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1. (a) [Definition.] Let X and X̃ be topological spaces and let p: X̃ → X
be a continuous map. An open subset U of X is said to be evenly
covered by the map p if and only if p−1(U) is a disjoint union of
open sets of X̃ each of which is mapped homeomorphically onto U
by p. The map p: X̃ → X is said to be a covering map if p: X̃ → X
is surjective and in addition every point of X is contained in some
open set that is evenly covered by the map p.

(b) [Bookwork.] Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0 is
non-empty, by hypothesis. We show that Z0 is both open and
closed in Z.

Let z be a point of Z. There exists an open set U in X containing
the point p(g(z)) which is evenly covered by the covering map p.
Then p−1(U) is a disjoint union of open sets, each of which is
mapped homeomorphically onto U by the covering map p. One of
these open sets contains g(z); let this set be denoted by Ũ . Also
one of these open sets contains h(z); let this open set be denoted
by Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is an open set in Z
containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore
Ṽ = Ũ . It follows from this that both g and h map the open set Nz

into Ũ . But p ◦ g = p ◦ h, and p|Ũ : Ũ → U is a homeomorphism.
Therefore g|Nz = h|Nz, and thus Nz ⊂ Z0. We have thus shown
that, for each z ∈ Z0, there exists an open set Nz such that z ∈ Nz

and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅,
since g(z) 6= h(z). But g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore
g(z′) 6= h(z′) for all z′ ∈ Nz, and thus Nz ⊂ Z \Z0. We have thus
shown that, for each z ∈ Z \ Z0, there exists an open set Nz such
that z ∈ Nz and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0

is non-empty by hypothesis. We deduce that Z0 = Z, since Z is
connected. Thus g = h, as required.

(d) [Not bookwork.] The number of such paths is m. The paths are
αk: [0, 1]→ C for k = 0, 1, . . . ,m− 1, where αk(t) = n

√
te2πik/m for

all t ∈ [0, 1]. (Here i =
√
−1, and n

√
t denotes the non-negative

real number that is the non-negative nth root of the non-negative
real number t.)

(e) [Not bookwork.] The map f is not a covering map. If p: X̃ → X is
a covering map then, given any path γ: [0, 1]→ X, and given any
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w ∈ X̃ for which p(w) = γ(0), there exists a uniquely-determined
path γ̃: [0, 1]→ X̃ satisfying γ̃(0) = w and p◦γ̃ = γ. This property
is not possessed by the map f . Indeed when γ: [0, 1]→ C is defined
such that γ(t) = t for all t ∈ [0, 1], and if w = 0 then there are m
distinct paths γ̃ satisfying f ◦ γ̃ = γ.

6



2. [Based on lecture notes.] Let X be a topological space, and let x0

and x1 be points of X. A path in X from x0 to x1 is defined to be a
continuous map γ: [0, 1] → X for which γ(0) = x0 and γ(1) = x1. A
loop in X based at x0 is defined to be a continuous map γ: [0, 1] → X
for which γ(0) = γ(1) = x0.

We can concatenate paths. Let γ1: [0, 1] → X and γ2: [0, 1] → X be
paths in some topological space X. Suppose that γ1(1) = γ2(0). We
define the product path γ1.γ2: [0, 1]→ X by

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2
;

γ2(2t− 1) if 1
2
≤ t ≤ 1.

If γ: [0, 1]→ X is a path inX then we define the inverse path γ−1: [0, 1]→
X by γ−1(t) = γ(1− t).
Let X be a topological space, and let x0 ∈ X be some chosen point
of X. We define an equivalence relation on the set of all (continuous)
loops based at the basepoint x0 ofX, where two such loops γ0 and γ1 are
equivalent if and only if γ0 ' γ1 rel {0, 1}. We denote the equivalence
class of a loop γ: [0, 1]→ X based at x0 by [γ]. This equivalence class
is referred to as the based homotopy class of the loop γ. The set of
equivalence classes of loops based at x0 is denoted by π1(X, x0).

