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1. (a) [Definition.] Let X and X̃ be topological spaces and let p: X̃ → X
be a continuous map. An open subset U of X is said to be evenly
covered by the map p if and only if p−1(U) is a disjoint union of
open sets of X̃ each of which is mapped homeomorphically onto U
by p. The map p: X̃ → X is said to be a covering map if p: X̃ → X
is surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) [Bookwork.] The map p: X̃ → X is a covering map; therefore there
exists an open cover U of X such that each open set U belonging
to X is evenly covered by the map p. Now the collection consisting
of the preimages γ−1(U) of the open sets U belonging to U is an
open cover of the interval [0, 1]. But [0, 1] is compact, by the
Heine-Borel Theorem. It follows from the Lebesgue Lemma that
there exists some δ > 0 such that every subinterval of length
less than δ is mapped by γ into one of the open sets belonging
to U . Partition the interval [0, 1] into subintervals [ti−1, ti], where
0 = t0 < t1 < · · · < tn−1 < tn = 1, and where the length of
each subinterval is less than δ. Then each subinterval [ti−1, ti] is
mapped by γ into some open set in X that is evenly covered by the
map p. It follows that once γ̃(ti−1) has been determined, we can
extend γ̃ continuously over the ith subinterval [ti−1, ti]. Indeed
suppose that γ([ti−1, ti]) ⊂ U and that U is evenly covered. Then
p−1)(U) is a disjoint union of open sets in X̃, where each of these
open sets is mapped by p homeomorphically onto U . One of these
sets contains the point γ(ti−1): let that open set be Ũ . Then there
exists a continuous map s:U → Ũ that inverts the restriction of
the covering map p to Ũ . We can then define γ̃(t) = s(γ(t)) for
all t ∈ [ti−1, ti]. Thus by extending γ̃ successively over [t0, t1],
[t1, t2],. . ., [tn−1, tn], we can lift the path γ: [0, 1] → X to a path
γ̃: [0, 1]→ X̃ starting at w.

(c) [Not bookwork, though special cases such as the helicoidal covering
of the punctured plane are discussed extensively in the lecture
notes.]

Let t0 ∈ R, let

Jt0 = {t ∈ R : |t− t0| <
1

2
, }

and let At0 = q(Jt0), where q:R→ S1 is defined such that q(t) =
(cos 2πt, sin 2πt) for all t ∈ R. Then there exists a unique map
st0 :At0 → Jt0 such that t = st0(q(t)) for all t ∈ Jt0 . Let Ut0 be
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the subset of X defined such that Ut0 = h−1(At0). Then Ut,0 is an
open set in X, and p−1(Ut0) =

⋃
n∈Z Ũt0,n, where

Ũt0,n = {(x, t) ∈ X̃ : x ∈ Ut0 and t = st0(h(x)) + n}.

Each set Ũt0 is an open set in X̃ that is mapped homeomorphically
onto Ut0 by the map p: X̃ → X. It follows that the open set Ut0
in X is evenly covered by the map p: X̃ → X. Moreover, given
any x ∈ X, there exists t0 ∈ R such that h(x) = q(t0). Then
x ∈ Ut0 . Thus the open sets Ut0 for t0 ∈ R cover the topological
space X. We have thus verified that p: X̃ → X is a covering map.
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2. (a) [Bookwork.] Let X and Y be topological spaces, and let A be
a subset of X. Let f :X → Y and g:X → Y be continuous
maps from X to some topological space Y , where f |A = g|A (i.e.,
f(a) = g(a) for all a ∈ A). We say that f and g are homotopic
relative to A (denoted by f ' g rel A) if and only if there exists
a (continuous) homotopy H:X × [0, 1] → Y such that H(x, 0) =
f(x) and H(x, 1) = g(x) for all x ∈ X and H(a, t) = f(a) = g(a)
for all a ∈ A.

