let M be a manifold of dimension n that is provided with some
smooth atlas A, let f :U → R be a real-valued function defined over some
open set U in M , and let p ∈ U . The function f is said to be smooth around
p with respect to the smooth atlas A if and only if there is a chart (V, ϕ)
belonging to this smooth atlas and a smooth function F :ϕ(U ∩V )→ R such
that p ∈ V and f(m) = F (ϕ(m)) for all m ∈ U ∩ V .

Lemma 1.4 Let M be a manifold of dimension n that is provided with some
smooth atlas A, and let f :U → R be a real-valued function defined over
some open set U in M that is smooth around some point p of U . Let (V, ϕ)
be a chart belonging to the smooth atlas A, and let F :ϕ(U ∩ V ) → R be
the real valued function on ψ(U ∩ V ) characterized by the requirement that
F (ϕ(m)) = f(m) for all m ∈ U ∩ V . Then the function F is smooth around
ϕ(p).
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Proof The definition of smoothness ensures the existence of a chart (W,ψ)
belonging to the smooth atlas A and a smooth function G:ψ(U ∩W ) → R
such that f(m) = G(ψ(m)) for all m ∈ U ∩W . Moreover the charts (V, ϕ)
and (W,ψ) are smoothly compatible, since both charts belong to the smooth
atlast A. It follows that the transition function θ:ϕ(V ∩W ) → ψ(V ∩W )
determined by this pair of charts is a diffeomorphism, where θ(ϕ(m)) = ψ(m)
for all m ∈ V ∩W . Then

F (ϕ(m)) = f(m) = G(ψ(m)) = G(θ(ϕ(m)))

for all m ∈ U ∩ V ∩W , and thus F (x) = G(θ(x)) for all x ∈ ϕ(U ∩ V ∩W ).
Thus the restriction of the function F to ϕ(U ∩ V ∩W ) can be expressed as
the composition of smooth functions, and therefore this function is smooth
around ϕ(p), as required.

Lemma 1.5 Let M be a manifold of dimension n that is provided with some
smooth atlas A, and let (V, ϕ) and (W,ψ) be continuous charts on M . Sup-
pose that these charts are smoothly compatible with all charts belonging to
the atlas A. Then they are smoothly compatible with each other.

Proof If V ∩W = ∅ then there is nothing to prove. Suppose that V ∩W 6= ∅.
Let p ∈ V ∩W . Then there exists a chart (U, χ) belonging to the atlas A
such that p ∈ U . Let θ:ϕ(V ∩W ) → ψ(V ∩W ) be the transition function
relating the charts ϕ and ψ, let ξ:ϕ(U ∩ V ) → χ(U ∩ V ) be the transition
function relating the charts ϕ and χ, and let η:χ(U ∩W ) → ψ(U ∩W ) be
the transition function between the clarts χ and ϕ, so that

ψ(m) = θ(ϕ(m)) for all m ∈ V ∩W,
χ(m) = ξ(ϕ(m)) for all m ∈ U ∩ V,
ψ(m) = η(χ(m)) for all m ∈ U ∩W,

Then
θ(ϕ(m)) = η(χ(m)) = η(ξ(ϕ(m))

for all m ∈ U ∩ V ∩W , and therefore

θ|ϕ(U∩V ∩W ) = η|χ(U∩V ∩W ) ◦ ξ|ϕ(U∩V ∩W ).

But the functions ξ and η are smooth around ϕ(p) and χ(p) respectively,
because the charts (V, ϕ) and (W,ψ) are both compatible with (U, χ). Also
any composition of smooth functions between open sets in Euclidean space
is itself smooth. It follows that the transition function θ is smooth around
ϕ(p). Similarly the inverse θ−1 of this transition function is smooth around
ψ(p). Therefore the charts (V, ϕ) and (W,ψ) are smoothly compatible, as
required.
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1.17 Smooth Manifolds

Let M be a topological manifold, let A be a smooth atlas on M , and let Amax

be the collection of all continuous charts on M that are smoothly compatible
with all charts that belong to the smooth atlas A. It follows immediately
from Lemma 1.5 that any two charts that belong to this collection Amax

are smoothly compatible with each other. Moreover A ⊂ Amax, the collec-
tion Amax of continuous charts on M is a smooth atlas, and any continuous
chart on M that is smoothly compatible with all charts belonging to the
atlas Amax must itself belong to this atlas.

Definition Let M be a smooth manifold. A smooth atlas on M is said to
be maximal if every chart that is smoothly compatible with all charts in the
atlas itself belongs to the atlas.

It follows easily from the results and remarks described above that any
smooth atlas A on a topological manifold M is contained in a unique max-
imal smooth atlas Amax. This maximal smooth atlas is the collection of all
continuous charts on M that are smoothly compatible with all charts belong-
ing to the smooth atlas A. The uniqueness of this maximal smooth atlas is
an immediate consequence of the following result.

Lemma 1.6 Let M be a topological manifold, and let A and B be smooth
atlases on M . Suppose that A ⊂ B. Then B ⊂ Amax, where Amax denotes the
maximal smooth atlas on M consisting of all continuous charts on M that
are smoothly compatible with all the charts that belong to the smooth atlas A.

Proof Any continuous chart on M that belongs to the smooth atlas B is
smoothly compatible with all continuous charts belonging to B. In particular
it is smoothly compatible with all continuous charts belonging to A, and
therefore belongs to Amax.

Definition A smooth manifold (M, τ,A) of dimension n consists of a topo-
logical manifold M of dimension n, with topology τ , which is provided with
a maximal smooth atlas A. This maximal smooth atlas represents the dif-
ferentiable structure on the smooth manifold M .

It is customary to refer to a smooth manifold (M, τ,A) as ‘the smooth
manifold M ’, unless it is necessary to make explicit reference to the topology
or maximal smooth atlas on M .

Definition Let M be a smooth manifold. A continuous chart (V, ϕ) on M
is said to be smooth if and only if it belongs to the maximal smooth atlas
that represents the differentiable structure on M .
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Note that any two smooth charts on a smooth manifold M are guaranteed
to be smoothly compatible, since they both belong to the maximal smooth
atlas that represents the differentiable structure of M .

1.18 Smooth Maps between Smooth Manifolds

Let f :M → N be a function between smooth manifolds M and N , let (V, ϕ)
be a smooth chart on M , and let (W,ψ) be a smooth chart on M . Then the
function f and the charts ϕ and ψ determine a function

F :ϕ(V ∩ f−1(W ))→ ψ(W )

characterized by the property that F (ϕ(v)) = ψ(v) for all v ∈ V ∩ f−1(W ).
We shall refer to this function F as the function which represents f :M → N
with respect to the smooth charts (V, ϕ) and (W,ψ). Note that the domain
ϕ(V ∩ f−1(W )) and the codomain ψ(W ) of this function F are open sets in
Rm and Rn respectively, where m = dimM and n = dimN .

Definition Let M and N be smooth manifolds. A function f :M → N
is said to be smooth around a point p of M if and only if there exists a
smooth chart (V, ϕ) on M and a smooth chart (W,ψ) on N , where p ∈ V
and f(p) ∈ W , such that the function F :ϕ(V ∩ f−1(W )) → ψ(W ) which
represents the function f with respect to the smooth charts (V, ϕ) and (W,ψ)
is smooth around the point ϕ(p).

Lemma 1.7 Let f :M → N be a function between smooth manifolds M and
N , and let p be a point of M , let (V, ϕ) be a smooth chart on M , where p ∈ V ,
and let (W,ψ) be a smooth chart on N , where f(p) ∈ W . Then the function f
is smooth around p if and only if the function F :ϕ(V ∩f−1(W ))→ ψ(W ) that
represents f with respect to the smooth charts (V, ϕ) and (W,ψ) is smooth
around ϕ(p).

Proof The definition of smoothness ensures that if the representing func-
tion F is smooth, then the function f :M → N is smooth, where F (ϕ(v)) =
ψ(v) for all v ∈ V ∩ f−1(W )

Conversely suppose that the function f :M → N is smooth around p.
Then there exist smooth charts (V1, ϕ1) and (W1, ψ1), where p ∈ V1 and
f(p) ∈ W1, such that the function F1:ϕ1(V1 ∩ f−1(W1)) → ψ1(W1) repre-
senting f :M → N with respect to the smooth charts (V1, ϕ1) and (W1, ψ1)
is smooth. Now the function F may be represented around ϕ(p) as the com-
position of the transition function relating the charts (V, ϕ) and (V1, ϕ1), the
smooth function F1 that represents f with respect to the charts (V1, ϕ1) and
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(W1, ψ1), and the transition function relating the charts (W1, ψ1) and (W,ψ).
The transition functions involved are smooth around the relevant points, and
have smooth inverses. Also compositions of smooth functions are smooth. It
follows that the function F is also smooth, as required.

Note that a function f :M → N between smooth manifolds M and N is
smooth throughout M if and only if, given any smooth chart (V, ϕ) on M ,
and given any smooth chart (W,ψ) on N , the function that represents f with
respect to these charts is a smooth function.

Let f :M → N be a function between smooth manifolds M and N , let
p be a point of M , let (V, ϕ) be a smooth chart around p, and let (W,ψ)
be a smooth chart around f(p). The smooth chart (V, ϕ) is represented by
coordinate functions y1, y2, . . . , ym defined over V , where m = dimM and

ϕ(v) = (y1(v), y2(v), . . . , ym(v)) for all v ∈ V.

Similarly the smooth chart (W,ψ) is represented by by coordinate functions
z1, z2, . . . , zm defined over W , where n = dimN and

ψ(w) = (z1(w), z2(w), . . . , zn(w)) for all w ∈ W.

There are then real-valued functions F k:ϕ(V ∩ f−1(W )) → R for k =
1, 2, . . . , n characterized by the property that

zk(f(v)) = F k(y1(v), y2(v), . . . , ym(v))

for all v ∈ V . The function f is then represented with respect to the smooth
charts (V, ϕ) and (W,ψ) by the vector-valued function F :ϕ(V ∩ f−1(W ))→
ψ(W ) where

F (x) =
(
F 1(x), F 2(x), . . . , F n(x)

)
for all x ∈ ϕ(V ∩ f−1(W )). Then the function f is smooth at p if and only
if the function F is smooth at ϕ(p), and this is the case if and only if the
components F 1, F 2, . . . , F n of F are smooth functions at ϕ(p).
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2 Tangent Spaces and Derivatives

2.1 Partial Derivatives with respect to Local Coordi-
nates

Let ϕ:U → Rn be a smooth chart defined over an open set U in M . Then
there are smooth real-valued functions x1, x2, . . . , xn on U such that

ϕ(u) = (x1(u), x2(u), . . . , xn(u))

for all u ∈ U . The functions x1, x2, . . . , xn determined by the chart (U,ϕ)
constitute smooth local coordinate functions defined over the domain U of
the chart. Now the function ϕ maps the open set U homeomorphically onto
an open set V in Rn, where

V = ϕ(U) = {(x1(u), x2(u), . . . , xn(u)) : u ∈ U}.

