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9 Introduction to Homological Algebra

9.1 Exact Sequences

In homological algebra we consider sequences
o — P 5e-LHS

where F', G, H etc. are modules over some unital ring R and p, q etc. are
R-module homomorphisms. We denote the trivial module {0} by 0, and
we denote by 0—G and G—0 the zero homomorphisms from 0 to G' and
from G to 0 respectively. (These zero homomorphisms are of course the only
homomorphisms mapping out of and into the trivial module 0.)

Unless otherwise stated, all modules are considered to be left modules.

Definition Let R be a unital ring, let F', G and H be R-modules, and
let p: F — G and ¢:G — H be R-module homomorphisms. The sequence
F-2G-24H of modules and homomorphisms is said to be ezact at G if
and only if image(p: ' — G) = ker(q: G — H). A sequence of modules and
homomorphisms is said to be ezact if it is exact at each module occurring in
the sequence (so that the image of each homomorphism is the kernel of the
succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.
The following result follows directly from the relevant definitions.

Lemma 9.1 let R be a unital ring, and let h: G — H be a homomorphism
of R-modules. Then

e h: G — H is a monomorphism if and only if 0—G-"5H is an ezact
sequence;

e h:G — H is an epimorphism if and only if G5 H—0 is an ezact
sequence;

e h:G — H is an isomorphism if and only if 0—G-LSH—0 is an
exact sequence.

Let R be a unital ring, and let F' be a submodule of an R-module G.
Then the sequence

0— F—5G-5G /F—0,
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is exact, where G/F is the quotient module, i: F' < G is the inclusion ho-
momorphism, and ¢: G — G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0—F-G-4 H—0,

we can regard F' as a submodule of G (on identifying F' with i(F')), and then
H is isomorphic to the quotient module G/F. Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various modules
occurring on the diagram. The diagram is said to commute if, whenever
there are two routes through the diagram from a module G to a module H,
the homomorphism from G to H obtained by forming the composition of the
homomorphisms along one route in the diagram agrees with that obtained
by composing the homomorphisms along the other route. Thus, for example,
the diagram

s B 4 C

A

Pl b

p % E & F
commutes if and only if go f =hopand rog=kogq.

Proposition 9.2 Let R be a unital ring. Suppose that the following diagram
of R-modules and R-module homomorphisms

Gl i) GQ i) G3 — G4 — G5

[ A F

H 2 oH, 2 om oo 2 H

commutes and that both rows are exact sequences. Then the following results
follow:

(1) if ¥ and 1y are monomorphisms and if Yy is a epimorphism then s
18 an monomorphism,

(i) if Yo and ¥y are epimorphisms and if 15 is a monomorphism then 13
1s an epimorphism.

Proof First we prove (i). Suppose that v, and 1, are monomorphisms and
that 11 is an epimorphism. We wish to show that 13 is a monomorphism.

Let x € G35 be such that ¥s(z) = 0. Then 4 (03(x)) = ¢3(¢Y3(z)) = 0,
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and hence 05(z) = 0. But then z = 0(y) for some y € Gq, by exactness.
Moreover

P2 (2(y)) = V3 (02(y)) = ¥3(z) = 0,

hence 15(y) = ¢1(z) for some z € Hy, by exactness. But z = 91 (w) for some
w € Gy, since vy is an epimorphism. Then

Yo (01(w)) = é1 (P1(w)) = Ya(y),

and hence 01 (w) = y, since 15 is a monomorphism. But then

z = 0h(y) =02 (01(w)) =0

by exactness. Thus 3 is a monomorphism.

Next we prove (ii). Thus suppose that ¢, and 1, are epimorphisms and
that 15 is a monomorphism. We wish to show that w3 is an epimorphism.
Let a be an element of Hz. Then ¢3(a) = 14(b) for some b € Gy, since 1y is
an epimorphism. Now

5 (04(b)) = b4 (1ha(b)) = ¢a (ds(a)) =0,

hence 64(b) = 0, since ¥ is a monomorphism. Hence there exists ¢ € G
such that 63(c) = b, by exactness. Then

¢3 (P3(¢)) = 14 (63(c)) = 1a(b),

hence ¢3 (a —3(c)) = 0, and thus a — ¥3(c) = ¢a(d) for some d € H,, by
exactness. But vy is an epimorphism, hence there exists e € (G5 such that
t9(e) = d. But then

s (02(€)) = ¢2 (¥2(€)) = a — ¥s3(c).

