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Candidates will be informed that, in relation to the basic material on mod-
ules, and particularly free modules, the proofs are non-examinable. They will
need to know however basic definitions: in particular, they should know what
is meant by saying that a subset of a left module over a unital ring freely
generates the module. They should also know that, given an arbitrary set,
it is possible to construct a free module with a free basis whose elements are
in bijective correspondence with elements of the given set (i.e., they should
be aware of the universal property that characterizes free modules on a given
set). Also candidates only need to know basic definitions and the statement
of certain basic results from section 4 on the definition of the simplicial chain
groups. Also proofs of certain specific propositions will be explicitly flagged
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as non-examinable, including an elementary but lengthy proof, in subsection
7.5, that a triangulated polygonal region bounded by a single simple polygon
with more than one triangle can be obtained from a smaller such polygonal
region by attaching a single triangle, where the intersection of the attached
triangle with the smaller polygonal region consists either of one edge or else of
two edges of the attached triangle. In relation to applications of the Mayer-
Vietoris sequence for calculating the homology groups of the torus, Klein
bottle, and real projective plane, candidates will be informed that they do
not need to know, as bookwork, details of all the triangulations etc. that are
necessary for logical completeness in the notes. Instead they should focus
on how the Mayer-Vietoris exact sequence is applied, and sample problems
resembling potential examination questions, and actual examination ques-
tions from past years up to 2005 (when the Mayer-Vietoris sequence was last
examined) should be provided and discussed in the weeks following study
week.

In summary, candidates will be informed that, for examination purposes,
they should be familiar with methods for calculating homology groups from
first principles (as in the examples of Section 6 and on all recent examina-
tion papers set by the present examiner going back over two decades), and
they should also be familiar with techniques for calculating homology groups
of simplicial complexes using the Mayer-Vietoris Exact Sequence, given in-
formation on the homology of appropriate subcomplexes and the induced
homomorphisms relating them (as candidates were regularly required to do
in examinations in the predecessor module up to 2007). Also lemmas, propo-
sitions, theorems and corollaries in specified sections of the lecture course,
excluding certain results that are necessary for logical completeness but are
not suited to to formal examination.
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1. (a) [Bookwork.]

∂q(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.

∂q−1∂q (〈v0,v1, . . . ,vq〉)

=

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=1

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q−1∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(b) [Bookwork.] Let v1,v2, . . . ,vs be the vertices of the simplicial
complex K. Every 0-chain of K with coefficients in R can be
expressed uniquely as a formal sum of the form

r1〈v1〉+ r2〈v2〉+ · · ·+ rs〈vs〉

for some r1, r2, . . . , rs ∈ R. It follows that there is a well-defined
homomorphism ε:C0(K;R)→ R defined such that

ε (r1〈v1〉+ r2〈v2〉+ · · ·+ rs〈vs〉) = r1 + r2 + · · ·+ rs.

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K.

Now ε(∂1(〈u,v〉)) = ε(〈v〉 − 〈u〉) = 0 whenever u and v are
endpoints of an edge of K. It follows that ε◦∂1 = 0, and therefore
B0(K;R) ⊂ ker ε.

Let w0,w1, . . . ,wm be vertices of K determining an edge path.
Then wj−1wj is an edge of K for j = 1, 2, . . . ,m, and

〈wm〉−〈w0〉 =
m∑
j=1

(
〈wj〉−〈wj−1〉

)
= ∂1

(
m∑
j=1

〈wj−1,wj〉

)
∈ B0(K;R).

Now |K| is connected, and therefore any pair of vertices of K can
be joined by an edge path. We deduce that 〈v〉 − 〈u〉 ∈ B0(K;R)
for all vertices u and v of K.
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Choose a vertex u ∈ K. Then

s∑
j=1

rj〈vj〉 =
s∑
j=1

rj(〈vj〉 − 〈u〉)

+

(
s∑
j=1

rj

)
〈u〉 ∈ B0(K;R) +

(
s∑
j=1

rj

)
〈u〉

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K,
and therefore

z − ε(z)〈u〉 ∈ B0(K;R)

for all z ∈ C0(K;R). It follows that ker ε ∈ B0(K;R). But
we have already shown that B0(K;R) ⊂ ker ε. It follows that
ker ε = B0(K;R).