Let X be a topological space, let x0 be some chosen point of X, and
let π1(X, x0) be the set of all based homotopy classes of loops based at
the point x0. We show π1(X, x0) is a group, the group multiplication
on π1(X, x0) being defined according to the rule [γ1][γ2] = [γ1.γ2] for
all loops γ1 and γ2 based at x0. This group is the fundamental group
of the topological space X based at x0.

First we show that the group operation on π1(X, x0) is well-defined.
Let γ1, γ

′
1, γ2 and γ′2 be loops in X based at the point x0. Suppose

that [γ1] = [γ′1] and [γ2] = [γ′2]. Let the map F : [0, 1] × [0, 1] → X be
defined by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2
,

F2(2t− 1, τ) if 1
2
≤ t ≤ 1,

where F1: [0, 1]×[0, 1]→ X is a homotopy between γ1 and γ′1, F2: [0, 1]×
[0, 1]→ X is a homotopy between γ2 and γ′2, and where the homotopies
F1 and F2 map (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Then F is itself
a homotopy from γ1.γ2 to γ′1.γ

′
2, and maps (0, τ) and (1, τ) to x0 for all
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τ ∈ [0, 1]. Thus [γ1.γ2] = [γ′1.γ
′
2], showing that the group operation on

π1(X, x0) is well-defined.

Next we show that the group operation on π1(X, x0) is associative.
Let γ1, γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3. Then
γ1.(γ2.γ3) = α ◦ θ, where

θ(t) =


1
2
t if 0 ≤ t ≤ 1

2
;

t− 1
4

if 1
2
≤ t ≤ 3

4
;

2t− 1 if 3
4
≤ t ≤ 1.

Thus the map G: [0, 1] × [0, 1] → X defined by G(t, τ) = α((1 − τ)t +
τθ(t)) is a homotopy between (γ1.γ2).γ3 and γ1.(γ2.γ3), and moreover
this homotopy maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. It fol-
lows that (γ1.γ2).γ3 ' γ1.(γ2.γ3) rel {0, 1} and hence ([γ1][γ2])[γ3] =
[γ1]([γ2][γ3]). This shows that the group operation on π1(X, x0) is as-
sociative.

Let ε: [0, 1] → X denote the constant loop at x0, defined by ε(t) = x0

for all t ∈ [0, 1]. Then ε.γ = γ ◦θ0 and γ.ε = γ ◦θ1 for any loop γ based
at x0, where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2
,

2t− 1 if 1
2
≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2
,

1 if 1
2
≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map (t, τ) 7→ γ((1− τ)t + τθj(t))
is a homotopy between γ and γ ◦ θj for j = 0, 1 which sends (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]. Therefore ε.γ ' γ ' γ.ε rel {0, 1}, and
hence [ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity
element of π1(X, x0).

It only remains to verify the existence of inverses. Now the map
K: [0, 1]× [0, 1]→ X defined by

K(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2
;

γ(2τ(1− t)) if 1
2
≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and ε, and moreover this ho-
motopy sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore
γ.γ−1 ' ε rel{0, 1}, and thus [γ][γ−1] = [γ.γ−1] = [ε]. On replacing
γ by γ−1, we see also that [γ−1][γ] = [ε], and thus [γ−1] = [γ]−1, as
required.
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3. (a) [Bookwork.] Let x0 and x1 be the points of X given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ' β rel {0, 1}, and therefore there exists a homotopy
F : [0, 1]× [0, 1]→ X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

F (0, τ) = x0 and F (1, τ) = x1 for all τ ∈ [0, 1].

It then follows from the Monodromy Theorem that there exists
a continuous map G: [0, 1] × [0, 1] → X̃ such that p ◦ G = F
and G(0, 0) = α̃(0). Then p(G(0, τ)) = x0 and p(G(1, τ)) = x1

for all τ ∈ [0, 1]. A basic result concerning uniqueness of lifts of
continuous paths ensures that any continuous lift of a constant
path must itself be a constant path. Therefore G(0, τ) = x̃0 and
G(1, τ) = x̃1 for all τ ∈ [0, 1], where

x̃0 = G(0, 0) = α̃(0), x̃1 = G(1, 0).