Hence a = 93 (¢ + 03(e)), and thus a is in the image of ¢3. This shows that
5 is an epimorphism, as required. |}

The following result is an immediate corollary of Proposition 9.2.
Lemma 9.3 (Five-Lemma) Suppose that the rows of the commutative dia-

gram of Proposition 9.2 are exact sequences and that 1, 1o, Y4 and s are
1somorphisms. Then 3 is also an isomorphism.
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9.2 Chain Complexes

Definition A chain complex C. is a (doubly infinite) sequence (C; : i € Z) of
modules over some unital ring, together with homomorphisms 0;: C; — C;_;
for each ¢ € Z, such that 0; 0 9,11 = 0 for all integers 1.

The ith homology group H;(C,) of the complex C, is defined to be the
quotient group Z,;(C,)/B;(C\), where Z;(C,) is the kernel of 0;: C; — C;_4
and BZ(C*) is the image of 8i+1: Ci—H — Oz

Note that if the modules C, occuring in a chain complex C, are modules
over some unital ring R then the homology groups of the complex are also
modules over this ring R.

Definition Let C, and D, be chain complexes. A chain map f:Cy — D, is
a sequence f;: C; — D; of homomorphisms which satisfy the commutativity
condition d; o f; = fi_1 0 0; for all i € Z.

Note that a collection of homomorphisms f;: C; — D, defines a chain map
fe: Cy — D, if and only if the diagram

e — Ci+1 _+1> D — C’i—l — ...

C
J/fi-‘rl lfi J/fi—l

e — Di+1 % Dl i) Di,1 —_—
is commutative.

Let C, and D, be chain complexes, and let f,:C, — D, be a chain map.
Then fi(Z;(C.)) C Zi(D.) and f;(B;(Cy)) C B;i(Dy) for all i. It follows
from this that f;: C; — D; induces a homomorphism f,: H;(C,) — H;(D.)
of homology groups sending [z] to [fi(z)] for all z € Z;(C,), where [z] =
z 4 Bi(Cy), and [fi(2)] = fi(2) + Bi(D.).

Definition A short ezact sequence 0—s A, 2B, ~+C,—0 of chain com-
plexes consists of chain complexes A,, B, and C, and chain maps p,: A, — B,
and q,: B, — C, such that the sequence

is exact for each integer i.

81



We see that 0— A, 25 B, 25, —0 is a short exact sequence of chain
complexes if and only if the diagram

Oiy2 Oiy2 Oiy2

pi qi
0 — Ay =5 By — Gy — 0

Oit1 Oi+1 Oi+1

Di— qi—
0 — Ai—l —1> B;_4 —1> Oi—l — 0
i1 Oi—1 0i—1

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.

Lemma 9.4 Given any short evact sequence 0—A, 2B, - 250, —0 of
chain complexes, there is a well-defined homomorphism

QL HZ(C*) — Hz_l(A*>

which sends the homology class [z] of z € Z;(C\) to the homology class [w] of
any element w of Z;_1(A,) with the property that p;_1(w) = 9;(b) for some
b € B; satisfying ¢;(b) = z.

Proof Let z € Z;(C,). Then there exists b € B; satisfying ¢;(b) = z, since
q;: B; — C} is surjective. Moreover

¢i-1(05(b)) = 0i(qi(b)) = 95(2) = 0.