Every real-valued function f :U → R on U determines a corresponding real-
valued function F :V → R on ϕ(U), where

f(u) = F (ϕ(u)) = F (x1(u), x2(u), . . . , xn(u))

for all u ∈ U . Moreover the function f is smooth on U if and only if if the
corresponding function F is smooth on V . This set V is an open set in the
Euclidean space Rn, and therefore the function F has well-defined partial
derivatives with respect to the standard Cartesian coordinates s1, s2, . . . , sn.

Definition Let x1, x2, . . . , xn be smooth local coordinates defined over an
open set U in a smooth manifold M of dimension n, and let V be the corre-
sponding open set in Rn defined such that

V = {(x1(u), x2(u), . . . , xn(u)) : u ∈ U}.

The partial derivatives
∂f

∂x1
,
∂f

∂x2
, . . .

∂f

∂xn

of f with respect to the coordinate functions x1, x2, . . . , xn are defined to be
the real-valued smooth functions on U that satisfy

∂f

∂xj

∣∣∣∣
u

=
∂F (s1, s2, . . . , sn)

∂sj

∣∣∣∣
(s1,s2,...,sn)=p

for all u ∈ U , where F :V → R is the smooth real-valued function on the
open set V characterized by the property that

f(u) = F (x1(u), x2(u), . . . , xn(u))
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for all u ∈ U , and where

p = (x1(u), x2(u), . . . , xn(u)).

Lemma 2.1 Let x1, x2, . . . , xn be a smooth local coordinate system defined
over an open set U in a smooth manifold M of dimension n, let γ: Iγ → M
be a smooth curve in M , defined over some open interval Iγ in the real line,
where γ(Iγ) ⊂ U , and let f :U → R be a smooth function defined over U .
Then

d

dt

(
f(γ(t))

)
=

n∑
j=1

∂f

∂xj

∣∣∣∣
γ(t)

dxj(γ(t))

dt

Proof There exists a smooth function F :V → R, where

V = {(x1(u), x2(u), . . . , xn(u)) : u ∈ U},

such that f(u) = F (x1(u), x2(u), . . . , xn(u)) for all u ∈ I. It follows that

d

dt

(
f(γ(t))

)
=

d

dt

(
F (x1(γ(t)), x2(γ(t)), . . . , xn(γ(t)))

)
=

n∑
j=1

∂F (s1, s2, . . . , sn)

∂sj

∣∣∣∣
(x1(γ(t)),...,xn(γ(t))

dxj(γ(t))

dt

=
n∑
j=1

∂f

∂xj

∣∣∣∣
γ(t)

dxj(γ(t))

dt
,

as required.

We see therefore that the value of the partial derivative
∂f

∂xj
of a smooth

function at some point of the domain U of a smooth local coordinate system
x1, x2, . . . , xn is (as the notation would suggest) the rate of change of the
value of the function f along a curve passing through that point, where the
coordinate functions xk are constant along the curve for k 6= j, and where
the coordinate function xj increases at a uniform unit rate along the curve.

2.2 Smooth Submanifolds of Euclidean Spaces

Smooth functions y1, y2, . . . , yk defined over an open set U in Rk are said to
constitute a smooth curvilinear coordinate system over U if and only if these
functions are the component functions of a smooth chart with domain U . It
follows that the smooth functions y1, y2, . . . , yk constitute a smooth curvilin-
ear coordinate system over U if and only if the function from U to Rk that
sends u ∈ U to (y1(u), y2(u), . . . , yk(u)) defines a diffeomorphism mapping
U onto an open set in Rk.
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Definition Let M be a subset of k-dimensional Euclidean space Rk. Then
M is said to be a smooth submanifold of Rk of dimension n (where n ≤ k), if
and only if, given any point p of M , there exists an open set U in Rk, and a
smooth curvilinear coordinate system y1, y2, . . . , yk defined over U such that
p ∈ U and

M ∩ U = {u ∈ U : yj(u) = 0 for j > n}.

Let M be a smooth submanifold of Rk of dimension n, let p ∈M , and let
y1, y2, . . . , yk be a smooth curvilinear coordinate system defined over some
open set U in Rk such that p ∈ U and

M ∩ U = {u ∈ U : yj(u) = 0 for j > n}.

The restrictions of the functions y1, y2, . . . , yn to M ∩U determine a continu-
ous chart with domain M ∩U . Moreover any two charts on M constructed in
this fashion are smoothly compatible, and thus the collection consisting of all
such charts constitutes a smooth atlas on M . Moreover it is not difficult to
show that M can be covered by the domains of countably many such charts.
It follows that any submanifold of Rk of dimension n is a smooth manifold
of dimension n.

Let x1, x2, . . . , xk be the standard Cartesian coordinate system on Rk,
characterized by the property that

p = (x1(p), x2(p), . . . , xk(p))

for all p ∈ Rk. Now the function that sends each point u of U to

(x1(u), x2(u), . . . , xk(u))

maps U diffeomorphically into an open set in Rk. It follows that the Jacobian
matrix of this diffeomorphism is a non-singular matrix at each point of U .
This Jacobian matrix is the k× k matrix whose entry in the ith row and jth

column is
∂xi

∂yj
. Its inverse is the matrix whose entry in the jth row and ith

column is
∂yj

∂xi
.

Let M be a smooth n-dimensional submanifold of Rk. A smooth curve
in M is represented by a smooth function γ: Iγ → M defined over some
open interval Iγ in R. This function parameterizes points along the curve
by elements of the interval Iγ. It is convenient to conceptualize this smooth
curve as being parameterized by time, so that, for each value t of the time
parameter in Iγ, the point γ(t) represents the position at time t of a particle
traversing the curve,

28



Now, because the manifold M is embedded in Rk, we can differentiate

this function. The derivative
dγ(t)

dt
then represents the velocity vector of the

smooth curve at position γ(t) and time t.

Definition Let M be a smooth n-dimensional submanifold of Rk, and let p
be a point of M . The tangent space TpM to M at the point p is defined to
be the subspace of Rk consisting of all vectors in Rk that can be represented
at the velocity vectors

dγ(t)

dt

∣∣∣∣
t=0

of smooth curves γ: Iγ →M in M for which 0 ∈ Iγ and γ(0) = p.

Lemma 2.2 Let M be a smooth submanifold of Rk of dimension n, and let
y1, y2, . . . , yk be a smooth curvilinear coordinate system defined over some
open set U in Rk such that

M ∩ U = {u ∈ U : yj(u) = 0 for j > n}.

Given any point p of M∩U , the tangent space to M at p is an n-dimensional
subspace of Rk, and is the vector subspace of Rk that is spanned by the vectors

∂P
∂y1

∣∣∣∣
p

,
∂P
∂y2

∣∣∣∣
p

, . . . ,
∂P
∂yn

∣∣∣∣
p

,

where P :M → Rk is the inclusion function of M in Rk. These vectors are
linearly independent at each point of U , and

dγ(t)

dt
=

n∑
j=1

∂P
∂yj

∣∣∣∣
γ(t)

dyj(γ(t))

dt

for all smooth curves γ: Iγ →M ∩ U in M ∩ U .

Proof The inclusion function P :M → Rk satisfies

P(p) = (x1(p), x2(p), . . . , xk(p))

for all p ∈ M , where x1, x2, . . . , xk is the standard Cartesian coordinate
system on Rk. Therefore

∂P
∂yj

=

(
∂x1

∂yj
,
∂x2

∂yj
, . . . ,

∂xk

∂yj

)
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for j = 1, 2, . . . , n. It follows that, for each p ∈ M ∩ U , the vectors
∂P
∂yj

∣∣∣∣
p

for j = 1, 2, . . . , n represent the first n columns of the non-singular k × k

matrix with entries
∂xi

∂yj
that is the Jacobian matrix at p of the transition

function between the smooth curvilinear oordinate systems (uj) on U and
the Cartesian coordinate system (xk). Therefore these vectors are linearly
independent, and thus span an n-dimensional subspace of Rk.

Let γ: Iγ →M be a smooth curve in M , where 0 ∈ Iγ and γ(Iγ) ⊂M∩U ,
and let γ(0) = p. Then γ(t) = P(γ(t)) for all t ∈ Iγ, and

dγ(t)

dt
=
dP(γ(t))

dt
=

(
dx1(γ(t))

dt
,
dx2(γ(t))

dt
, . . . ,

dxk(γ(t))

dt
,

)
.

Now
dxi(γ(t))

dt
=

n∑
j=1

∂xi

∂yj

∣∣∣∣
γ(t)

dyj(γ(t))

dt
.

It follows that

dγ(t)

dt
=
dP(γ(t))

dt
=

n∑
j=1

∂P
∂yj

∣∣∣∣
γ(t)

dyj(γ(t))

dt
.

This establishes the formula for the velocity vector
dγ(t)

dt
to the curve γ at

time t.
Now

dγ(t)

dt

∣∣∣∣
t=0

=
n∑
j=1

∂P
∂yj

∣∣∣∣
p

dyj(γ(t))

dt

∣∣∣∣
t=0

.

It follows that the velocity vector
dγ(t)

dt

∣∣∣∣
t=0

belongs to the n-dimensional

vector subspace of Rk spanned by the vectors

∂P
∂y1

∣∣∣∣
p

,
∂P
∂y2

∣∣∣∣
p

, . . . ,
∂P
∂yn

∣∣∣∣
p

.

Let a1, a2, . . . , an be real numbers. Then there exists a smooth curve γ: Iγ →
M in M , defined over some sufficiently small open interval Iγ containing zero,
such that

yj(γ(t)) = yj(p) + ajt
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for t ∈ Iγ and j = 1, 2, . . . , n. Then
dyj(γ(t))

dt

∣∣∣∣
t=0

= aj for j = 1, 2, . . . , n,

and therefore
dγ(t)

dt

∣∣∣∣
t=0

=
n∑
j=1

ai
∂P
∂yj

∣∣∣∣
p

.

Thus every element of the vector subspace of Rk spanned by

∂P
∂y1

∣∣∣∣
p

,
∂P
∂y2

∣∣∣∣
p

, . . . ,
∂P
∂yn

∣∣∣∣
p

.

is the velocity vector of some smooth curve in M passing through the point p.
The result follows.

Lemma 2.3 Let M be a smooth submanifold of Rk of dimension n, let
f :V → R be a smooth real-valued function defined over some subset V of
M that is open in M , and let p ∈ V . Then the function f determines a lin-
ear functional dfp:TpM → R on the tangent space TpM to M at the point p
characterized by the property that

dfp

(
dγ(t)

dt

∣∣∣∣
t=0

)
=
df(γ(t))

dt

∣∣∣∣
t=0

for all smooth curves γ: Iλ → V in V for which 0 ∈ Iλ and γ(0) = p.