(b) [Standard definition, but not stated exactly as below in lecture
notes.] Let X be a topological space, let x0 be some chosen point
of X, and let π1(X, x0) be the set of all based homotopy classes
of loops based at the point x0, where two loops γ1 and γ2 are in
the same based homotopy class if and only if γ1 ' γ2 rel {0, 1}.
Then π1(X, x0) is a group, the group multiplication on π1(X, x0)
being defined according to the rule [γ1][γ2] = [γ1.γ2] for all loops γ1
and γ2 based at x0, where γ1.γ2 denotes the concatenation of the
loops γ1 and γ2. This group is the fundamental group of X based
at the point x0. The identity element of the fundamental loop is
represented by the constant loop at the basepoint x0. The inverse
of a loop γ: [0, 1]→ X is represented by the loop γ−1: [0, 1]→ X,
where γ−1(t) = γ(1− t) for all t ∈ [0, 1].

(c) [Stated without proof in the lecture notes.] Let γ1 and γ2 be
loops in X that start and end at the basepoint x0. Suppose that
[γ1] = [γ2] in π1(X, x0). Then γ1 ' γ2 rel {0, 1}, and thus there
exists a homotopy H: [0, 1] × [0, 1] → X, where H(t, 0) = γ1(t),
H(t, 1) = γ2(t) H(0, τ) = x0 and H(1, τ) = x0 for all t, τ ∈
[0, 1]. But then f ◦H is a homotopy between the loops γ1 and γ2.
Moreover f(H(0, τ)) = y0 and f(H(1, τ)) = y0 for all τ ∈ [0, 1].
Thus f ◦ γ1 ' f ◦ γ2 rel {0, 1}, and therefore [f ◦ γ1] = [f ◦ γ2]
in π1(Y, y0). Thus f :X → Y induces a well-defined function from
π1(X, x0) to π1(Y, y0). This function is a homomorphism, because

f#([γ1.γ2]) = [f◦(γ1.γ2)] = [(f◦γ1).(f◦γ2)] = [f◦γ1][f◦γ2] = f#([γ1])f#([γ2]).

for all loops γ1 and γ2 based at x0.

(d) [Not bookwork. There are several reasonably obvious approaches
to the details.] We choose the basepoint within X to be the point
, where = (1, 0, 0). Let

r(x, y, z) =

(
x√

x2 + y2
,

y√
x2 + y2

)
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for all (x, y, z) ∈ X. Then the line segment joining (x, y, z) to
r(x, y, z) is contained within the set X for all (x, y, z) in X. Let
H((x, y, z), t) = (1 − t)(x, y, z) + tr(x, y, z) for all (x, y, z) ∈ X.
Then the map H is a homotopy between the identity map IX :X →
X and the map r. Moreover IX ' r rel {}, and therefore γ '
r ◦ γ rel {0, 1} for all loops γ in X based at x0. It follows that the
induced homomorphism r#: π1(X, )→ π1(r(X), ) is the inverse of
the homomorphism induced by the inclusion map from r(X), to
X. But the topological space r(X) is a circle. It follows that
π1(X, ) ∼= π1(r(X), ) ∼= Z.
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3. (a) [Bookwork.] Let γ: [0, 1]→ X/G be a loop in the orbit space with
γ(0) = γ(1) = q(x0). It follows from the Path Lifting Theorem
for covering maps that there exists a unique path γ̃: [0, 1]→ X for
which γ̃(0) = x0 and q ◦ γ̃ = γ. Now γ̃(0) and γ̃(1) must belong to
the same orbit, since q(γ̃(0)) = γ(0) = γ(1) = q(γ̃(1)). Therefore
there exists some element g of G such that γ̃(1) = θg(x0). This
element g is uniquely determined, since the group G acts freely on
X. Moreover the value of g is determined by the based homotopy
class [γ] of γ in π1(X/G, q(x0)). Indeed it follows from a basic
result (stated on the examination paper) that if σ is a loop in
X/G based at q(x0), if σ̃ is the lift of σ starting at x0 (so that
q ◦ σ̃ = σ and σ̃(0) = x0), and if [γ] = [σ] in π1(X/G, q(x0)) (so
that γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We conclude therefore
that there exists a well-defined function

λ: π1(X/G, q(x0))→ G,

which is characterized by the property that γ̃(1) = θλ([γ])(x0) for
any loop γ in X/G based at q(x0), where γ̃ denotes the unique
path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ.