But p;—1: A;-1 — B;_ is injective and p;_1(A;—1) = kerg;_1, since the se-
quence
O—>Ai_1m;1>Bi_1E)Ci_1

is exact. Therefore there exists a unique element w of A;_; such that 9;(b) =
pi—1(w). Moreover

pi2(0i1(w)) = 01 (pia(w)) = 0;-1(0i(b)) = 0

(since 0;_1 0 0; = 0), and therefore 9;_1(w) = 0 (since p;_9: A;_9 — B;_5 is
injective). Thus w € Z;_1(A,).
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Now let b,0 € B; satisfy ¢;(b) = ¢;(/) = z, and let w,w" € Z;_1(A.)
satisfy p;—1(w) = 0;(b) and p;—1(w') = 0;(b'). Then ¢;(b — V') = 0, and hence
b — b= p;(a) for some a € A;, by exactness. But then

pici(w + 95(a)) = pica(w) + di(pi(a)) = 0i(b) + 0i(V — b) = %i(V) = pi1(w'),

and p;_1: A;_1 — B;_1 is injective. Therefore w + 0;(a) = w’, and hence
[w] = [w] in H;_1(A,). Thus there is a well-defined function &;: Z;(C,) —
H;_1(A,) which sends z € Z;(C,) to [w] € H;_1(As), where w € Z;_1(A,) is
chosen such that p;_i(w) = 9;(b) for some b € B; satisfying ¢;(b) = z. This
function &; is clearly a homomorphism from Z;(C,) to H;—1(A.).

Suppose that elements z and 2’ of Z;(C,) represent the same homology
class in H;(Cy). Then 2z’ = z+ 0;1¢ for some ¢ € C;1. Moreover ¢ = ¢;41(d)
for some d € B;.1, since q;11: Biy1 — Cj11 is surjective. Choose b € B; such
that ¢;(b) = 2z, and let ¥’ = b+ 0;41(d). Then

ql(b’) =z + qi(@-ﬂ (d)) =z + 8¢+1 (qi+1 (d)) =z + 6i+1(c) = Z/.

Moreover 0;(b') = 0;(b + 0;11(d)) = 0;(b) (since 0; 0 J;41 = 0). Therefore
&;(z) = a;(2'). It follows that the homomorphism &;: Z;(C,) — H;—1(A.) in-
duces a well-defined homomorphism «;: H;(C\) — H;—1(A,), as required. ||

Let 0— A, 25 B, *5C,—0 and O—>A;p—;>B;q—;>C’i—>O be short ex-
act sequences of chain complexes, and let \,: A, — A, u.: B, — B, and
vy: C. — C) be chain maps. For each integer i, let oy: H;(C\) — H;—1(A.)
and of: H;(C") — H;_1(A,) be the homomorphisms defined as described in
Lemma 9.4. Suppose that the diagram

0 — A, X B, & . — 0
P* lu* l
0 — A Pop oo

commutes (i.e., pio\; = p;op; and ¢} o p; = v;0¢; for all 7). Then the square

H(C.) =5 Hi (A

Vs A
Hi(C) 5% Hiy(A)

commutes for all i € Z (i.e., A\, o oy = a, o v,).
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Proposition 9.5 Let 0— A, 2 B,-25C,—0 be a short ezact sequence of
chain complezes. Then the (infinite) sequence

S H (AL Hy(B) 5 Hi(C) =5 Hia (A) 25 iy (B) 25 -

of homology groups is exact, where a;: Hi(C) — H;_1(A,) is the well-defined
homomorphism that sends the homology class [z] of z € Z;(C) to the homol-
ogy class [w] of any element w of Z;_1(A.) with the property that p;—;(w) =
0;(b) for some b € B; satisfying q;(b) = z.

Proof First we prove exactness at H;(B.). Now ¢; o p; = 0, and hence
¢« o p. = 0. Thus the image of p,: H;(A.) — H;(B.) is contained in the
kernel of ¢.: H;(B.) — H;(C.). Let x be an element of Z;(B,) for which
[x] € kergq,. Then ¢;(z) = 0;11(c) for some ¢ € Cyy1. But ¢ = ¢i11(d) for
some d € B, since ¢;11: Biy1 — Cjyq is surjective. Then

¢i(z — 0ir1(d)) = ¢i(x) — 0iy1(¢ir1(d)) = qi(z) — Oi31(c) = 0,

and hence  — 0;41(d) = p;(a) for some a € A;, by exactness. Moreover

pi-1(0i(a)) = di(pi(a)) = 0i(x — 0;11(d)) = 0,

since 0;(z) = 0 and 0; 0 0;41 = 0. But p,_1: A;_1 — B,;_; is injective.
Therefore 0;(a) = 0, and thus a represents some element [a] of H;(A,). We

deduce that
(2] = [z = 0i41(d)] = [pi(a)] = p.([a]).