Proof Let y1, y2, . . . , yk be a smooth curvilinear coordinate system defined
over some open set U in Rk, where p ∈ U and

M ∩ U = {u ∈ U : yj(u) = 0 for j > n},

and let γ: Iγ → M be a smooth curve in M , where 0 ∈ Iγ, γ(0) = p and
γ(Iγ) ⊂M ∩ U ∩ V . Then it follows from Lemma 2.1 and Lemma 2.2 that

d

dt

(
f(γ(t))

)∣∣∣∣
t=0

=
n∑
j=1

aj
∂f

∂yj

∣∣∣∣
p

,

where

aj =
dyj(γ(t))

dt

∣∣∣∣
t=0

for j = 1, 2, . . . , n. But

dγ(t)

dt

∣∣∣∣
t=0

=
n∑
j=1

aj
∂P
∂yj

∣∣∣∣
p

,
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where P :M → Rk denotes the inclusion function of M in Rk. Then

d

dt

(
f(γ(t))

)∣∣∣∣
t=0

=
n∑
j=1

aj
∂f

∂yj

∣∣∣∣
p

.

It follows that
df(γ(t))

dt

∣∣∣∣
t=0

= dfp

(
dγ(t)

dt

∣∣∣∣
t=0

)
,

where dfp:TpM → R is the function from TpM to R defined such that

dfp

(
n∑
j=1

aj
∂P
∂yj

∣∣∣∣
p

)
=

n∑
j=1

aj
∂f

∂yj

∣∣∣∣
p

for all (a1, a2, . . . , an) ∈ Rn. Now the tangent space TpM to M at p is an
n-dimensional vector space with basis

∂P
∂y1

∣∣∣∣
p

,
∂P
∂y2

∣∣∣∣
p

, . . . ,
∂P
∂yn

∣∣∣∣
p

,

and therefore the function from TpM to Rn that sends the tangent vector
n∑
j=1

aj
∂P
∂yj

∣∣∣∣
p

to (a1, a2, . . . , an) for all a1, a2, . . . , an ∈ R is an isomorphism

of real vector spaces. Also the function from Rn to R that sends the n-

tuple (a1, a2, . . . , an) to
n∑
j=1

aj
∂f

∂yj

∣∣∣∣
p

is a linear functional on Rn. It follows

that dfp:TpM → R is a linear functional on the tangent space TpM . This
linear functional is independent of the choice of the curvilinear coordinate
system y1, y2, . . . , yk on the open set U , since it can be characterized (without
reference to any such curvilinear coordinate system) as the linear functional

on TpM that maps the velocity vector dγ(t)
dt

∣∣∣
t=0

to
df(γ(t))

dt

∣∣∣∣
t=0

for all smooth

curves γ: Iγ →M in M for which 0 ∈ Iγ and γ(0) = p.

The set of all linear functionals on a real vector space is itself a real vector
space; it is the dual space of the vector space on which the linear functionals
are defined. The dual of the tangent space TpM to a smooth submanifold M
of a Euclidean space at a point p of M is referred to as the cotangent space
to M at the point p, and is denoted by T ∗pM . The elements of the cotangent
space T ∗pM therefore represent linear functionals on the tangent space TpM .
It follows from Lemma 2.3 that any smooth function f :V → R defined over
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an open set V in M determines at each point p of M an element dfp of the
cotangent space T ∗pM ; this element of T ∗pM is referred to as the differential
of the function f at the point p.

Let f and g be smooth real-valued functions defined over an open set V
in the smooth submanifold M of Rk, and let f · g denote the product of the
functions f and g, where (f · g)(v) = f(v)g(v) for all v ∈ V . It follows
directly from Lemma 2.3 and the Product Rule for differentiation that

d(f · g)p = g(p) dfp + f(p) dgp

for all p ∈ V . Moreover if f and g are smooth real-valued functions on
this open set V which satisfy f(v) = g(v) at all points v of some open
neighbourhood of a given point p of V then dfp = dgp.

Let f :V → R be a smooth real-valued function defined over some open
set V in a smooth submanifold M of some Euclidean space, and, given any
point p of V , let dfp ∈ T ∗pM be the differential of f at the point p. Then
dfp is a linear functional that maps tangent vectors at the point p to real
numbers. Given any vector Xp belonging to the tangent space TpM to M
at the point p we define Xp[f ] and 〈dfp, Xp〉 such that

Xp[f ] = 〈dfp, Xp〉 = dfp(Xp)

for all tangent vectors Xp ∈ TpM and for all smooth real-valued functions f
defined around the point p of the submanifold M . We refer to Xp[f ] as the
directional derivative of the smooth function f along the vector Xp.

One can readily verify that the directional derivatives of real-valued func-
tions along a tangent vector Xp at a point p of a smooth submanifold of some
Euclidean space satisfy the following properties:

(i) Xp[αf + βg] = αXp[f ] + βXp[g] for all real numbers α and β and
smooth functions f and g defined around the point p,

(ii) Xp[f · g] = Xp[f ] g(p) + f(p)Xp[g] for all smooth functions f and g
defined around the point p,

(iii) if f and g are smooth real-valued functions defined around p, and if
f |V = g|V for some open set V containing the point p, then Xp[f ] =
Xp[g].

2.3 Tangent Spaces to Smooth Manifolds

Let M be a smooth n-dimensional manifold of some Euclidean space Rk.
Then each point p of M determines an n-dimensional vector subspace TpM
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of the ambient space Rk that represents the tangent space to the smooth
submanifold M at the point p. The elements of this tangent space are tangent
vectors to M at the point p, and may be represented as velocity vectors
of smooth curves in M passing through the point p. Moreover, given any
smooth real-valued function f defined over an open subset of M that contains
the point p, and given any tangent vector Xp at the point p, we have defined
a quantity Xp[f ] that represents the directional derivative of the function f
along the tangent vector Xp.

The tangent space TpM to a smooth submanifold M of Rk at a point p of
M has thus been represented as a vector subspace of the ambient space Rk.
It is desirable however to extend the notions and basic properties of tangent
spaces and tangent vectors to smooth manifolds that do not come embedded
as submanifolds of Euclidean spaces. In particular one may wish to apply
the concepts of differential geometry to the study of General Relativity and
String Theory. But the four-dimensional curved space-time underlying the
theory of General Relativity does not have a natural embedding in any flat
finite-dimensional Euclidean space. And many examples of smooth manifolds
occur in mathematics that have no natural representation as submanifolds
of Euclidean spaces.

In order to effect this generalization, we represent tangent vectors at a
point p of a smooth n-dimensional manifold M as operators (or functions)
that map smooth functions defined around the point p to real numbers. These
tangent vectors satisfy certain basic properties that suffice to characterize
linear first order differential operators at the point p. We shall then prove
that these tangent vectors are the elements of an n-dimensional real vector
space TpM . This vector space is the tangent space to the smooth manifold M
at the point p.

We now set out this construction of tangent spaces in more detail.

Definition Let M be a smooth manifold of dimension n, and let p be a point
of M . We define a tangent vector Xp at the point p to be a operator that
associates a real number Xp[f ] to each smooth real-valued function f defined
throughout some open neigbourhood of p, where this operator satisfies the
following conditions:—

(i) Xp[αf+βg] = αXp[f ]+βXp[g] for all real numbers α and β and smooth
functions f and g defined around the point p;

(ii) Xp[f · g] = Xp[f ] g(p) + f(p)Xp[g] for all smooth functions f and g
defined around the point p;
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(iii) if f and g are smooth real-valued functions defined around p, and if
f |V = g|V for some open set V that contains the point p, then Xp[f ] =
Xp[g].

(Here f ·g denotes the product of the functions f and g, defined such that (f ·
g)(m) = f(m)g(m) for all m ∈ M , and f |V and g|V denote the restrictions
of the functions f and g to the open set V .)

The quantity Xp[f ] is referred to as the directional derivative of the func-
tion f along the vector Xp.

We say that a real-valued function f is defined around a point p of a
smooth manifold M if f is defined throughout some open neighbourhood of
p in M . A tangent vector to M at the point p is thus an operator Xp that
sends each smooth real-valued function f defined around the point p to a
real number Xp[f ], where this operator satisfies conditions (i), (ii) and (iii)
above.

If Xp and Yp are tangent vectors at the point p then, for any real numbers
λ and µ, λXp + µYp is also a tangent vector at the point p, where (λXp +
µYp)[f ] = λXp[f ] + µYp[f ] for all smooth real-valued functions f defined
around p. Moreover the operations of addition of tangent vectors and of
multiplication of tangent vectors by real numbers satisfy all the axioms that
must be satisfied by the algebraic operations on a real vector space. It
follows that the collection of all tangent vectors at the point p constitutes a
real vector space TpM , referred to as the tangent space to M at the point p.

Lemma 2.4 Let M be a smooth manifold, and let Xp be a tangent vector
at some point p of M . let c be a real-valued function on M that is constant
throughout M . Then Xp[c] = 0.

Proof Let c1 denote the constant function on M with value 1. Then

Xp[c1] = Xp[c1 · c1] = 2c1(p)Xp[c1] = 2Xp[c1],

and therefore Xp[c1] = 0. Thus if c = λc1 for some λ ∈ R then Xp[c] =
λXp[c1] = 0. The result follows.

Let ϕ:U → Rn be a smooth chart defined over an open set U in M . Then
there are smooth real-valued functions x1, x2, . . . , xn on U such that

ϕ(u) = (x1(u), x2(u), . . . , xn(u))

for all u ∈ U .
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Given any real numbers a1, a2, . . . , an, the operator sending any smooth
real-valued function f defined around some point p of U to

a1 ∂f

∂x1

∣∣∣∣
p

+ a2 ∂f

∂x2

∣∣∣∣
p

+ · · ·+ an
∂f

∂xn

∣∣∣∣
p

satisfies conditions (i)–(iii) and therefore represents a tangent vector at p
which we denote by

a1 ∂

∂x1

∣∣∣∣
p

+ a2 ∂

∂x2

∣∣∣∣
p

+ · · ·+ an
∂

∂xn

∣∣∣∣
p

.

Conversely, we shall show that any tangent vector at p is of this form for
suitable real numbers a1, . . . , an. The following lemma establishes the basic
result needed to prove this fact.

Lemma 2.5 Let M be a smooth manifold of dimension n and let p be a point
of M . Let f be a smooth function defined over some neighbourhood of the
point p. Let (x1, x2, . . . , xn) be a smooth coordinate system defined around the
point p. Then there exist smooth functions g1, g2, . . . , gn, defined over some
suitable open set U containing the point p, such that

f(u) = f(p) +
n∑
i=1

(
xi(u)− xi(p)

)
gi(u)

for all u ∈ U . Moreover

gi(p) =
∂f

∂xi

∣∣∣∣
p

for i = 1, 2, . . . , n.