However
G(0, 0) = G(0, 1) = x̃0 = α̃(0) = β̃(0),

p(G(t, 0)) = F (t, 0) = α(t) = p(α̃(t))

and
p(G(t, 1)) = F (t, 1) = β(t) = p(β̃(t))

for all t ∈ [0, 1]. It follows that the map that sends t ∈ [0, 1] to
G(t, 0) is a lift of the path α that starts at x̃0, and the map that
sends t ∈ [0, 1] to G(t, 1) is a lift of the path β that also starts at
x̃0. However the lifts α̃ and β̃ of the paths α and β are uniquely
determined by their starting points. It follows that G(t, 0) = α̃(t)
and G(t, 1) = β̃(t) for all t ∈ [0, 1]. In particular,

α̃(1) = G(1, 0) = x̃1 = G(1, 1) = β̃(1).

Moreover the map G: [0, 1] × [0, 1] → X̃ is a homotopy between
the paths α̃ and β̃ which satisfies G(0, τ) = x̃0 and G(1, τ) = x̃1

for all τ ∈ [0, 1]. It follows that α̃ ' β̃ rel {0, 1}, as required.

(b) [Bookwork: part of larger proof concerning the fundamental group
of the circle.]
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Let F : [0, 1]×[0, 1]→ S1 be the homotopy between α and β defined
by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,

where α̃ and β̃ are the lifts of α and β respectively satisfying
α̃(0) = β̃(0) = 0. Then

F (0, τ) = p
(

(1− τ)α̃(0) + τ β̃(0)
)

= p(α̃(0)) = α(0) = b

for all τ ∈ [0, 1], because β̃(0) = α̃(0). Similarly

F (1, τ) = p
(

(1− τ)α̃(1) + τ β̃(1)
)

= p(α̃(1)) = α(1) = b

for all τ ∈ [0, 1]. Thus α ' β rel {0, 1}, and thus the loops α and
β represent the same element of the fundamental group π1(S

1,b).
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4. (a) [Bookwork.] A two-dimensional simplicial complex is a finite col-
lection of triangles, edges and vertices in some ambient Euclidean
space. Each of those triangles, edges and vertices is a closed sub-
set of the ambient Euclidean space, and therefore the union of any
finite collection of such triangles, edges and vertices is a closed
subset of the ambient Euclidean space.

Now, given any point p of |K|, the complement |K| \ stK(p) of
the star neighbourhood stK(p) of p in |K| is by definition the
union of all triangles, edges and vertices belonging to K that do
not contain the point p. It follows that |K| \ stK(p) is closed in
|K|, and p 6∈ |K| \ stK(p). Therefore stK(p) is open in |K|, and
p ∈ stK(p), as required.

(b) [Bookwork.] Let σ0 be a triangle in K, and let F be the subset of
the polyhedron |K| of K which is the union of all triangles that
can be joined to σ0 by a finite sequence of triangles belonging
to K, where successive triangles in this sequence intersect along
a common edge. Then F is a finite union of triangles, and those
trianges are closed subsets of |K|, and therefore F is itself a closed
subset of |K|.
Let p be a point of F . If p does not lie on any edge belonging to
K then the star neighbourhood stK(p) belongs to just one triangle
belonging to K, and moreover this triangle must then be a subset
of F (or else the point p would not belong to F ). Thus if p ∈ F
does not like on any edge belonging to K then stK(p) ⊂ F .

Next suppose that the point p of F lies on some edge belonging
to K but is not an endpoint of that edge. Then the point p be-
longs to exactly two triangles of K that intersect along a common
edge (because the two-dimensional simplicial complex represents
a closed surface). At least one of these triangles must be con-
tained in the set F (since p ∈ F ) and therefore both triangles are
contained in F . But the star neighbourhood of the point p is con-
tained in the union of those two triangles. Therefore stK(p) ⊂ F
in this case also.