We conclude that the sequence of homology groups is exact at H;(B,).
Next we prove exactness at H;(C,). Let x € Z;(B,). Now

@;(g+[7]) = ail[a:(2)]) = [w],

where w is the unique element of Z;(A,) satisfying p;_1(w) = 9;(x). But
O;(z) = 0, and hence w = 0. Thus «a; o ¢, = 0. Now let z be an element
of Z;(C,) for which [z] € kera,;. Choose b € B; and w € Z;_1(A,) such
that ¢;(b) = z and p;_;(w) = 0;(b). Then w = 0;(a) for some a € A;, since
[w] = a;([z]) = 0. But then ¢;(b — p;(a)) = z and 9;(b — p;(a)) = 0. Thus
b—pi(a) € Z;(B,) and q.([b — pi(a)]) = [z]. We conclude that the sequence
of homology groups is exact at H;(C).

Finally we prove exactness at H; 1(A,). Let z € Z;(C.). Then «;([z]) =
[w], where w € Z;_1(A.) satisfies p;_;(w) = 0;(b) for some b € B; satisfying
¢;(b) = z. But then p.(;i([z])) = [pi—1(w)] = [0;(b)] = 0. Thus p. o o; = 0.
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Now let w be an element of Z;_;(A,) for which [w] € kerp,. Then [p;—1(w)] =
0in H; 1(B.), and hence p;_;(w) = 0;(b) for some b € B;. But

az‘(%‘(b)) = qi—l(ai<b>> = Qi—1<pi—1(w)) = 0.

Therefore [w] = «;([z]), where z = ¢;(b). We conclude that the sequence of
homology groups is exact at H;_1(A,), as required. |}
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10 The Mayer-Vietoris Exact Sequence

10.1 The Mayer Vietoris Sequence of Homology Groups

Proposition 10.1 (The Mayer Vietoris Exact Sequence) Let K be a sim-
plicial complex, let L and M be subcomplexes of K such that K = LU M,
and let R be an unital ring. Let

iy Co(LNM;R) — Cy(L; R), Jg: Co(LNM; R) — Cy(M; R),
ug: Cy(L; R) — Cy(K; R), vy Cy(M; R) — Cy(K; R)

be the inclusion homomorphisms induced by the inclusion maps i: LM — L,
LM — M, wL— K and v: M — K, and let

ko(c) = (ig(c), =Jq(0)),
we(c', ") = ug(c) + vg(c"),
0y(¢', ") = (94(), 04(c"))
for all c € Co)(LN M;R), ¢ € Cy(L;R) and " € C,(M;R). Then there
is a well-defined homomorphism oy: Hy(K; R) — H,_1(L N M; R) such that
ay([2]) = [0,()] = —[0,(")] for any z € Z,(K; R), where ¢ and ¢ are any
q-chains of L and M respectively satisfying z = ¢ +”. The resulting infinite
sequence

2N, (LNM; R) 25 Hy(L; R) @ Hy(M; R) -5 H,(K; R)
S H, (LN M R)2 -
of homology groups is then exact.

Proof The sequence
0—C,(L N M; R)=5C,(L; R) & C,.(M; R)-25C, (K; R)—s0

is a short exact sequence of chain complexes. The existence and basic prop-
erties of the homomorphism o,: H,(K; R) — H,_1(L N M; R) then follow on
applying Lemma 9.4. Indeed if ¢ and ¢ are ¢-chains of L and M respectively,
and if ¢ + " € Z,(K; R) then 0,(c') = —9,(¢"). But 9,(¢) € Z,-1(L; R) and
0,(c") € Zy_1(M; R) and Z,_1(L; R)YNZy—1(M; R) = Z,_1(LNM; R). There-
fore 0,(¢) € Z,—1(L N M;R). Lemma 9.4 then ensures that the homology
class of 0,(¢') in H,—1(LNM; R) is determined by the homology class of c+¢”
in Z,(K; R). The exactness of the resulting infinite sequence of homology
groups then follows on applying Proposition 9.5. |}