Proof Without loss of generality, we may assume that f is a real-valued
function defined over some open ball B about the origin in Rn. We must
show that there exist smooth real-valued functions g1, g2, . . . , gn on B such
that

f(x) = f(0) + x1g1(x) + x2g2(x) + · · ·+ xngn(x)

for all x ∈ B. Now

f(x)− f(0) =

∫ 1

0

d

dt
(f(tx)) dt =

n∑
i=1

xi
∫ 1

0

(∂if)(tx) dt,

where ∂if =
∂f

∂xi
. Let

gi(x) =

∫ 1

0

(∂if)(tx) dt

for i = 1, 2, . . . , n. Then g1, g2, . . . , gn satisfy the required conditions.
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Proposition 2.6 Let M be a smooth manifold of dimension n, and let Xp

be a tangent vector at some point p of M . Let (x1, x2, . . . , xn) be a smooth
coordinate system around the point p. Then

Xp = a1 ∂

∂x1

∣∣∣∣
p

+ a2 ∂

∂x2

∣∣∣∣
p

+ · · ·+ an
∂

∂xn

∣∣∣∣
p

.

where ai = Xp[x
i]. If (y1, y2, . . . , yn) is another smooth coordinate system

around p then

Xp = b1
∂

∂y1

∣∣∣∣
p

+ b2
∂

∂y2

∣∣∣∣
p

+ · · ·+ bn
∂

∂yn

∣∣∣∣
p

,

where

bj =
n∑
i=1

ai
∂yj

∂xi

∣∣∣∣
p

(j = 1, 2, . . . , n).

Proof Let f be a smooth real-valued function defined around p. It fol-
lows from Lemma 2.5 that there exist smooth functions g1, g2, . . . , gn defined
around p such that

f(u) = f(p) +
n∑
i=1

(
xi(u)− xi(p)

)
gi(u)

for all points u belonging to some sufficiently small open set containing p.
Moreover

gi(p) =
∂f

∂xi

∣∣∣∣
p

for i = 1, 2, . . . , n.

Let hi(u) = xi(u) − xi(p). Now the operator Xp annihilates constant func-
tions, by Lemma 2.4. Therefore Xp[h

i] = Xp[x
i] = ai for all i, and hence

Xp[f ] =
n∑
i=1

(
Xp[h

i] gi(p) + hi(p)Xp[g
i]
)

=
n∑
i=1

ai
∂f

∂xi

∣∣∣∣
p

.

If (y1, y2, . . . , yn) is another smooth coordinate system around p then

∂f

∂xi
=

n∑
j=1

∂yj

∂xi
∂f

∂yj
,

by the Chain Rule for partial derivatives, and therefore

Xp = b1
∂

∂y1

∣∣∣∣
p

+ b2
∂

∂y2

∣∣∣∣
p

+ · · ·+ bn
∂

∂yn

∣∣∣∣
p

,
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where

bj =
n∑
i=1

ai
∂yj

∂xi

∣∣∣∣
p

(j = 1, 2, . . . , n),

as required.

Corollary 2.7 Let M be a smooth manifold of dimension n. Then the tan-
gent space TpM to M at any point p of M has dimension n. Moreover, given
any smooth coordinate system (x1, x2, . . . , xn) around p, the tangent vectors

∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

constitute a basis for the tangent space TpM .

Proof It follows immediately from Proposition 2.6 that these tangent vectors
span the tangent space TpM . It thus suffices to show that they are linearly
independent. Suppose that

n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

= 0

for some real numbers a1, a2, . . . , an. Then

0 =

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
[xj] =

n∑
i=1

ai
∂xj

∂xi

∣∣∣∣
p

= aj

for j = 1, 2, . . . , n. Thus the tangent vectors

∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

are linearly independent, as required.

Definition Let γ: I → M be a smooth curve in the smooth manifold M ,
where I is some open interval in R. Then Given t ∈ I, we define the velocity
vector of the curve γ at γ(t) to be the tangent vector γ′(t) at the point γ(t),
defined such that

γ′(t)[f ] =
df(γ(t))

dt

for all smooth real-valued functions f whose domain is an open subset of M
containing the point γ(t).
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Lemma 2.8 Let M be a smooth manifold, and let p be a point of M . Then
every tangent vector at p is the velocity vector of some smooth curve passing
through the point p.

Proof Let (x1, x2, . . . , xn) be a smooth coordinate system around the point p
chosen such that xi(p) = 0 for i = 1, 2, . . . , n. Let Xp be a tangent vector at
the point p. It follows from Proposition 2.6 that

Xp = a1 ∂

∂x1

∣∣∣∣
p

+ a2 ∂

∂x2

∣∣∣∣
p

+ · · ·+ an
∂

∂xn

∣∣∣∣
p

,

where ai = Xp[x
i] for i = 1, 2, . . . , n. Let γ: (−ε, ε)→M be the smooth curve

in M , defined on the open interval (−ε, ε) determined by some suitably small
positive number ε, which satisfies xi(γ(t)) = ait for i = 1, 2, . . . , n and for all
t ∈ (−ε, ε). It follows from the Chain Rule that

γ′(0)[f ] =
df(γ(t))

dt

∣∣∣∣
t=0

=
n∑
i=1

∂f

∂xi

∣∣∣∣
p

d(xi(γ(t))

dt

∣∣∣∣
t=0

=
n∑
i=1

ai
∂f

∂xi

∣∣∣∣
p

= Xp[f ]

for all smooth real-valued functions f defined around p. Thus γ′(0) = Xp.
The result follows.

2.4 Cotangent Spaces and Differentials

Let M be a smooth manifold of dimension n, let f :M → R be a smooth real-
valued function on M , and let p be a point of M . Then f determines a linear
functional dfp:TpM → R on the tangent space TpM to M at the point p,
where dfp(Xp) = Xp[f ] for all XpinTpM . Now the linear functionals on TpM
constitute a real vector space T ∗pM which is the dual space of TpM . This
vector space T ∗pM is referred to as the cotangent space to M at the point p,
and its elements are often referred to as covectors. The linear functional dfp
on TpM is thus an element of the cotangent space T ∗pM to M at the point p.

We use the notation 〈., .〉 to denote the natural pairing between the cotan-
gent space T ∗pM and the tangent space TpM to M at the point p, which is
defined such that

〈θp, Xp〉 = θp(Xp)

all θp ∈ T ∗pM and Xp ∈ TpM .

Definition Let M be a smooth manifold of dimension n, let p be a point
of M , and let f be a smooth real-valued function defined over some open
neighbourhood of the point p in M . The differential dfp of the function f at
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the point p is the element of the cotangent space T ∗pM which is defined such
that

〈dfp, Xp〉 = dfp(Xp) = Xp[f ]

for all Xp ∈ TpM .

Lemma 2.9 Let M be a smooth manifold of dimension n, let p be a point
of M , let (x1, x2, . . . , xn) be a smooth coordinate system defined over an open
neighbourhood of p in M , and let f be a smooth real-valued function that is
also defined over an open neighbourhood of p in M . Then

dfp =
n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip,

where dfp is the differential of the smooth function f at p, and where dxip is
the differential of the coordinate function xi at p.

Proof Let Xp ∈ TpM . Then there exist real numbers a1, a2, . . . , an such
that

Xp =
n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

.

It follows from the definition of the differential dfp of f at p that

〈dfp, Xp〉 =
n∑
j=1

aj
∂f

∂xj

∣∣∣∣
p

.

On replacing the smooth function f by the coordinate function xi, we find
that

〈dxip, Xp〉 =
n∑
j=1

aj
∂xi

∂xj

∣∣∣∣
p

= ai.

It follows that〈
n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip, Xp

〉
=

n∑
i=1

∂f

∂xi

∣∣∣∣
p

〈dxip, Xp〉 =
n∑
i=1

ai
∂f

∂xi

∣∣∣∣
p

= 〈dfp, Xp〉.

We have thus shown that〈
n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip, Xp

〉
= 〈dfp, Xp〉
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for all Xp ∈ TpM . It follows that

dfp =
n∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip,

as required.

Lemma 2.10 Let M be a smooth manifold of dimension n, let p be a point
of M , and let (x1, x2, . . . , xn) be a smooth coordinate system defined over an
open neighbourhood of p in M . Then〈

n∑
i=1

bi dx
i
p,

n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

〉
=

n∑
i=1

bia
i

for all (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Rn.

Proof 〈
n∑
i=1

bi dx
i
p,

n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

〉
=

n∑
i=1

bi

〈
dxip,

n∑
j=1

aj
∂

∂xj

∣∣∣∣
p

〉

=
n∑
i=1

n∑
j=1

bia
j ∂x

i

∂xj

∣∣∣∣
p

=
n∑
i=1

bia
i,

as required.

2.5 Derivatives of Smooth Maps

Lemma 2.11 Let ϕ:M → N be a smooth map between smooth manifolds
M and N , and let Xp be a tangent vector at some point p of M . Let

(ϕ∗Xp)[g] = Xp[g ◦ ϕ]

for all smooth real-valued functions g that are defined throughout some open
neighbourhood of ϕ(p) in N . Then the operator ϕ∗Xp is a tangent vector at
ϕ(p).
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Proof Let g and h be smooth real-valued functions defined around ϕ(p),
and let α and β be real numbers. Then

(ϕ∗Xp)[αg + βh] = Xp[α(g ◦ ϕ) + β(h ◦ ϕ)] = αXp[g ◦ ϕ] + βXp[h ◦ ϕ]

= α(ϕ∗Xp)[g] + β(ϕ∗Xp)[h],

(ϕ∗Xp)[g · h] = Xp[g ◦ ϕ]h(ϕ(p)) + g(ϕ(p))Xp[h ◦ ϕ]

= ϕ∗Xp[g]h(ϕ(p)) + g(ϕ(p))(ϕ∗Xp)[h]

Moreover if the functions g and h agree on some open set in N containing
ϕ(p) then the functions g ◦ ϕ and h ◦ ϕ agree on some open set containing p
(since ϕ:M → N is continuous), and therefore (ϕ∗Xp)[g] = (ϕ∗Xp)[h]. Thus
the operator ϕ∗Xp is a tangent vector at ϕ(p).

Definition Let ϕ:M → N be a smooth map between smooth manifolds M
and N , and let p be a point of M . The derivative of the smooth map ϕ
at the point p is defined to be the linear transformation ϕ∗:TpM → Tϕ(p)N
characterized by the property that

(ϕ∗Xp)[g] = Xp[g ◦ ϕ]

for all smooth real-valued functions g that are defined throughout some open
neighbourhood of ϕ(p) in N .