Finally suppose that the point p is a vertex of K. Then the
requirement that the two-dimensional simplicial complex K rep-
resent a triangulated closed surface ensures that if at least one of
the triangles belonging to K with a vertex at p is contained in
F then every triangle belonging to K with a vertex at v must be
contained in F . It follows that stK(p) ⊂ F .

We have now shown that, given any point p of F , the star neigh-
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bourhood stK(p) of p in |K| is a subset of F . But this star neigh-
bourhood is an open subset of |K| (by the result of (a)). Therefore
the subset F of |K| is both open and closed in |K|. Thus if the
topological space |K| is connected then F = |K|.
Every point of a topological space belongs to unique connected
component which is the union of all connected subsets of the topo-
logical space that contain the given point. It follows that every
triangle belonging to K is contained in a some connected compo-
nent of |K|, and if two triangles belonging to K intersect along
a common edge, or at a common vertex, then both belong to the
same connected component of |K|. It follows that the set F is
contained in some connected component of |K|. Thus if the topo-
logical space |K| is not connected then F is a proper subset of
|K|. We deduce that F = |K| if and only if |K| is a connected
topological space. The result follows.

Note: the above proof is given in the distributed lecture notes.
There are other ways to arrive at the result which may depend, to
a greater or lesser extent, on the course material.
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5. (a) [Definition.] Points v0,v1, . . . ,vq in some Euclidean space Rk are
said to be geometrically independent if the only solution of the
linear system 

q∑
j=0

λjvj = 0,

q∑
j=0

λj = 0

is the trivial solution λ0 = λ1 = · · · = λq = 0.

(b) [Bookwork.] Suppose that the points v0,v1, . . . ,vq are geometri-
cally independent. Let λ1, λ2, . . . , λq be real numbers which satisfy
the equation

q∑
j=1

λj(vj − v0) = 0.

Then
q∑
j=0

λjvj = 0 and
q∑
j=0

λj = 0, where λ0 = −
q∑
j=1

λj, and

therefore
λ0 = λ1 = · · · = λq = 0.

It follows that the displacement vectors v1−v0,v2−v0, . . . ,vq−v0

are linearly independent.

Conversely, suppose that these displacement vectors are linearly
independent. Let λ0, λ1, λ2, . . . , λq be real numbers which satisfy

the equations
q∑
j=0

λjvj = 0 and
q∑
j=0

λj = 0. Then λ0 = −
q∑
j=1

λj,

and therefore

0 =

q∑
j=0

λjvj = λ0v0 +

q∑
j=1

λjvj =

q∑
j=1

λj(vj − v0).

It follows from the linear independence of the displacement vectors
vj − v0 for j = 1, 2, . . . , q that

λ1 = λ2 = · · · = λq = 0.

But then λ0 = 0 also, because λ0 = −
q∑
j=1

λj. It follows that the

points v0,v1, . . . ,vq are geometrically independent, as required.

(c) [Definition.] A simplex in Rk of dimension q with vertices

v0,v1, . . . ,vq
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is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are geometrically independent points of Rk.

(d) [Definitions.] A finite collection K of simplices in Rk is said to be a
simplicial complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also
belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1∩σ2 =
∅ or else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The dimension of a simplicial complex K is the maximum of the
dimensions of the simplices of K.

A subset L of a simplicial complex K is said to be a subcomplex
of K if every face of every simplex of L belongs to L.

(e) [Essentially bookwork: principle employed in proofs, though not
isolated as a result in its own right.] Let ρ be a simplex of L and
let τ be a proper face of ρ. Then dim τ < dim ρ ≤ dimK = dimσ,
and therefore τ 6= σ, and thus τ ∈ L. It follows that if ρ ∈ L then
τ ∈ L for all proper faces τ of ρ. Thus L is a subcomplex of K.
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6. [Entire question is a problem. Not bookwork.]