The long exact sequence of homology groups Proposition 10.1 is referred
to as the Mayer-Vietoris sequence associated with the decomposition of K
as the union of the subcomplexes L and M.
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10.2 The Homology Groups of a Torus

We construct a simplicial complex Kgq in the plane whose polyhedron is the
square [0,3] x [0,3]. We let u;; = (4,j) for i = 0,1,2,3 and j = 0,1,2,3.
Then the simplicial complex Kg, consists of the triangles w; ; w1 Wit1 41
and w;; W1 41 W 541 for ¢ = 0,1,2 and j = 0,1,2, together with all the
vertices and edges of those triangles. This simplicial complex is depicted in
the following diagram:—

Ug,3 g3 Uy 3 us 3
Ug,2 uj o Uz 9 us o
Ug,1 Ui Ug1 RN
U0 U1, Usz,0 Uz,

)

The simplicial complex Kgq has 24 vertices, 33 edges and 18 triangles.

One can construct a simplicial map s: Kgq — Krorus mapping the sim-
plicial complex Kgq onto a simplicial complex Kryys whose polyhedron is
homeomorphic to a torus. One way of achieving this is to determine points
v;j of R? for i = 0,1,2 and j = 0, 1,2 such that

Voo = (17 _17())7 Vo1 = (37 _17 1)7 Vo2 = (17 _37 _1>7

V1’0 = (O, ]_, —]_), V171 = (]_, 3, —]_), V172 = (—1, ]_, —3),
VQ’O = (-1,0, ].), V271 = (—1, 1,3), V272 = (—3, —1, ].)

One can verify that these nine points are vertices of a simplicial complex Krypus
in R? which consists of the 18 triangles

Vo,0Vi0V11, VooViiVol, VioV2oVail,
VioV21Vi1, V20Voo0Vo1, V20Vo1Val,
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together with all the vertices and edges of these triangles.

V0,1 V11V12,
V11V22Vy2,
Vop,2V1i2Viop,

V1,2V20 Vi,

V0,1 V1,2 V0,2,
V2,1 V0,1 V0,2,
Vo02Vi10Vo0,0,

V22V02Voo0,

V11V21Va2,
V2.1V02V29,
V12V22Voo,

V22V0,0V20,

complex Kros has 9 vertices, 27 edges and 18 triangles.
There is then a well-defined simplicial map s: Kgq — Krors defined such

that

This simplicial

Svert(W;j) = v;; fori=0,1,2and j=0,1,2;
Svert(Wi3) = vio fori=0,1,2;

Svert(Us ;) = v ; forj=0,1,2;

Svert(u3,3) = Voo

Each triangle of Koy is then the image under this simplicial map of exactly
one triangle of Kg,.

The following diagram represents the simplicial complex Krys. The
18 triangles in this diagram represent the 18 triangles of Ky, and are

labelled 7, 79, ..

., T1s. Moreover the vertices of each triangle in the diagram

are labelled by the vertices of the corresponding triangle of the simplicial
complex Krorus.

V0,0 Vio Vao Vo0
T5 T15 T7
T6 T16 78
Vo,2 Vi2 Va2 Vo2
713 718 T12
T14 17 T11
Vo,1 Vi1 Va1 Vo,1
T2 T10 T4
T1 To T3
V0,0 Vio V2.0 Vo0
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These 18 triangles 7, 7o, . .

lows:

T1 = Vo,0V1,0Vi11,

T4 = V20V0,1V21,
T7 = V22V0,0 V20,
Ti0 = V1,0V2,1Vi11,
T13 = V0,1 V1,2V0,2,

Ti6 = V1,2V22Vap,

T2 = Vo,0V1,1Vo,1,

Ts = V0,2 V1,0 V0,0,
T8 = V22V0,2V0,0,
T11 = V2,1 V0,1 V0,2,
T14 = V0,1 V1,1 V12,

Ti7 = V1,1 V21 Va2,

., T1g are determined by their vertices as fol-

T3 = V2,0V, Vo,1,

Te = V0,2V1,2 V10,
T9 = Vi1,0V20V21,
Ti2 = V2,1 Vp,2V22,
T15 = V1,2V20V10,

Ti8 = V1,1 V22 V2.