Now the homomorphism ε:C0(K;R) → R is surjective and its
kernel is B0(K;R). Moreover Z0(K;R) = C0(K;R) (because
∂0:C0(K;R) → C−1(K;R) is defined to be the zero homomor-
phism from C0(K;R) to the zero module C−1(K;R)), and there-
fore

H0(K;R) = Z0(K;R)/B0(K;R) = C0(K;R)/B0(K;R).

It follows that the homomorphism ε induces an isomorphism from
H0(K;R) to R, and therefore H0(K;R) ∼= R, as required.
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2. (a) [Seen similar.] Calculating the images of the generators of C2(K;Z)
under the boundary homomorphism according to the usual rule,
we find that

∂2

(
7∑
j=1

njγj

)
= n1 (〈v2 v3〉 − 〈v1 v3〉+ 〈v1 v2〉)

+ n2 (〈v2 v5〉 − 〈v1 v5〉+ 〈v1 v2〉)
+ n3 (〈v3 v4〉 − 〈v1 v4〉+ 〈v1 v3〉)
+ n4 (〈v3 v5〉 − 〈v1 v5〉+ 〈v1 v3〉)
+ n5 (〈v4 v5〉 − 〈v1 v5〉+ 〈v1 v4〉)
+ n6 (〈v3 v5〉 − 〈v2 v5〉+ 〈v2 v3〉)
+ n7 (〈v4 v5〉 − 〈v3 v5〉+ 〈v3 v4〉)

= (n1 + n2)ρ1 + (n3 + n4 − n1)ρ2

+ (n5 − n3)ρ3 + (−n2 − n4 − n5)ρ4

+ (n1 + n6)ρ5 + (n2 − n6)ρ6

+ (n3 + n7)ρ7 + (n4 + n6 − n7)ρ8

+ (n5 + n7)ρ9

Thus

m1 = n1 + n2, m2 = n3 + n4 − n1, m3 = n5 − n3,

m4 = −n2 − n4 − n5, m5 = n1 + n6, m6 = n2 − n6,

m7 = n3 + n7, m8 = n4 + n6 − n7, m9 = n5 + n7.

(b) [Seen similar.] The quantities mk determined by nj by the equa-

tions derived in (a) must be zero when
7∑
j=1

njγj = 0. It follows

that

n2 = −n1, n4 = n1 − n3, n5 = n3, n6 = −n1, n7 = −n3.

Therefore the group Z2(K;Z) of 2-cycles of K is as follows:

Z2(K;Z) = {n1z1 + n3z3 : n1, n2 ∈ Z},

where

z1 = γ1 − γ2 + γ4 − γ6, z2 = γ3 − γ4 + γ5 − γ7.

Also there are no non-zero 2-boundaries of K, because there are
no non-zero 3-chains, and thus B2(K;Z) = 0. It follows that
H2(K;Z) = Z2(K;Z) ∼= Z2. Indeed there is an isomorphism from
Z2(K;Z) to Z2 that sends n1z1+n3z3 to (n1, n3) for all n1, n3 ∈ Z.
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(c) [Seen similar.] Setting n1 = 0 and n3 = 0 in the equations derived
in (a) we need to solve the equations

m1 = n2, m2 = n4, m3 = n5,

m4 = −n2 − n4 − n5, m5 = n6, m6 = n2 − n6,

m7 = n7, m8 = n4 + n6 − n7, m9 = n5 + n7.

for the nj in terms of the mk. Clearly we require

n2 = m1, n4 = m2, n5 = m3, n6 = m5, n7 = m7.