Lemma 2.12 Let ϕ:M → N be a smooth map between smooth manifolds
M and N , let p be a point of M , let (x1, . . . , xn) be a smooth coordinate
system defined throughout some open neighbourhood U of the point p in M ,
let (y1, . . . , yk) be a smooth coordinate system defined throughout some open
neighbourhood V of the point ϕ(p) in N , and let F 1, F 2, . . . , F k be the smooth
functions of n real variables, defined throughout some open neighbourhood of
the point (x1(p), x2(p), . . . , xn(p)) in Rn, that represent the smooth map ϕ
around p with respect to the coordinate systems on M and N , so that

yj(ϕ(u)) = F j(x1(u), x2(u), . . . , xn(u))

for j = 1, 2, . . . , k and for all u ∈ U ∩ ϕ−1(V ). Then

ϕ∗

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
=

k∑
j=1

bj
∂

∂yj

∣∣∣∣
ϕ(p)

,

where

bj =
n∑
i=1

ai
∂F j

∂xi

∣∣∣∣
p

.
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Proof Let g be a smooth real-valued function defined throughout some open
neighbourhood of ϕ(p) in N . Then

ϕ∗

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
[g] =

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
[g ◦ ϕ]

=
n∑
i=1

ai
∂(g ◦ ϕ)

∂xi

∣∣∣∣
p

=
n∑
i=1

k∑
j=1

ai
∂g

∂yj

∣∣∣∣
ϕ(p)

∂(yj ◦ ϕ)

∂xi

∣∣∣∣
p

=
n∑
i=1

k∑
j=1

ai
∂g

∂yj

∣∣∣∣
ϕ(p)

∂F j

∂xi

∣∣∣∣
p

=
k∑
j=1

bj
∂g

∂yj

∣∣∣∣
ϕ(p)

,

where

bj =
n∑
i=1

ai
∂F j

∂xi

∣∣∣∣
p

.

It follows that

ϕ∗

(
n∑
i=1

ai
∂

∂xi

∣∣∣∣
p

)
=

k∑
j=1

bj
∂

∂yj

∣∣∣∣
ϕ(p)

,

as required.

Let ϕ:M → N be a smooth map between smooth manifolds M and N ,
and let p be a point of M . Lemma 2.12 shows that the derivative ϕ∗:TpM →
Tϕ(p)N of the map ϕ at the point p is represented, with respect to the bases
of the tangent spaces TpM and Tϕ(p)N determined by smooth coordinate
systems around p and ϕ(p), by the Jacobian matrix of the smooth map
between open sets in Euclidean spaces that represents the map ϕ around p
with respect to these coordinate systems defined around p and ϕ(p).

43



3 Submanifolds of Smooth Manifolds

3.1 Submanifolds

Definition Let M be a smooth manifold of dimension n, let S be a subset
of M , and let r be an integer satisfying 0 ≤ r ≤ n. The subset S of M is
said to be a smooth submanifold of M of dimension r if, given any point p of
S, there exists a smooth chart (U,ϕ) for M , defined over some open set U
in M , such that p ∈ U and

U ∩ S = U ∩ ϕ−1(Pr),

where
Pr = {(s1, s2, . . . , sn) ∈ Rn : sj = 0 when r < j ≤ n}.

Lemma 3.1 Let M be a smooth manifold of dimension n, let S be a subset
of M , and let r be an integer satisfying 0 ≤ r ≤ n. The subset S is a smooth
r-dimensional submanifold of M if and only if, given any point p of S, there
exists an open set U and a smooth coordinate system y1, y2, . . . , yn for M
defined over U such that

U ∩ S = {u ∈ U : yj(u) = 0 when r < j ≤ n}.

Proof Let p be a point of M . Let (U,ϕ) be a smooth chart for M and let

ϕ(u) = (y1(u), y2(u), . . . , yn(u))

for all u ∈ U . Then U ∩ S = U ∩ ϕ−1(Pr), where

Pr = {(s1, s2, . . . , sn) ∈ Rn : sj = 0 when r < j ≤ n},

if and only if S is the subset of U which is the set of common zeros of the
coordinate functions yr+1, . . . , yn on U . The result follows.

Proposition 3.2 Let M be a smooth manifold of dimension n and let S
be a smooth submanifold of M of dimension r. Then S is itself a smooth
manifold of dimension r. The topology on this smooth manifold S is the
subspace topology. A smooth coordinate system for S around a point p of S
may be obtained by taking a coordinate system y1, y2, . . . , yn for M defined
over some open subset U of M , where p ∈ U and

U ∩ S = {u ∈ U : yj(u) = 0 when r < j ≤ n},

and then restricting the coordinate functions y1, y2, . . . , yr to U ∩ S so as to
obtain a coordinate system for S defined around the point p.
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Proof A subset of a Hausdorff space is itself a Hausdorff space (with the
subspace topology). Also there is some countable collection of open sets in M
that is a basis for the topology on M . (Every open set in M is then a count-
able union of open sets belonging to this countable basis.) The intersection
of the open sets in this countable basis with the submanifold S constitute a
countable basis for the subspace topology on S. Now any point p of S, there
exists a smooth chart (U,ϕ) for M such that U ∩ S = U ∩ ϕ−1(Pr). Then
the restriction ϕS of ϕ:U → Rn maps U ∩S homeomorphically onto an open
subset of Pr. We conclude that S is a topological manifold of dimension r.

Moreover there is a smooth atlas for M consisting of those continuous
charts that are the restrictions (U ∩ S, ϕS) to S of smooth charts (U,ϕ) for
M that satisfy U ∩ S = U ∩ϕ−1(Pr). Indeed if (U,ϕ) and (V, ψ) are smooth
charts for M , and if U ∩ S = U ∩ ϕ−1(Pr) and V ∩ S = V ∩ ψ−1(Pr), then
the charts (U,ϕ) and (V, ψ) are smoothly compatible, and therefore their
restrictions to S are also smoothly compatible. Thus S, with the subspace
topology, and with the smooth structure determined by the smooth atlas just
described, as a smooth manifold of dimension r.

3.2 The Inverse Function Theorem

Theorem 3.3 Inverse Function Theorem. Let ϕ:U → Rn be a smooth func-
tion defined over some open set U of Rn, and let p ∈ U . Suppose that
the Jacobian matrix representing the derivative of ϕ at the point p is non-
singular. Then there exists an open set W in Rn, where p ∈ W and W ⊂ U ,
which is mapped diffeomorphically by ϕ onto an open set ϕ(W ) in Rn.

We do not present a proof of this theorem here. The following two results
(Theorem 3.4 and Corollary 3.5) are results concerning smooth manifolds
and smooth maps that are equivalent to the Intermediate Value Theorem.

Theorem 3.4 Let M and N be smooth manifolds of the same dimension,
let ϕ:M → N be a smooth map, and let p ∈ M . Suppose that the derivative
ϕ∗:TpM → Tϕ(p)N of ϕ at the point p is an isomorphism. Then there exists
an open set W in M , where p ∈ W , which is mapped diffeomorphically by ϕ
onto an open set ϕ(W ) in N .

Proof Let n be the common dimension of M and N , let x1, x2, . . . , xn be a
smooth local coordinate system for the smooth manifold M , defined through-
out some open neighbourhood of the point p, and let y1, y2, . . . , yn be a
smooth local coordinate system for the smooth manifold N defined around
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the point ϕ(p). Then there exist smooth functions F 1, F 2, . . . , F n, defined
around the point (x1(p), x2(p), . . . , xn(p), such that

yj(ϕ(u)) = F j(x1(u), x2(u), . . . , xn(u))

for all points u of some sufficiently small open neighbourhood of U in p. But
then

ϕ∗

(
∂

∂xk

∣∣∣∣
p

)
=

n∑
j=1

∂F j

∂xk

∣∣∣∣
p

∂

∂yj

∣∣∣∣
ϕ(p)

(see Lemma 2.12). Thus if ϕ∗:TpM → Tϕ(p)N is an isomorphism then the
Jacobian matrix

∂F j

∂xk

∣∣∣∣
p

is non-singular. The result then follows on applying the Inverse Function
Theorem (Theorem 3.3).

Corollary 3.5 Let M be a smooth manifold of dimension n, let U be an
open set in M , and let x1, x2, . . . , xn be smooth real-valued functions defined
over U . Suppose that the differentials

dx1
p, dx

2
p, . . . , dx

n
p

of these functions at some point p of M are linearly independent and thus
constitute a basis of the cotangent space T ∗pM to M at the point p. Then
there exists an open set W in M , where p ∈ W , such that the restrictions
of the smooth functions x1, x2, . . . , xn to W constitute a smooth coordinate
system defined over M .

Proof Let ϕ:U → Rn be defined such that

ϕ(p) = (x1(p), x2(p), . . . , xn(p))

for all p ∈ U , and let y1, y2, . . . , yn be a smooth coordinate system for M
defined around p. Then

dxjp =
n∑
k=1

∂xj

∂yk

∣∣∣∣
p

dykp .

(see Lemma 2.9). Now the differentials

dy1
p, dy

2
p, . . . , dy

n
p
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constitute a basis of the cotangent space T ∗pM to M at the point p. It follows
that if the differentials

dx1
p, dx

2
p, . . . , dx

n
p

also constitute a basis of this vector space then the Jacobian matrix with en-

tries
∂xj

∂yk

∣∣∣∣
p

is a non-singular matrix. It then follows from the Inverse Function

Theorem (Theorem 3.3) that the map expressing x1, x2, . . . , xn in terms of
y1, y2, . . . , yn maps some open neighbourhood of (y1(p), y2(p), . . . , ym(p)) dif-
feomorphically onto some open neighbourhood of (x1(p), x2(p), . . . , xm(p)) in
Rn. It follows from this that the restrictions of the smooth real-valued func-
tions x1, x2, . . . , xn to some sufficiently small open neighbourhood W of p are
the components of some smooth chart for M with domain W , as required.

3.3 Zero Sets of Smooth Functions

Proposition 3.6 Let M be a smooth manifold of dimension n, and let

S = {p ∈M : f j(p) = 0 for j = 1, 2, . . . , k},

where f 1, f 2, . . . , fk are smooth real-valued functions on M . Suppose that,
given any point p of S, the differentials

df 1
p , df

2
p , . . . , df

k
p

of f1, f2, . . . , fk at the point p are linearly independent elements of the cotan-
gent space T ∗pM . Then S is a smooth submanifold of M of dimension n− k.

Proof Let p be a point of S, and let x1, x2, . . . , xn be smooth local coordi-
nates defined around the point p. Then the differentials

dx1
p, dx

2
p, . . . , dx

n
p

constitute a basis of the cotangent space. Now the differentials

df 1
p , df

2
p , . . . , df

k
p

are linearly independent. It follows from basic linear algebra that there exist
distinct indices i1, i2, . . . , ink

such that the differentials

dxi1p , , dx
i2
p , . . . , dx

in−k
p , df 1

p , df
2
p , . . . , df

k
p

constitute a basis of the cotangent space T ∗pM . We may relabel the smooth
coordinate functions x1, x2, . . . , xn so that ij = j for j = 1, 2, . . . , n − k.
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It then follows from Corollary 3.5 that there exists an open set W , where
p ∈ W , such that the restrictions of the smooth functions

x1, x2, . . . , xn−k, f 1, f 2, . . . , fk

This proves that S is a smooth submanifold of M , of dimension n − k (see
Lemma 3.1).

Proposition 3.7 Let M and N be smooth manifolds of dimensions m and n
respectively, let ϕ:M → N be a smooth map, let Q be a smooth submanifold
of N of dimension k, and let P = ϕ−1(Q). Suppose that

Tϕ(p)N = ϕ∗(TpM) + Tϕ(p)Q

for all p ∈ P . Then P is a smooth submanifold of M of dimension m+k−n.