Now let α: [0, 1] → X/G and β: [0, 1] → X/G be loops in X/G
based at x0, and let α̃: [0, 1]→ X and β̃: [0, 1]→ X be the lifts of
α and β respectively starting at x0, so that q◦α̃ = α, q◦β̃ = β and
α̃(0) = β̃(0) = x0. Then α̃(1) = θλ([α])(x0) and β̃(1) = θλ([β])(x0).

Then the path θλ([α]) ◦ β̃ is also a lift of the loop β, and is the
unique lift of β starting at α̃(1). Let α.β be the concatenation of
the loops α and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Then the unique lift of α.β toX starting at x0 is the path σ: [0, 1]→
X, where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

θλ([α])(β̃(2t− 1)) if 1
2
≤ t ≤ 1.

It follows that

θλ([α][β])(x0) = θλ([α.β])(x0) = σ(1) = θλ([α])(β̃(1))

= θλ([α])(θλ([β])(x0)) = θλ([α])λ([β])(x0)

10



and therefore λ([α][β]) = λ([α])λ([β]). Therefore the function

λ: π1(X/G, q(x0))→ G

is a homomorphism.

Let g ∈ G. Then there exists a path α in X from x0 to θg(x0), since
the space X is path-connected. Then q ◦α is a loop in X/G based
at q(x0), and g = λ([q◦α]). This shows that the homomorphism λ
is surjective.

(b) [Bookwork.] Let γ: [0, 1]→ X/G be a loop in X/G based at q(x0).
Suppose that [γ] ∈ kerλ. Then γ̃(1) = θe(x0) = x0, and therefore
γ̃ is a loop in X based at x0. Moreover [γ] = q#[γ̃], and therefore
[γ] ∈ q#(π1(X, x0)). On the other hand, if [γ] ∈ q#(π1(X, x0))
then γ = q ◦ γ̃ for some loop γ̃ in X based at x0. But then
x0 = γ̃(1) = θλ([γ])(x0), and therefore λ([γ]) = e, where e is the
identity element of G. Thus kerλ = q#(π1(X, x0)), as required.
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4. (a) [Not Bookwork.]

(ui+ vj)(xi+ yj + zk)(ui+ vj)

= (uxi2 + uyij + uzik + vxji+ vyj2 + vzjk)(ui+ vj)

= (−ux− vy + vzi− uzj + (uy − vx)k)(ui− vj)
= −u2xi− uvyi+ uvzi2 − u2zji+ (u2y + uvx)ki

− uvxj − v2yj + v2zij − uvzj2 + (uvy − v2x)kj

= −u2xi− uvyi− uvz + u2zk + (u2y − uvx)j

− uvxj − v2yj + v2zk + uvz − (uvy − v2x)i

= −(u2 − v2)xi− 2uvyi− 2uvxj + (u2 − v2)yj + (u2 + v2)zk

(b) [Not Bookwork.]

R(t)(x, y, z) = 2(x cosπt+ y sin πt)(cosπt, sin πt, 0)− (x, y, z)

= (x̂(t), ŷ(t), ẑ(t))

where

x̂(t) = x(2 cos2 πt− 1) + 2y sin πt cos πt,

ŷ(t) = 2x sinπt cos πt+ y(2 sin2 πt− 1),

ẑ(t) = −z

But

x̂(t) = R11(t)x+R12(t)y +R13(t)z

ŷ(t) = R21(t)x+R22(t)y +R23(t)z

ẑ(t) = R31(t)x+R32(t)y +R33(t)z.

It follows that

R(t) =

 2 cos2 πt− 1 2 sin πt cos πt 0
2 sinπt cos πt 2 sin2 πt− 1 0

0 0 −1


=

 cos 2πt sin 2πt 0
sin 2πt − cos 2πt 0

0 0 −1

 .