But for the full overdetermined system of equations to be solvable
we require

m4 = −m1 −m2 −m3, m6 = m1 −m5,

m8 = m2 +m5 −m7, m9 = m3 +m7.

The homomorphism sending
9∑

k=1

mkρk to (m1,m2,m3,m5,m7) is

then an isomorphism from B1(K,Z) to Z5.
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3. (a) [Definitions. From printed lecture notes.] A chain complex C∗ is
a (doubly infinite) sequence (Ci : i ∈ Z) of R-modules, together
with homomorphisms ∂i:Ci → Ci−1 for each i ∈ Z, such that
∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to be
the quotient module Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of
∂i:Ci → Ci−1 and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

(b) [Bookwork.] First we prove exactness at Hi(B∗). Now qi ◦ pi = 0,
and hence q∗ ◦ p∗ = 0. Thus the image of p∗:Hi(A∗) → Hi(B∗)
is contained in the kernel of q∗:Hi(B∗) → Hi(C∗). Let x be an
element of Zi(B∗) for which [x] ∈ ker q∗. Then qi(x) = ∂i+1(c)
for some c ∈ Ci+1. But c = qi+1(d) for some d ∈ Bi+1, since
qi+1:Bi+1 → Ci+1 is surjective. Then

qi(x− ∂i+1(d)) = qi(x)− ∂i+1(qi+1(d)) = qi(x)− ∂i+1(c) = 0,

and hence x − ∂i+1(d) = pi(a) for some a ∈ Ai, by exactness.
Moreover

pi−1(∂i(a)) = ∂i(pi(a)) = ∂i(x− ∂i+1(d)) = 0,

since ∂i(x) = 0 and ∂i ◦ ∂i+1 = 0. But pi−1:Ai−1 → Bi−1 is injec-
tive. Therefore ∂i(a) = 0, and thus a represents some element [a]
of Hi(A∗). We deduce that

[x] = [x− ∂i+1(d)] = [pi(a)] = p∗([a]).

We conclude that the sequence of homology groups is exact at
Hi(B∗).

Next we prove exactness at Hi(C∗). Let x ∈ Zi(B∗). Now

αi(q∗[x]) = αi([qi(x)]) = [w],
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where w is the unique element of Zi(A∗) satisfying pi−1(w) = ∂i(x).
But ∂i(x) = 0, and hence w = 0. Thus αi ◦ q∗ = 0. Now let z
be an element of Zi(C∗) for which [z] ∈ kerαi. Choose b ∈ Bi

and w ∈ Zi−1(A∗) such that qi(b) = z and pi−1(w) = ∂i(b). Then
w = ∂i(a) for some a ∈ Ai, since [w] = αi([z]) = 0. But then
qi(b−pi(a)) = z and ∂i(b−pi(a)) = 0. Thus b−pi(a) ∈ Zi(B∗) and
q∗([b− pi(a)]) = [z]. We conclude that the sequence of homology
groups is exact at Hi(C∗).

Finally we prove exactness at Hi−1(A∗). Let z ∈ Zi(C∗). Then
αi([z]) = [w], where w ∈ Zi−1(A∗) satisfies pi−1(w) = ∂i(b) for
some b ∈ Bi satisfying qi(b) = z. But then p∗(αi([z])) = [pi−1(w)] =
[∂i(b)] = 0. Thus p∗◦αi = 0. Now let w be an element of Zi−1(A∗)
for which [w] ∈ ker p∗. Then [pi−1(w)] = 0 in Hi−1(B∗), and hence
pi−1(w) = ∂i(b) for some b ∈ Bi. But

∂i(qi(b)) = qi−1(∂i(b)) = qi−1(pi−1(w)) = 0.