Proof Let p0 be a point of P . It follows from the definition of submanifolds
that there exists an open set U in N , where ϕ(p0) ∈ U , and smooth functions
g1, g2, . . . , gn−k on U such that

dg1, dg2, . . . , dgn−k

are linearly independent at each point of U and

U ∩Q = {u ∈ U : gi(u) = 0 for i = 1, 2, . . . , n− k}.

Let f i be the smooth real-valued function on ϕ−1(U) defined such that f i =
gi ◦ ϕ. Then

P ∩ ϕ−1(U) = {v ∈ ϕ−1(U) : f i(v) = 0 for i = 1, 2, . . . , n− k}.

We now show that the differentials

df 1, df 2, . . . , dfn−k

are linearly independent at each point p of P ∩ϕ−1(U). Now the differentials
dg1, dg2, . . . , dgn−k are linearly independent at ϕ(p) and therefore there exist
tangent vectors

(Z1)ϕ(p), (Z1)ϕ(p), . . . (Zn−k)ϕ(p)

to N at ϕ(p) which satisfy

〈dgiϕ(p), (Zj)ϕ(p)〉 = δij,
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where δij is the Kronecker delta, equal to 1 when i = j, and equal to zero
otherwise. Now Tϕ(p)N = ϕ∗(TpM) + Tϕ(p)Q. It follows that there exist
tangent vectors

(X1)p, (X1)p, . . . (Xn−k)p

to M at p and tangent vectors

(Y1)ϕ(p), (Y1)ϕ(p), . . . (Yn−k)ϕ(p)

to N at ϕ(p) such that

(Zi)ϕ(p) = ϕ∗(Xi)p + (Yi)ϕ(p) for i = 1, 2, . . . , n− k.

Then

δij = 〈dgiϕ(p), (Zj)ϕ(p)〉 = 〈dgiϕ(p), ϕ∗(Xj)p〉+ 〈dgiϕ(p), (Yj)ϕ(p)〉 = 〈df ip, (Xj)p〉

for i, j = 1, 2, . . . , n− k, because

〈dgiϕ(p), ϕ∗(Xj)p〉 = 〈d(g ◦ ϕ)ip, (Xj)p〉 = 〈df ip, (Xj)p〉

and
〈dgiϕ(p), ϕ∗Yϕ(p)〉 = 0 for all Yϕ(p) ∈ Tϕ(p)N.

Thus if c1, c2, . . . , cn−k are real numbers which satisfy
n−k∑
i=1

ci df
i
p = 0 then

0 =
n−k∑
i=1

ci 〈df ip, (Xj)p =
n−k∑
i=1

ciδ
i
j = cj

for j = 1, 2, . . . , n − k. Thus the differentials df 1, df 2, . . . , dfn−k are linearly
independent at the point p of P∩ϕ−1(U). It then follows from Proposition 3.6
that P ∩ ϕ−1(U) is a submanifold of M of dimension m − n + k. We have
thus shown that each point p0 of P has an open neighbourhood V in M such
that P ∩ V is a submanifold of M of dimension m − n + k. It then follows
from the definition of submanifolds that P is itself a submanifold of M of
dimension m− n+ k, as required.

Corollary 3.8 Let M and N be smooth manifolds of dimensions m and n
respectively, let ϕ:M → N be a smooth map, let q be a point of N , and let
P = ϕ−1({q}). Suppose that the derivative ϕ∗:TpM → TqN of ϕ is surjective
at each point p of P . Then P is a smooth submanifold of M of dimension
m− n.
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4 Fibre Bundles and Vector Bundles

4.1 Introduction to Tangent Bundles

Let M be a smooth manifold of dimension n. Given a point p of M , the
tangent space TpM to M at p is defined to be the real vector space of dimen-
sion n whose elements are operators Xp that associate a real number Xp[f ]
to each smooth real-valued function f defined around p, and that satisfy the
following three conditions:—

(i) Xp[αf+βg] = αXp[f ]+βXp[g] for all real numbers α and β and smooth
functions f and g defined around the point p;

(ii) Xp[f · g] = Xp[f ] g(p) + f(p)Xp[g] for all smooth functions f and g
defined around the point p;

(iii) if f and g are smooth real-valued functions defined around p, and if
f |V = g|V for some open set V that contains the point p, then Xp[f ] =
Xp[g].

(Here f ·g denotes the product of the functions f and g, defined such that (f ·
g)(m) = f(m)g(m) for all m ∈ M , and f |V and g|V denote the restrictions
of the functions f and g to the open set V .)

If (x1, x2, . . . , xn) is a smooth local coordinate system defined around the
point p, and if Xp is a tangent vector at the point p, then there exist real
numbers v1, v2, . . . , vn such that

Xp = v1 ∂

∂x1

∣∣∣∣
p

+ v2 ∂

∂x2

∣∣∣∣
p

+ · · ·+ vn
∂

∂xn

∣∣∣∣
p

.

Then

Xp[f ] = v1 ∂f

∂x1

∣∣∣∣
p

+ v2 ∂f

∂x2

∣∣∣∣
p

+ · · ·+ vn
∂f

∂xn

∣∣∣∣
p

for all smooth functions f defined around the point p. Moreover the function
from Rn to TpM that sends each element (v1, v2, . . . , vn) of Rn to the tangent

vector
n∑
j=1

vj
∂

∂xj

∣∣∣∣
p

is an isomorphism of real vector spaces.

Let p and q be points of M where p 6= q. Then the tangent spaces TpM
and TqM are disjoint, since the elements of TpM and TqM are operators
acting on smooth real-valued functions defined around the points p and q
respectively. Let TM be the union

⋃
p∈M TpM of all the tangent spaces of

the smooth manifold M . Then there is a surjective function πTM :TM →M ,
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where πTM(Xp) = p for all p ∈ M and Xp ∈ TpM . Note that π−1
TM({p}) =

TpM for all p ∈M .
Now M is a smooth manifold, and therefore there exists a smooth atlas for

M which we can represent as a collection ((Uα, ϕα) : α ∈ A) of smooth charts
for M , indexed by some set A. The domains of the charts in this smooth
atlas cover the manifold M and thus M =

⋃
α∈A Uα. Moreover, for each

α ∈ A, the function ϕα:Uα → Rn maps the open set Uα diffeomorphically
onto an open set in Rn, and therefore there are smooth real-valued functions
x1

[α], x
2
[α], . . . , x

n
[α] defined over Uα such that

ϕα(p) = (x1
[α](p), x

2
[α](p), . . . , x

n
[α](p))

for all p ∈ Uα. The partial derivative operators determined by this smooth
coordinate system then determine a basis

∂

∂x1
[α]

∣∣∣∣∣
p

,
∂

∂x2
[α]

∣∣∣∣∣
p

, . . . ,
∂

∂xn[α]

∣∣∣∣∣
p

for the tangent space TpM at each point p of Uα. It follows that the smooth
chart (Uα, ϕα) determines a function ψα:Uα × Rn → TM from Uα × Rn to
TM , where

ψα(p, (v1, v2, . . . , vn)) = v1 ∂

∂x1
[α]

∣∣∣∣∣
p

+ v2 ∂

∂x2
[α]

∣∣∣∣∣
p

+ · · ·+ vn
∂

∂xn[α]

∣∣∣∣∣
p

for all p ∈ Uα and (v1, v2, . . . , vn) ∈ Rn. Then πTM(ψα(p,v)) = p for all
p ∈ Uα and v ∈ Rn. Moreover the function ψα determines a one-to-one
correspondence between elements of the set Uα×Rn and elements of the set
π−1
TM(Uα) of tangent vectors to M at points of Uα.

Let p be a point of Uα ∩ Uβ for some α, β ∈ A, and let Xp be a tan-
gent vector to M at p. Then there exist real numbers v1, v2, . . . , vn and
w1, w2, . . . , wn such that

Xp = ψα(p, (w1, w2, . . . , wn)) =
n∑
i=1

wi
∂

∂xi[α]

∣∣∣∣∣
p

and

Xp = ψβ(p, (v1, v2, . . . , vn)) =
n∑
j=1

vj
∂

∂xj[β]

∣∣∣∣∣
p

.

Now
∂

∂xj[β]

=
n∑
k=1

∂xk[α]

∂xj[β]

∂

∂xk[α]

,
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and therefore

n∑
k=1

wi
∂

∂xi[α]

∣∣∣∣∣
p

= Xp =
n∑
i=1

n∑
j=1

vj
∂xi[α]

∂xj[β]

∣∣∣∣∣
p

∂

∂xi[α]

∣∣∣∣∣
p

.

It follows that

wi =
n∑
j=1

(Jαβ(p))ijv
j,

and thus w = Jαβ(p)(v), where

v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn)

and where Jαβ(p): Rn → Rn is the invertible linear operator on Rn represented
by the non-singular n × n matrix whose entry (Jαβ(p))ij in the ith row and

jth column is the value of the partial derivative
∂xi[α]

∂xj[β]

at the point p. Thus

ψβ(p,v) = Xp = ψα(p,w) = ψα(p, Jαβ(p)(v)).

We deduce from this that

ψβ(p,v) = ψα(p, ταβ(p,v))

for all p ∈ Uα ∩ Uβ and v ∈ Rn, where ταβ: (Uα ∩ Uβ) × Rn → Rn is the
smooth map defined such that

ταβ(p,v) = Jαβ(p)(v)

for all p ∈ Uα ∩ Uβ and v ∈ Rn.
Let us now summarize the main features of the configuration that we have

been investigating. Given a smooth manifold M , we have constructed a set
TM and a surjective function πTM :TM →M . The elements of the set TM
are the tangent vectors to the smooth manifold M , and the function πTM is
defined such that πTM(Xp) = p for all p ∈ M and for all Xp ∈ TpM . Also
the subset π−1

TM({p}) of {p} is a real vector space for all p ∈M .
Given a smooth atlas for M , represented by an indexed family ((Uα, ϕα) :

α ∈ A) of smooth charts for M , we have constructed functions ψα:Uα×Rn →
TM that satisfy πTM(ψα(p,v)) = p for all p ∈ Uα and v ∈ Rn. Moreover,
given any point p of Uα, the function from Rn to TpM that sends v ∈ Rn to
ψα(p,v) is an isomorphism of real vector spaces. We have also shown that,
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given α, β ∈ A for which Uα ∩ Uβ is non-empty, there exists a smooth map
ταβ: (Uα ∩ Uβ)× Rn → Rn such that

ψβ(p,v) = ψα(p, ταβ(p,v))

for all p ∈ Uα ∩ Uβ and v ∈ Rn. Moreover the function sending v to τ(p,v)
is an invertible linear operator on Rn for all for all p ∈ Uα ∩ Uβ.