(a) By inspection the boundary of the 2-chain is given by

(a+ d+ g)〈v1v2〉+ (b+ e+ g)〈v2v3〉+ (c+ f + g)〈v3v1〉
+ (c− a)〈v1v4〉+ (a− b)〈v2v4〉+ (b− c)〈v3v4〉
+ (f − d)〈v1v5〉+ (d− e)〈v2v5〉+ (e− f)〈v3v5〉

Thus the boundary of the 2-chain is zero if and only if a = b = c,
d = e = f and a + d + g = 0. It follows that the 2-chain is a
2-cycle if and only if it is of the form mz1 + nz2 for some integers
m and n. (Indeed z1 and z2 are 2-cycles, and if the 2-chain of (a)
is a 2-cycle then it is of the form mz1 + nz2 with a = b = c = m,
d = e = f = n and g = −m− n.)

Now H2(K) = Z2(K) since B2(K) = 0. The function sending
mz1 + nz2 to (m,n) is an isomorphism from Z2(K) to Z ⊕ Z.
Thus H2(K) ∼= Z⊕ Z.

(b)

(i) In order that the 1-chain

〈v1v2〉+ 〈v2v4〉+ 〈v4v3〉+ 〈v3v5〉+ 〈v5v1〉

be the boundary of the 2-chain specified in (a), there must
exist integers a, b, c, d, e and f such that

〈v1v2〉+ 〈v2v4〉+ 〈v4v3〉+ 〈v3v5〉+ 〈v5v1〉
= (a+ d+ g)〈v1v2〉+ (b+ e+ g)〈v2v3〉

+ (c+ f + g)〈v2v3〉
+ (c− a)〈v1v4〉+ (a− b)〈v2v4〉+ (b− c)〈v3v4〉
+ (f − d)〈v1v5〉+ (d− e)〈v2v5〉+ (e− f)〈v3v5〉.

We thus require that

a+ d+ g = 1, b+ e+ g = 0, c+ f + g = 0,

c− a = 0, a− b = 1, b− c = −1,

f − d = −1, d− e = 0, e− f = 1.

Then b = a−1, c = a, e = d, f = d−1 and g = 1−a−d. Each
pair of integers a, d determines a solution to these equations.
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In particular if a = d = 0 then c = e = 0, b = −1, f = −1
and g = 1. It follows that the 1-chain

〈v1v2〉+ 〈v2v4〉+ 〈v4v3〉+ 〈v3v5〉+ 〈v5v1〉

is the boundary of

〈v1v2v3〉 − 〈v2v3v4〉 − 〈v3v1v5〉.

(ii) The 1-chain 3〈v1v2〉+ 4〈v2v3〉 − 〈v3v1〉 is not a 1-boundary
since it is not a 1-cycle:

∂1(3〈v1v2〉+ 4〈v2v3〉 − 〈v3v1〉) = −4〈v1〉 − 〈v2〉+ 5〈v3〉.
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7. (a) [From printed lecture notes.] A sequence F
p−→G q−→H of R-

modules and R-module homomorphisms is said to be exact at G
if and only if image(p:F → G) = ker(q:G → H). A sequence
of R-modules and R-module homomorphism is said to be exact if
it is exact at each R-module occurring in the sequence (so that
the image of each homomorphism is the kernel of the succeeding
homomorphism).

(b) φ ◦ ψ1 = ψ2 ◦ θ
(c) [Based on printed lecture notes.] First we prove that if ψ2 and

ψ4 are monomorphisms and if ψ1 is a epimorphism then ψ3 is
an monomorphism, Suppose that ψ2 and ψ4 are monomorphisms
and that ψ1 is an epimorphism. We wish to show that ψ3 is a
monomorphism. Let x ∈ G3 be such that ψ3(x) = 0. Then
ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0, and hence θ3(x) = 0. But then
x = θ2(y) for some y ∈ G2, by exactness. Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z =
ψ1(w) for some w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

by exactness. Thus ψ3 is a monomorphism.