Therefore [w] = αi([z]), where z = qi(b). We conclude that the
sequence of homology groups is exact at Hi−1(A∗), as required.
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4. (a) [Seen similar.] The sequence

H3(L;Z)⊕H3(M ;Z)
w∗−→H3(K;Z)

α3−→H2(L∩M ;Z)
k∗−→H2(L;Z)⊕H2(M ;Z)

is exact and

H3(L;Z) = 0, H3(M ;Z) = 0, H2(L;Z) = 0 and H2(M ;Z) = 0.

It follows that H3(K;Z) ∼= H2(L ∩M ;Z) ∼= Z.

(b) [Seen similar.] The homomorphism k∗:H1(L∩M ;Z)→ H1(L;Z)⊕
H1(M ;Z) is injective because

k∗(n1α + n2β) = (n1i∗(α),−n2j∗(β))

for all n1, n2 ∈ Z, where i∗(α) and j∗(β) are non-zero elements
that generate the infinite cyclic groups H1(L;Z) and H1(M ;Z).
It follows from the exactness of the Mayer-Vietoris sequence that
α2:H2(K;Z)→ H1(L∩M ;Z) is the zero homomorphism. There-
fore the sequence

H2(L;Z)⊕H2(M ;Z)
w∗−→H2(K;Z)→ 0

is exact. But H2(L;Z) = 0 and H2(M ;Z) = 0. It follows that
H2(K;Z) = 0, as required.

(c) [Seen similar.] The homomorphism k∗:H1(L∩M ;Z)→ H1(L;Z)⊕
H1(M ;Z) is surjective, because

k∗(n1α + n2β) = (n1i∗(α),−n2j∗(β))

for all n1, n2 ∈ Z, and i∗(α) and j∗(β) generate H1(L;Z) and
H1(M ;Z) respectively. Therefore the kernel of w∗:H1(L;Z) ⊕
H1(M ;Z) → H1(K) is the whole of its domain, and thus this
homomorphism w∗ is zero homomorphism. It follows from the
exactness of the Mayer-Vietoris sequence that

0→ H1(K;Z)
α1−→→ H0(L ∩M ;Z)

k∗−→H0(L;Z)⊕H0(M ;Z),

and thus

H1(K;Z) ∼= ker(k∗:H0(L ∩M ;Z)→ H0(L;Z)⊕H0(M ;Z)).

But the components of k∗ are isomorphisms (as stated in the ques-
tion) and therefore k∗:H0(L ∩M ;Z) → H0(L;Z) ⊕ H0(M ;Z) is
injective. It follows that H1(K;Z) = 0.
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(d) [Seen similar.] Let ρ be a generator of H0(L ∩ M ;Z). Then
i∗(ρ) generates H0(L;Z) and j∗(ρ) generates H0(M ;Z), because
(as stated in the question) i∗:H0(L ∩ M ;Z) → H0(L;Z) and
j∗:H0(L ∩M ;Z)→ H0(M ;Z) as isomorphism. Therefore

H0(L;Z)⊕H0(M ;Z) = {(s1i∗(γ), s2j∗(γ)) : s1, s2 ∈ Z}.

Moreover (s1i∗(γ), s2j∗(γ)) = 0 if and only if s1 = s2 = 0. There is
thus a well-defined surjective homomorphism θ:H0(L;Z)⊕H0(M ;Z)→
Z defined such that θ(s1i∗(γ), s2j∗(γ) = 0) = s1+s2 for all integers
s1 and s2. Then

ker θ = {(si∗(γ),−sj∗(γ) = 0) : s ∈ Z} = {i∗(sγ),−j∗(sγ) : s ∈ Z}
= k∗(H0(L ∩M ;Z).

It follows from the exactness of the Mayer-Vietoris sequence that
ker θ = kerw∗. Therefore

H0(K;Z) ∼= (H0(L;Z)⊕H0(M ;Z))/ kerw∗

= (H0(L;Z)⊕H0(M ;Z))/ ker θ
∼= θ(H0(L;Z)⊕H0(M ;Z)) = Z,

as required.
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