Let Lo be the subcomplex of Kt consisting of the five vertices
Vo0, V1,0, V20, Vo,1 and Vo2
and the six edges
V0,0 V1,0, V1,0V20, V2,0Voo0, VooVo1, Vo1 Vo2 and vga vy,

and let L be the subcomplex of Ko consisting of the vertices and edges
of Ly together with the 16 triangles 7; for 0 < ¢ < 16 and all the vertices
and edges of those triangles. This subcomplex L is the subcomplex of Ko
obtained from removing from K. the two triangles 77 and 753 together
with the edge vi1 Va2 of Kpomys that is common to 717 and 7.

We claim that the inclusion map ig: Ly < L induces isomorphisms

io«: Hy(Lo; Z) — Hy(L; Z)

of homology groups for all non-negative integers ¢q. To see this note that there
is a finite sequence Lg, L1, Lo, . .., L1 of subcomplexes of K, where, for each
integer k between 1 and 16, the subcomplex L, is obtained by adding to Ly
the triangle 7, together with all its vertices and faces. The order in which
the triangles 71, 7o, . . ., T16 have been listed then ensures that the intersection
Tk N |Lg_1] of the triangle 7 with the polyhedron of the subcomplex Lj_; is
either a single edge of 74 or else is the union of two edges of 7. Lemma 7.4
and Lemma 7.5 then ensure that the inclusion of the subcomplex L;_; in
Ly, induces isomorphisms of homology groups for k = 1,2,...,16. It follows
that dg.: Hy(Lo; Z) — H,(L;Z) is an isomorphism for ¢ = 0, 1, 2.

Let z; and z3 be the 1-cycles of Ly with integer coefficients defined such
that

21 = (Voo Vi) + (VioVao) + (V2o Voo)

2o = (Voo Vvo1)+ (VoiVoz) + (Voz Vo).
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A simple calculation shows that Zy(Lo;Z) = 7Z @ 7, and moreover, given
any l-cycle z of Ly, there exist uniquely-determined integers r; and 79 such
that z = 1121 + r929. Moreover Hy(Ly;Z) = Z1(L;Z), because By(Lg;Z) =
0. (The subcomplex Ly has no 2-simplices, and therefore it has no non-
zero 1-boundaries.) The inclusion map iy: Ly — L induces isomorphisms
of homology groups, and therefore H;(L;Z) must also be freely generated
by the homology classes of the cycles z; and z3. Therefore, given any 2-
cycle z of L, there exist uniquely determined integers r; and r, such that
[zl = m|z1|L + ro[ze]n, where [2]r, [z1]r and [25]; denote the homology
classes of the 1-cycles z, z; and 2 in Hy(L;Z). In consequence, given any
1-cycle z of L, there exist uniquely-determined integers r; and ry such that
z—riz1 —roze € By(L; Z).
Let
23 = (Vi1 Vi2) + (Vi2 Vo) + (Vaavar) + (Va1 Vig).

Then [z3];, = 0. Indeed each triangle 7; determines a corresponding generator
v of Co(L;Z) for i = 1,2,...,16 that is determined by an anti-clockwise
ordering of the vertices of 7;, so that

M= (Vo,o Vi,0 V1,1>, Y2 = <V0,0 Vi1 V0,1>, V3= <V2,0 Vo,0 V0,1> etc.,

and direct computation shows that if ¢ € Cy(L; Z) is the 2-chain of L defined
such that
c=Y+Y2+ -+ Y,

then dyc = —23. Indeed terms corresponding to the edges
VoooVi1, VioViil, VioV2i1, V20V21, Vo2Voi1, V21Vol,

V21Vo2, V22Vo2, V22Voo, V22V20, V22Vap, Vi2Vao,
Vi2V10, Vo02Vio0, Vo2Vi2, Vo1Vi2 and Vo1 V11

cancel off in pairs, with the result that

dac = (Vo0 Vi) + (VioVao) + (Va0 Voo)
+ (Vo0 Vo) + (Vo2 Vo) + (Vo2 Vo)
+ (Vo0 V2,0) + (V2,0 Vi) + ( )
+ (Vo0 Vo,2) + (Vo2 Vo) + (Vo1 Vo)
- <V1,1 V1,2> <V12V2 2> < >