Next we prove that if ψ2 and ψ4 are epimorphisms and if ψ5 is
a monomorphism then ψ3 is an epimorphism. Thus suppose that
ψ2 and ψ4 are epimorphisms and that ψ5 is a monomorphism. We
wish to show that ψ3 is an epimorphism. Let a be an element
of H3. Then φ3(a) = ψ4(b) for some b ∈ G4, since ψ4 is an
epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists
c ∈ G3 such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),
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hence φ3 (a− ψ3(c)) = 0, and thus a − ψ3(c) = φ2(d) for some
d ∈ H2, by exactness. But ψ2 is an epimorphism, hence there
exists e ∈ G2 such that ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).

Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This
shows that ψ3 is an epimorphism.

It follows that if ψ1, ψ2, ψ4 and ψ5 are isomorphisms, then so is
ψ3.
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8. (a) [Based on lecture notes.] The qth chain group Cq(K,L;R) of the
simplicial pair is defined to be the quotient group

Cq(K;R)/Cq(L;R),

where Cq(K;R) and Cq(L;R) denote the groups of q-chains of K
and L respectively.

The boundary homomorphism ∂q:Cq(K;R) → Cq−1(L;R) maps
the subgroup Cq(L;R) into Cq−1(L;R), and therefore induces a
homomorphism ∂q:Cq(K,L;R)→ Cq−1(K,L;R). We define

Hq(K,L;R) = Zq(K,L;R)/Bq(K,L;R),

where

Zq(K,L;R) = ker(∂q:Cq(K,L;R)→ Cq−1(K,L;R))

= {c+ Cq(L;R) : c ∈ Cq(K;R)

and ∂qc ∈ Cq−1(L;R)},
Bq(K,L;R) = image(∂q+1:Cq+1(K,L;R)→ Cq(K,L;R))

= {∂q+1(e) + Cq(L;R) : e ∈ Cq+1(K;R)}.

(b) [Based on lecture notes.] The homology exact sequence of the
simplicial pair (K,L) is the exact sequence

· · · ∂∗−→Hq(L;R)
i∗−→Hq(K;R)

u∗−→Hq(K,L;R)
∂∗−→Hq−1(L;R)

i∗−→Hq−1(K;R)
u∗−→· · ·

of homology groups is exact, where the homomorphisms i∗, u∗
and ∂∗ are induced by the inclusion homomorphisms iq, quotient
homomorphisms uq and boundary homomorphisms ∂q respectively
between the relevant chain groups.

(c) [Problem. Not bookwork.] Let K be the kernel of the homomor-
phism ∂∗:H3(K,L,Z)→ H2(L; Z). Then the sequence

H3(L; Z)
i∗−→H3(K; Z)

u∗−→K → 0

is exact, as this is a portion of the homology exact sequence of
the simplicial pair (K,L). But H3(L; Z) = 0. It follows from
exactness that H3(K; Z) ∼= K. Now ∂∗(mα + nβ) = 15m + 21nγ
for all m,n ∈ Z. It follows that

K = {mα + nβ : m,n ∈ Z : 15m+ 21n = 0}
= {j(7α− 5β) : j ∈ Z}.
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Thus H3(K,Z) ∼= K ∼= Z.

Also the sequence

H3(K,L; Z)
∂∗−→H2(L; Z)

i∗−→H2(K; Z)
u∗−→H2(K,L; Z)

is exact. But H2(K,L; Z) = 0. It follows that the sequence

0→ ∂∗(H3(K,L; Z))→ H2(L; Z)
i∗−→H2(K; Z)→ 0

is exact. But
H2(L; Z) = {kγ : k ∈ Z}

and
∂∗(H3(K,L; Z)) = {(15m+ 27n)γ : m,n ∈ Z}.

It follows that H2(K;Z) ∼= Z/I, where

I = {15m+ 27n : m,n ∈ Z}.

Now the highest common fact of 15 and 27 is 3. It follows that there
exist integers m1 and n1 such that 3 = 15m1 + 27n1, and therefore I is
the subgroup 3Z of Z generated by the positive integer 3. Thus

H2(K; Z) ∼= Z/3Z = Z3,

as required.
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