We now find q(t). Suppose that we can express q(t) in the form
q(t) = u(t)i+v(t)j. Then the functions u(t) and v(t) must satisfy
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u(t)2 + v(t)2 = 1. Also q(t) = −q(t). It then follows from (a) that
u(t) and v(t) must satisfy

R11(t) = −R22(t) = u(t)2 − v(t)2, R12(t) = R21(t) = 2u(t)v(t),

R33(t) = −(u(t)2 + v(t)2) = −1,

R13(t) = R23(t) = R31(t) = R32(t) = 0.

These requirements are satisfied on taking u(t) = cos πt and v(t) =
sin πt. Thus the required continuous map sends t ∈ [0, 1] to q(t),
where

q(t) = (cos πt)i+ (sin πt)j.

(c) [Not Bookwork.] There does not exist such a continuous map from
D to SO(3). Were such a map to exist, it would follow that the
loop γ: [0, 1]→ SO(3) defined such that γ(t) = F (cos 2πt, sin 2πt)
for all t ∈ [0, 1] would represent the identity element of the fun-
damental group π1(SO(3), γ(0)). But γ(t) = R(t) for all t ∈ [0, 1].
Let Sp(1) denote the group consisting of all quaternions q satisfy-
ing qq = 1, with the operation of quaternion multiplication. The
group homomorphism that sends q ∈ Sp(1) to the rotation send-
ing r ∈ V(H) to qrq−1 is a covering map from Sp(1) to SO(3).
Let γ̃(t) = q(t) for all t ∈ [0, 1], where q(t) = (cos πt)i+ (sin πt)j.
Then the path γ̃ is a lift of the loop γ with respect to the covering
map. Were it the case that γ ' εR(0) rel {0, 1} then the Mon-
odromy Theorem would ensure that γ̃: [0, 1] → Sp(1) was a loop
in Sp(1). However γ̃(0) = i and γ̃(1) = −i. Therefore it cannot
be the case that γ ' εR(0) rel {0, 1}.
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5. (a) [Standard Definitions.]

(i) Points v0,v1, . . . ,vq in some Euclidean space Rk are said to
be geometrically independent if the only solution of the linear
system 

q∑
j=0

tjvj = 0,

q∑
j=0

tj = 0

is the trivial solution t0 = t1 = · · · = tq = 0.

(ii) A q-simplex in Rk is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are geometrically independent points of Rk.

(iii) The barycentre of a q-simplex σ with vertices v0,v1, . . . ,vq.
The is defined to be the point σ̂, where

σ̂ =
1

q + 1
(v0 + v1 + · · ·+ vq).

(iv) The barycentric coordinates of a point x of a simplex with
vertices v0,v1, . . . ,vq are the unique real numbers t0, t1, . . . , tq
for which

q∑
j=0

tjvj = x and

q∑
j=0

tj = 1.

(v) Let v0,v1, . . . ,vq be the vertices of a q-simplex σ in some
Euclidean space Rk. The interior of the simplex with vertices
v0,v1, . . . ,vq is the set of all points that simplex that are

of the form
q∑
j=0

tjvj, where tj > 0 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1.

(vi) A finite collection K of simplices in Rk is said to be a sim-
plicial complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also
belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1∩
σ2 = ∅ or else σ1∩σ2 is a common face of both σ1 and σ2.
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(vii) The polyhedron |K| of a simplical complex K is the union
of all the simplices of the complex.

(b) [Not bookwook. Basic principles explained in lecture notes.] The
vertices of τ may be determined by ordering the vertices of σ
to ensure that the sequence of barycentric coordinates is non-
increasing. It follows that v1,v3,v2,v0 is an ordering consistent
with this requirement, and that the vertices w0,w1,w2 of τ are
the barycentres

w0 =
1

2
(v1+v3), w1 =

1

3
(v1+v2+v3), w2 =

1

4
(v0+v1+v2+v3).

Then

x =
1

6
w0 +

1

2
w1 +

1

3
w2.

The coefficients in this formula are the barycentric coordinates
of x with respect to the vertices of τ , and moreover the formula
confirms that τ is the simplex of K ′σ that contains the point x in its
interior (since any point of the polyhedron of a simplicial complex
belongs to the interior of a unique simplex of that complex).