= Z1+ 20— 21— 20— 23

Vi10Vo,0
2,2V12

<V1,2 V1,1>

= = —23
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(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex K, in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that z3 € B;(L;Z), and thus [23];, = 0
in Hy(L;Z). The subcomplex Ly is connected, and therefore Hy(Lg,Z) = 7Z.
Indeed Hy(Lo,Z) is generated by [(voo)]r,. It follows that Hy(L;Z) = Z,
and indeed the homology class [(v; ;)] of any vertex of Ko in Ho(L;Z)
generates Hoy(L;Z).

Let M be the subcomplex of Kru,s consisting of the union of the two
triangles 717 and 75, together with the vertices and edges of those triangles.
Then M has 4 vertices, 5 edges and 2 triangles. The vertices of M are v
Va1, Voo and vy o, the edges of M are

Vi1,1V21, V21V22, V22Vig, VioVijg and Vi1,1V22,
and the triangles of M are
V11V21Va2 and V11V22Vya.
Then Hy(M,Z) = Z, and H,(M,Z) = 0 for all integers ¢ satisfying ¢ > 0.
The intersection L N M of the subcomplexes L and M of Ko, consists
of the four vertices vi; Va1, Voo and vy o and the four edges

Vi1V21, V21V22, V29Vi2 and Vi2Vig.

Then Ho(LNM;Z) = Z and H,(LNM;Z) = Z, and moreover Ho(LNM;Z)
is generated by [(v11)]onnm and Hy (L N M;Z) is generated by [23]rnn, where

23 = (Vi1 Via) + (ViaVaa) + (Voo vaq) + (Va1 Vig).

We now have the necessary information to compute the homology groups
of Krorus using the Mayer-Vietoris exact sequence associated with the de-
composition of Ko as the union of subcomplexes L and M as described
above. The homomorphisms

i Ho(LNM;Z) — Ho(L;Z) and  j. Ho(LNM;Z) — Ho(M;Z)

induced by the inclusions ¢: LN M — L and j: LN M < M are isomorphisms
of Abelian groups that satisfy

i ([(vi) o) = [(vi)]e = [voo)lz  and  ju({[vi)]oanr) = [(Via)]u-
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Next we note that the homology group Hy(LNM;Z) is generated by [z3] s,
the homology group H;(L;Z) is isomorphic to Z @ Z and is freely generated
by [z1]z and [23]r, where

z1 = (Voo Vvio) + (V1o Vao) + (V2,0 Vo)
22 = (Voo Vo) + (Vo1 Voz) + (Vo2 Voo),
and moreover the homomorphism i,: Hy(LNM;Z) is the zero homomorphism.

Also
Hy(L;Z) =0, Hy(M;Z)=0 and Hy(M;Z)=0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0—>HQ(KT01~HS; Z)%Hl (L N M, Z)Z—*>H1<L, Z)i)Hl (KTorus; Z)
U Ho(L N M3 Z)-E5Ho(Ly Z) & Ho(M;Z),

where w,: Hi(L; Z) — Hy(Kropus; Z) is induced by the inclusion map u: L <
Krors, the homomorphims ap and 4 are defined as described in Proposi-
tion 10.1, and

k([(vi)eon) = (u([(vi)]oaar), —dx (Vi) ]oan))
= ({voolz, —=[{(vi1)]m)-

Now [(v11)]rnn generates Hy(L; Z) & Ho(M;Z), and k. ([(v11)]zom) # 0. It
follows that
ko Ho(LNM;Z) — Ho(L; Z) ® Ho(M;7Z)

is injective. The exactness of the Mayer-Vietoris sequence at Ho(L N M;Z)
then ensures that the homomorphism oy Hy(Krorus — Ho(LNM;Z) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence Hj(Ktos that the homo-
morphism

Uy Hl(L, Z) — Hl(KTorus; Z)

is surjective. Thus the sequence
0— Ho (Krorus; Z) 2 Hy (L 0 M; Z) -5 Hy (L; 2) -5 Hy (K torus; Z)—0

derived from the Mayer-Vietoris sequence is exact. However i,: H;(L N
M;Z)toH(L;Z) is the zero homomorphism. It follows from exactness that
ag: Ho(Krorus; Z) — Hi(L N M;Z) and uy: Hi(L;Z) — Hy(Krores; Z) are
isomorphisms. We deduce that

HZ(KToruS;Z) = Hl(L N M,Z) =7
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and
H1<KTorus;Z) = Hl(L,Z> =7 D 7.