We have not so far introduced any topology or smooth structure on the
set TM of tangent vectors. However one can define a natural topology on
the set TM which gives this set the structure of a topological manifold of
dimension 2n, where n is the dimension of the smooth manifold M . Moreover
this manifold admits a natural smooth atlas which gives it the structure of a
smooth manifold. Let TM therefore be regarded as a smooth manifold, with
this natural topology and smooth structure. Then the surjective function
πTM :TM → M is a smooth function, and, for each α ∈ A, the function
ψα:Uα × Rn → TM is smooth, and moreover it maps its domain Uα ×
Rn diffeomorphically onto the open subset π−1

TM(Uα) of TM . The smooth
manifold TM and the smooth map πTM :TM → M constitute the tangent
bundle of the smooth manifold M .

It is not difficult to describe a collection of charts on TM that constitutes
a smooth atlas defining the smooth structure on TM . Indeed let ϕ:U → Rn

be a smooth chart, mapping some subset U of M diffeomorphically onto
an open set in Rn, and let x1, x2, . . . , xn be the corresponding coordinate
functions on U , where

ϕα(p) = (x1
[α](p), x

2
[α](p), . . . , x

n
[α](p))

for all p ∈ U . Then there is a function ϕ̃: π−1
TM(U)→ R2n defined such that

ϕ̃

(
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

)
= (x1(p), x2(p), . . . , xn(p), v1, v2, . . . , vn)

for all p ∈ U and (v1, v2, . . . , vn) ∈ Rn. This function ϕ̃ is then a smooth chart
for the smooth manifold TM defined over π−1

TM(U), where TM is provided
with natural topology and smooth structure referred to above.

Now we could continue this discussion of the tangent bundle of a smooth
manifold by introducing directly the definition of the natural topology and
smooth structure on the set TM and proving that TM , with this topology
and smooth structure, is indeed a smooth manifold of dimension 2m. How-
ever the tangent bundle of a smooth manifold is just one example of a smooth
vector bundle over that manifold. It makes sense therefore to establish the
existence and properties of the topology and smooth structure on TM as a
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special case of a more general result concerning vector bundles. Moreover
a vector bundle is a special type of fibre bundle. We therefore develop the
theory of smooth fibre bundles, which can then be applied to vector bundles
in general and, in particular, to the tangent bundle of a smooth manifold.

4.2 Products of Smooth Manifolds

Let M and N be topological manifolds of dimensions m and n respectively.
The Cartesian product M × N of M and N carries a topology, known as
the product topology, which is determined by the topologies on M and N . A
subset of M × N is open with respect to the product topology if and only
if it is a union of subsets of M ×N that are of the form U × V , where U is
open in M and V is open in N . Thus if U and V are open sets in M and N
respectively, then U × V is an open set in M × N . An open set in M × N
need not itself be of the form U × V , where U and V are open in M and N
respectively, but it will always be a union of sets of this form.

Proposition 4.1 Let M and N be topological manifolds of dimensions m
and n respectively. Then the Cartesian product M × N of M and N , with
the product topology, is a topological manifold of dimension m+ n.

Proof First we verify that M ×N is a Hausdorff space. Now M and N are
both Hausdorff spaces. Let (p1, q1) and (p2, q2) be points of M ×N . Suppose
that (p1, q1) 6= (p2, q2). Then either p1 6= p2 or else q1 6= q2. If p1 6= p2,
then there exist open sets U1 and U2 in M such that p1 ∈ U1, p2 ∈ U2 and
U1 ∩ U2 = ∅, because M is a Hausdorff space. But then (p1, q1) ∈ U1 × N ,
(p2, q2) ∈ U2 × N , the sets U1 × N and U2 × N are open in M × N , and
(U1 × N) ∩ (U2 × N) = ∅. Similarly if q1 6= q2 then there exist open sets
V1 and V2 in N such that q1 ∈ V1, q2 ∈ V2 and V1 ∩ V2 = ∅, because N is
a Hausdorff space. But then (p1, q1) ∈ M × V1, (p2, q2) ∈ M × V2, the sets
M × V1 and M × V2 are open in M ×N , and (M × V1) ∩ (M × V2) = ∅. We
conclude that the product space M ×N is indeed a Hausdorff space.

The definition of topological manifolds also ensures that there are count-
able collections C and D of open sets in M and N respectively which cover
these manifolds, where each of the open sets in the collection C is homeo-
morphic to an open set in Rm, where m = dimM , and where each of the
open sets in the collection D is homeomorphic to an open set in Rn, where
n = dimN . The collection of subsets of M ×N that are of the form U × V ,
where U ∈ C and V ∈ D, is then a countable collection of open sets which
covers the product space M×N , and moreover U×V is homeomorphic to an
open set in Rm+n for all U ∈ C and V ∈ D. Thus the product M ×N of the
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topological manifolds M and N it itself a topological manifold of dimension
m+ n, as required.

Lemma 4.2 Let M and N be topological manifolds of dimensions m and n
respectively, let A be a smooth atlas on M , let B a smooth atlas on N , and
let C be the collection of charts on the product manifold M ×N of the form
(U ×V, ϕ×ψ), where (U,ϕ) ∈ A and (V, ψ) ∈ B, and where ϕ×ψ:U ×V →
Rm × Rn is defined such that (ϕ× ψ)(u, v) = (ϕ(u), ψ(v)) for all u ∈ U and
v ∈ V . Then C is a smooth atlas on M ×N .

Proof The product space Rm × Rn is isomorphic, as a real vector space,
to Rm+n, and moreover the natural isomorphism between these real vector
spaces of dimension m+n is also a homeomorphism. Each map (U×V, ϕ×ψ)
belonging to the collection C is a continuous chart mapping the open set U×V
in M × V homeomorphically onto an open set in Rm × Rn. The domains of
these charts cover the product space M ×N . It only remains to verify that
any two continuous charts in the atlas C are smoothly compatible.

Let (U1 × V1, ϕ1 × ψ1) and (U2 × V2, ϕ2 × ψ2) be charts belonging to
the atlas C on M × N , where (U1, ϕ1) and (U2, ϕ2) are smooth charts on
M belonging to the atlas A, and where (V1, ψ1) and (V2, ψ2) are smooth
charts on N belonging to the atlas B. The charts (U1, ϕ1) and (U2, ϕ2)
are also smoothly compatible, and therefore there exists a diffeomorphism
σ:ϕ1(U1∩U2)→ ϕ2(U1∩U2) such that σ(ϕ1(u)) = ϕ2(u) for all u ∈ U1∩U2.
Similarly there exists a diffeomorphism τ :ψ1(V1 ∩ V2) → ψ2(V1 ∩ V2) such
that τ(ψ1(v)) = ψ2(v) for all v ∈ V1 ∩ V2. Let (σ × τ)(x,y) = (σ(x), τ(y))
for all x ∈ ϕ1(U1 ∩ U2) and for all y ∈ ψ1(V1 ∩ V2). Then

σ × τ :ϕ1(U1 ∩ U2)× ψ1(V1 ∩ V2)→ ϕ2(U1 ∩ U2)× ψ2(V1 ∩ V2)

is a diffeomorphism. This diffeomorphism is the transition function between
the continuous charts (U1 × V1, ϕ1 × ψ1) and (U2 × V2, ϕ2 × ψ2) on M ×N .
Therefore these continuous charts belonging to C are smoothly compatible.
It follows that C is a smooth atlas on M ×N .

Let M and N be smooth manifolds of dimension m and n respectively.
It follows from Proposition 4.1 and Lemma 4.2 that the Cartesian product
M × N may be regarded as a smooth manifold of dimension m + n. The
topology on this smooth manifold is the product topology. Let U be an open
set in M which is the domain of a smooth chart represented by smooth local
coordinate functions x1, x2, . . . , xm. Also let V be an open set in N which
is the domain of a smooth chart represented by smooth local coordinate
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functions y1, y2, . . . , yn. Let z1, z2, . . . , zm+n be the real-valued functions on
U × V defined such that

zj(u, v) =

{
xj(u) if 1 ≤ j ≤ m;
yj−m(v) if m+ 1 ≤ j ≤ m+ n.

Then U × V is the domain of a smooth chart on M ×N represented by the
smooth local coordinate functions z1, z2, . . . , zm+n.

4.3 Topological Fibre Bundles

Definition Let F , E and B be a topological spaces, and let πE:E → B be a
continuous surjective map. The topological space E and the continuous map
πE:E → B constitute a topological fibre bundle over B with total space E,
base space B, fibre F and projection map πE:E → B provided that, given
any point p of B, there exists an open set U containing p and a continuous
map ψ:U × F → E which satisfies the following conditions:

(i) the function ψ maps U × F homeomorphically onto π−1
E (U);

(ii) πE(ψ(u, f)) = u for all u ∈ U and f ∈ F ;

Proposition 4.3 Let B and F be topological spaces, let E be a set, let
πE:E → B be a surjective function, let (Uα : α ∈ A) be collection of open
sets in B indexed by a set A, and, for all α, β ∈ A, let ψα:Uα × F → E and
ταβ: (Uα∩Uβ)×F → F be functions that satisfy the following conditions:—

(i)
⋃
α∈A Uα = B,

(ii) πE(ψα(u, f)) = u for all α ∈ A, u ∈ Uα and f ∈ F ;

(iii) the function ψα:Uα×F → E maps U ×F bijectively onto π−1
E (Uα) for

all α ∈ A;

(iv) ψβ(u, f) = ψα(u, ταβ(u, f)) for all α, β ∈ A, u ∈ Uα ∩ Uβ and f ∈ F ;

(v) the function ταβ: (Uα ∩ Uβ)× F → F is continuous for all α, β ∈ A.

Then there exists a topology on the set E characterized by the property that,
for each α ∈ A, the function ψα:Uα×F → E maps Uα×F homeomorphically
onto π−1

E (Uα). The surjective function πE:E → B is continuous with respect
to this topology, and the topological space E and the continuous map πE:E →
B together constitute a topological fibre bundle over the topological space B.
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Proof We first define a topology on E. The open sets in E in this topology
are those subsets W of E with the property that ψ−1

α (W ) is open in Uα × F
for all α ∈ A. Note that the empty set and the whole set are open in E. For
each α ∈ A the preimage under ψα of any union of open sets in E is the union
of those preimages and is thus a union of open sets in Uα×F . But any union
of open sets in a topological space is an open set. It follows that the preimage
of any union of open sets in E under each function ψα:Uα × F → E is an
open set in Uα × F . Therefore any union of open sets in E is itself an open
set. Also, for each α ∈ A, the preimage under ψα of any finite intersection of
open sets in E is the intersection of those preimages and is thus an open set
in Uα × F , and therefore any finite intersection of open sets in E is itself an
open set. We have thus verified that there is a well-defined topology on E,
where a subset W of E is open in E if and only if ψ−1

α (W ) is open in Uα×F
for all α ∈ A.

The composition function πE ◦ ψα:Uα × F → U is continuous, since

πE(ψα(u, f)) = u

for all u ∈ Uα. It follows that ψ−1
α (π−1

E (V )) is open in Uα×F for every open
set V in B. The definition of the topology on E then ensures that π−1

E (U)
is open in the topological space E for every open set V in B. We conclude
from this that the function πE:E → B is continuous.