(c) [Bookwork.] The star stK(x) of x in K is the union of the interiors
of all simplices of K that contain the point x.

Every point of |K| belongs to the interior of a unique simplex of
K. It follows that the complement |K| \ stK(x) of stK(x) in |K|
is the union of the interiors of those simplices of K that do not
contain the point x. But if a simplex of K does not contain the
point x, then the same is true of its faces. Moreover the union of
the interiors of all the faces of some simplex is the simplex itself.
It follows that |K| \ stK(x) is the union of all simplices of K that
do not contain the point x. But each simplex of K is closed in
|K|. It follows that |K| \ stK(x) is a finite union of closed sets,
and is thus itself closed in |K|. We deduce that stK(x) is open in
|K|. Also x ∈ stK(x), since x belongs to the interior of at least
one simplex of K.
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6. (a)

∂q(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.

∂q−1∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=1

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q−1∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(b) Now ∂1(D0(〈v〉)) = 〈v〉 − 〈w〉 for all vertices v of K. It follows
that

s∑
k=1

rk〈vk〉 −

(
s∑

k=1

rk

)
〈w〉 =

s∑
k=1

rk(〈vk〉 − 〈w〉) ∈ B0(K;R)

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K. It
follows that

z − ε(z)〈w〉 ∈ B0(K;R)

for all z ∈ C0(K;R), where ε:C0(K;R) → R is the R-module
homomorphism from C0(K;R) to R defined such that

ε

(
s∑

k=1

rk〈vk〉

)
=

s∑
k=1

rk

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K. It
follows that ker ε ⊂ B0(K;R). But

ε(∂1(〈u,v〉)) = ε(〈v〉 − 〈u〉) = 0

for all edges uv of K, and therefore B0(K;R) ⊂ ker ε. We
conclude therefore that B0(K;R) = ker ε. Now H0(K;R) ∼=
C0(K;R)/B0(K;R). It follows that the homomorphism ε induces
an isomorphism from H0(K;R) to the ring R of coefficients.
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Also

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)
= 〈v0,v1, . . . ,vq〉

+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))

whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K;R). In particular z = ∂q+1(Dq(z)) for all z ∈
Zq(K;R), and hence Zq(K;R) = Bq(K;R). It follows thatHq(K;R)
is the zero group for all q > 0.
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7. (a) [Not bookwork.]

∂2σ1 = 〈v2 v3〉 − 〈v1 v3〉+ 〈v1 v2〉 = ρ5 − ρ2 + ρ1

∂2σ2 = 〈v5 v6〉 − 〈v1 v6〉+ 〈v1 v5〉 = ρ12 − ρ4 + ρ3

∂2σ3 = 〈v2 v6〉 − 〈v4 v6〉+ 〈v4 v2〉 = ρ7 − ρ11 − ρ6
∂2σ4 = 〈v5 v3〉 − 〈v4 v3〉+ 〈v4 v5〉 = −ρ9 + ρ8 + ρ10

Therefore

∂2

(
4∑
i=0

miσi

)
= m1ρ1 −m1ρ2 +m2ρ3 −m2ρ4

+m1ρ5 −m3ρ6 +m3ρ7 +m4ρ8

−m4ρ9 +m4ρ10 −m3ρ11 +m2ρ12.

(b) [Not bookwork.] Let z =
12∑
i=1

niρi. Then

0 = ∂1z = (−n1 − n2 − n3 − n4)〈v1〉+ (n1 − n5 − n6 − n7)〈v2〉
+ (n2 + n5 − n8 − n9)〈v3〉+ (n6 + n8 − n10 − n11)〈v4〉
+ (n3 + n9 + n10 − n12)〈v5〉+ (n4 + n7 + n11 + n12)〈v6〉

The coefficients of the vertices above must therefore all be zero.

Let zi = ∂2σi for i = 1, 2, 3, 4. Then
7∑
i=1

mizi = m1ρ1 + (m5 +m7 −m1)ρ2 +m2ρ3

− (m2 +m5 +m7)ρ4 + (m1 +m6 −m7)ρ5 −m3ρ6

+ (m3 −m6 +m7)ρ7 + (m4 +m5)ρ8 + (m6 −m4)ρ9

+m4ρ10 + (m5 −m3)ρ11 + (m2 +m6)ρ12.

Suppose that n1, n2, . . . , n12 are chosen so that the coefficients of

ρ1, ρ2, ρ3, ρ6, ρ8, ρ9 and ρ10 in
7∑
i=1

mizi are equal to n1, n2, n3, n6,

n8, n9 and n10 respectively. Then m1 = n1, m2 = n3, m3 = −n6,
m4 = n10, m5 = n8−n10, m6 = n9+n10 and m7 = n1+n2−n8+n10,
and

7∑
i=1

mizi = n1ρ1 + n2ρ2 + n3ρ3 − (n1 + n2 + n3)ρ4

+ (−n2 + n8 + n9)ρ5 + n6ρ6

+ (n1 + n2 − n6 − n8 − n9)ρ7 + n8ρ8

+ n9ρ9 + n10ρ10 + (n6 + n8 − n10)ρ11

+ (n3 + n9 + n10)n12
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The coefficients m1,m2, . . . ,m7 are uniquely determined by the
above conditions and equations. But the requirement that ∂1z = 0
ensures that −(n1 +n2 +n3) = n4, −n2 +n8 +n9 = n5, n6 +n8−
n10 = n11, n3 + n9 + n10 = n12, and

n1 + n2 − n6 − n8 − n9 = n1 − n5 − n6 = n7.

Thus
7∑
i=1

mizi =
12∑
i=1

niρi, as required.

(c) [Not bookwork, but standard technique.] It follows from (b) that
there is a well-defined homomorphism ϕ:Z1(K;Z)→ Z3, where

ϕ

(
7∑
i=1

mizi

)
= (z5, z6, z7).

This homomorphism is surjective, and its kernel is B1(K;Z). It
follows that

H1(K;Z) = Z1(K;Z)/B1(K;Z) = Z1(K;Z)/ kerϕ
∼= ϕ(Z1(K;Z)) = Z3,

as required.
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8. (a) [Definitions. From printed lecture notes.] A chain complex C∗ is
a (doubly infinite) sequence (Ci : i ∈ Z) of R-modules, together
with homomorphisms ∂i:Ci → Ci−1 for each i ∈ Z, such that
∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to be
the quotient module Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of
∂i:Ci → Ci−1 and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

(b) [From printed lecture notes.] Let z ∈ Zi(C∗). Then there exists b ∈
Bi satisfying qi(b) = z, since qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since
the sequence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1
is exact. Therefore there exists a unique element w of Ai−1 such
that ∂i(b) = pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 →
Bi−2 is injective). Thus w ∈ Zi−1(A∗).
Now let b, b′ ∈ Bi satisfy qi(b) = qi(b

′) = z, and let w,w′ ∈
Zi−1(A∗) satisfy pi−1(w) = ∂i(b) and pi−1(w

′) = ∂i(b
′). Then

qi(b − b′) = 0, and hence b′ − b = pi(a) for some a ∈ Ai, by
exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b)

= ∂i(b
′) = pi−1(w

′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′,
and hence [w] = [w′] in Hi−1(A∗). Thus there is a well-defined
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function α̃i:Zi(C∗) → Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈
Hi−1(A∗), where w ∈ Zi−1(A∗) is chosen such that pi−1(w) = ∂i(b)
for some b ∈ Bi satisfying qi(b) = z. This function α̃i is clearly a
homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same ho-
mology class in Hi(C∗). Then z′ = z + ∂i+1c for some c ∈ Ci+1.
Moreover c = qi+1(d) for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1

is surjective. Choose b ∈ Bi such that qi(b) = z, and let b′ =
b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0).

Therefore α̃i(z) = α̃i(z
′). It follows that the homomorphism

α̃i:Zi(C∗)→ Hi−1(A∗) induces a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗),

as required.
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