Next we show that, for each α ∈ A, the function ψα:Uα × F → E maps
its domain Uα × F homeomorphically onto π−1

E (Uα). Now the definition of
the topology on E ensures that the function ψα is continuous. This function
also maps Uα × F bijectively onto π−1

E (Uα). A continuous bijection is a
homeomorphism if and only if it maps open sets to open sets. Thus, in order
to prove that ψα maps Uα×F homeomorphically onto its image in E, it only
remains to show that ψα(V ) is open in E for every open set V in Uα × F .

Now, given α, β ∈ A, there is a continuous map ταβ: (Uα ∩ Uβ)× F → F
such that ψβ(u, f) = ψα(u, ταβ(u, f)) for all u ∈ Uα ∩ Uβ and f ∈ F . The
map ταβ then determines a continuous map χαβ: (Uα∩Uβ)×F → (Uα∩Uβ)×F
from (Uα∩Uβ)×F to itself, where χ(u, f) = (u, ταβ(u, f)) for all u ∈ Uα∩Uβ
and f ∈ F . Now if (u, f) ∈ Uβ × F , (u′, f ′) ∈ Uα × F and if ψβ(u, f) =
ψα(u′, f ′) then

u = πE(ψβ(u, f)) = πE(ψα(u′, f ′)) = u′

and
ψα(u, f ′) = ψβ(u, f) = ψα(u, ταβ(u, f)),

and therefore u ∈ Uα ∩ Uβ and f ′ = ταβ(u, f). Thus if V is an open set in
Uα × F then

ψ−1
β (ψα(V )) = {(u, f) ∈ (Uα ∩ Uβ)× F : (u, ταβ(u, f)) ∈ V } = χ−1

αβ(V )
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for all β ∈ A, and therefore ψ−1
β (ψα(V )) is an open set in Uβ×F for all β ∈ A.

It follows from the definition of the topology on E that ψα(V ) is an open set
in E for all α ∈ A and for all open sets V in Uα × F . Thus the continuous
injective function ψα:Uα × F → E maps open subsets of Uα × F to open
subsets of E. This function therefore maps Uα × F → E homeomorphically
onto its range π−1

E (Uα).

Lemma 4.4 Let B and F be Hausdorff spaces, let E be a topological space,
and let πE:E → B be a topological fibre bundle over B with fibre F and total
space E. Then the total space E of this fibre bundle is a Hausdorff space.

Proof Let e1 and e2 be points of E, where e1 6= e2. Suppose that πE(e1) 6=
πE(e2). The topological space B is a Hausdorff space. Therefore there exist
open sets V1 and V2 in B such that πE(e1) ∈ V1, πE(e2) ∈ V2 and V1∩V2 = ∅.
Now we have already shown that the function πE:E → B is continuous. It
follows that π−1

E (V1) and π−1
E (V2) are open sets in E. Moreover e1 ∈ π−1

E (V1),
e2 ∈ π−1

E (V2) and π−1
E (V1) ∩ π−1

E (V2) = ∅. Next suppose that e1 6= e2 but
πE(e1) = πE(e2). Then there exists some open set U in B containing the
point p, where p = πE(e1) = πE(e2), and a continuous map ψ:U × F → E
from U×F to E that maps U×F homeomorphically onto π−1

E (U) and satisfies
πE(ψ(u, f)) = u for all u ∈ U and f ∈ F . Then there exist f1, f2 ∈ F such
that e1 = ψ(p, f1) and e2 = ψ(p, f2). Moreover f1 6= f2. Also the fibre F of
the bundle is a Hausdorff space. It follows that there exist open sets W1 and
W2 in F such that f1 ∈ W1, f2 ∈ W2 and W1∩W2 = ∅. Then e1 ∈ ψ(U×W1),
e2 ∈ ψ(U ×W2) and ψ(U ×W1)∩ψ(U ×W2) = ∅. Moreover ψ(U ×W1) and
ψ(U ×W2) are open sets in E. We have thus shown that, given e1, e2 ∈ E,
where e1 6= e2, there exist two disjoint open sets in E, where one of these
open sets contains the point e1 and the other contains e2. It follows that E
is a Hausdorff space, as required.

4.4 Smooth Fibre Bundles

Definition Let F , E and M be a smooth manifolds, and let πE:E → M
be a smooth surjective map. The smooth manifold E and the smooth map
πE:E →M constitute a smooth fibre bundle over M with total space E, base
space M , fibre F and projection map πE:E → M provided that, given any
point p of M , there exists an open set U containing p and a smooth map
ψ:U × F → E which satisfies the following conditions:

(i) the function ψ maps U × F diffeomorphically onto π−1
E (U);

(ii) πE(ψ(u, f)) = u for all u ∈ U and f ∈ F ;
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Proposition 4.5 Let M and F be topological manifolds, let E be a topo-
logical space, and let πE:E → M be a topological fibre bundle over M with
fibre F and total space E. Then the total space E of this fibre bundle is a
topological manifold of dimension n+ k, where n = dimM and k = dimF .

Proof The topological manifolds M and F are Hausdorff spaces. It follows
from Lemma 4.4 that the total space E of the fibre bundle is a Hausdorff
space. In order to show that E is a topological manifold of dimension n+ k,
where n = dimM and k = dimF , we must show that E can be covered by
a countable collection of open sets, where each of these open sets is home-
omorphic to an open set in a Euclidean space of dimension n + k, where
n = dimM and k = dimF .

Now there exists a countable basis that generates the topology of the
topological manifold M . This countable basis is by definition a countable
collection of open sets in M , and any open set in M is a union of subsets
that belong to the countable basis. Also there exists a collection (Uα : α ∈ A)
of open sets in M that covers M , where π−1

E (Uα) is homeomorphic to Uα×F
for all α ∈ A. Now each open set Uα in the indexed collection (Uα : α ∈ A) is
a union of open sets that belong to the countable basis. It follows that there
exists an infinite sequence of open sets B1, B2, B3, . . . in M that belong to the
countable basis, and a corresponding infinite sequence α(1), α(2), α(3), . . . of

elements of the indexing set A such that M =
+∞⋃
i=1

Bi and Bi ⊂ Uα(i) for all

positive integer i. Then M =
+∞⋃
i=1

Uα(i). Now, for each positive integer i, the

preimage π−1
E (Uα(i)) of Uα(i) in E is an open subset of E that is homeomorphic

to the product manifold Uα×F . This product manifold has dimension n+k.
It follows that, for each positive integer i, the open subset π−1

E (Uα(i)) of E is
a union of a countable collection of open sets in E, where each of open sets
in the collection is homeomorphic to an open set in Rn+k. Therefore E can
itself be covered by a countable collection of open sets, where each of the
open sets in the collection is homeomorphic to an open set in Rn+k. This
completes the proof that E is a topological manifold of dimension n+ k.

Proposition 4.6 Let M and F be smooth manifolds, let E be a set, let
πE:E → M be a surjective function, let (Uα : α ∈ A) be collection of open
sets in M indexed by a set A, and, for all α, β ∈ A, let ψα:Uα×F → E and
ταβ: (Uα∩Uβ)×F → F be functions that satisfy the following conditions:—

(i)
⋃
α∈A Uα = M ,

(ii) πE(ψα(u, f)) = u for all α ∈ A, u ∈ Uα and f ∈ F ;
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(iii) the function ψα:Uα×F → E maps U ×F bijectively onto π−1
E (Uα) for

all α ∈ A;

(iv) ψβ(u, f) = ψα(u, ταβ(u, f)) for all α, β ∈ A, u ∈ Uα ∩ Uβ and f ∈ F ;

(v) the function ταβ: (Uα ∩ Uβ)× F → F is smooth for all α, β ∈ A.

Then there exists a topology and smooth structure on the set E with respect to
which E is a smooth manifold, πE:E →M is a smooth map and the function
ψα:Uα×F → E maps Uα×F diffeomorphically onto π−1

E (Uα) for all α ∈ A.
The smooth manifold E and the smooth map πE:E → M then constitute a
smooth fibre bundle over the smooth manifold M . Moreover dimE = n+ k,
where n = dimM and k = dimF .

Proof It follows from Proposition 4.3 and Proposition 4.5 that there exists
a topology on the set E with respect to which E is a topological manifold,
πE:E → M is a continuous map and the function ψα:Uα × F → E maps
Uα × F homeomorphically onto π−1

E (Uα) for all α ∈ A. The topological
manifold E and the continuous map πE:E →M then constitute a topological
fibre bundle over the topological manifold M . Moreover dimE = n+k, where
n = dimM and k = dimF .

Let A be the collection consisting of all continuous charts ϕ:V → Rn+k,
where V is some open set in E, and where, for each α ∈ A, the composition
function that sends (u, f) to ϕ(ψα(u, f)) for all (u, f) ∈ ψ−1

α (V ) is a smooth
chart for Uα × F defined over the open set ψ−1

α (V ). We show that A is a
smooth atlas on E.

Let α ∈ A, and let (W, ξ) be a smooth chart for the smooth manifold
Uα×F . The domain W of this chart is then an open set in Uα×F . Moreover
the function ψα:Uα × F → E maps this open set homeomorphically onto
an open set V in E, where W = ψα(Uα × F ) in E. It follows that there
is a continuous chart (V, ϕ) for E, defined over the open set V , which is
characterized by the property that ϕ(ψα(w)) = ξ(w) for all (u, f) ∈ W . Let
β ∈ A. Then

ϕ(ψβ(u, f)) = ϕ(ψα(u, ταβ(u, f))) = ξ(u, ταβ(u, f))

for all (u, f) ∈ ψ−1
β (V ). The smoothness of the maps ταβ: (Uα∩Uβ)×F → F

and ξ:W → Rn+k then ensures that ϕ(ψβ(u, f) is a smooth function of (u, f)
on ψ−1

β (V ). We conclude that the continuous chart (V, ϕ) belongs to the
collection A. It follows from this that the domains of the continuous charts
belonging to the collection A cover the topological manifold E. Moreover
it follows easily from the definition of A that any two continuous charts for
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the topological manifold E that belong to the atlas A are smoothly compat-
ible. It follows that The atlas A is a smooth atlas. It is in fact a maximal
smooth atlas, and thus gives the total space E of the topological vector bundle
πE:E → M the structure of a smooth manifold. Moreover, for each α ∈ A,
the map ψα:Uα×F → E is smooth and maps its domain Uα×F diffeomor-
phically onto an open set in E. Moreover the projection map πE:E →M is
smooth, since its composition with ψα is the smooth map sending (u, f) to
u for all u ∈ Uα and f ∈ F . We have therefore shown that πE:E → M is a
smooth fibre bundle, as required.

Remark Note that conditions (i)–(iv) are identical in the statements of
Propositions 4.3 and 4.6. With regard to condition (v) of those propositions,
we note that continuity of the functions ταβ is the basic requirement in order
to obtain a topological fibre bundle, whereas smoothness of those functions
is the basic requirement in order to obtain a smooth vector bundle.
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