Now the polyhedron of K., is connected. It follows from Theorem 8.6
that Ho(Kropus; Z) = Z. This result can also be deduced from the exactness
of the the portion

Ho(L N M;Z) " Ho(L; Z) ® Ho(M;Z), -2 Ho( Koras: Z)—0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex Ky
triangulating the torus are as follows:

H2<KTorus; Z) = Z; HI(KToruS; Z) = Z EB Z7 HO(KTorus; Z) = Z

10.3 The Homology Groups of a Klein Bottle

Let Kgq be the simplicial complex triangulating the square [0, 3] x [0, 3] de-
fined as in the above discussion of the homology groups of the torus.

There exists a simplicial complex Kkein in R* with vertices v, for i =
0,1,2 and 5 = 0, 1,2 whose polyhedron is homeomorphic to a Klein Bottle,
and a simplicial map §: Kgq — Kkiein mapping the simplicial complex Kgq
onto the simplicial complex Kxiein, where this simplicial map is defined such
that

Svert(w; ;) = V;; fori=0,1,2and j=0,1,2;
Svert(Wi3) = Vo fori=0,1,2;

Svert(U30) = Voo;

§vert(u3,1) = Vo2;

§Vert(u3,2) = Vo,u;

Svert(U33) = Vop.

Each triangle of Kk, is then the image under this simplicial map of exactly
one triangle of Kg,. We do not discuss here the details of how the simplicial
complex representing the Klein Bottle is embedded in R*.

The following diagram represents the simplicial complex Kkjein. The 18
triangles in this diagram represent the 18 triangles of Kkiein and are labelled
71,72, ...,T18. Moreover the vertices of each triangle in the diagram are la-
belled by the vertices of the corresponding triangle of the simplicial complex
Kxiein-
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V0,0 Vio Vao Vo,0
Ts N Ti5 / . T7 «
Te6 Ti6 78
Vop,2 Vi2 Va2 Vo1
T13 /. 718 / . T2 /.
T14 T17 T11
Vo,1 Vi1 Va1 Vo,2
T2 N Ti0 / . T4 «
71 T9 T3
V0,0 Vio V2.0 Vo0
These 18 triangles 7, 7o, ..., T1g are determined by their vertices as fol-

lows:

A

T1 = Voo V1o Vi1, 7T2=VooVi1Vol, 73= V20 Vo0Vo2,
T4 = Voo Vo2 Va1, 75 =Vo2VioVoo, 76 = Voz2Vi2Vio,
Tr = Va2 Voo V20, 78 = V22V01Vo0, T9= VigVaoVal,
Ti0 = V1o Vo1 Vi1, Ti1 = V21Vo2 Vo1, Ti2 = Va1 Vo1 Voo,
T13 = Vo,1 V12 Vo2, T4 = Vo1 Vi1 V2, Tis = Vi2Vao Vi,
Ti6 = V12 Vo2 Voo, Ti7 =Vi1Va1Vas, Tig=Vi1Va2Via.

Let [:0 be the subcomplex of K consisting of the five vertices
‘70,0> ‘71,0> ‘72,0> ‘70,1 and ‘70,2
and the six edges
‘70,0 ‘71,0, ‘71,0 ‘72,0, ‘72,0 ‘70,0, ‘70,0 ‘70,1, ‘70,1 ‘70,2 and ‘70,2 ‘70,07

and let L be the subcomplex of Kk, consisting of the vertices and edges
of f)o together with the 16 triangles 7; for 0 < ¢ < 16 and all the vertices
and edges of those triangles. This subcomplex L is the subcomplex of Kijein
obtained from removing from Ky, the two triangles 717 and 713 together
with the edge Vi1 Va2 of Kkiein that is common to 717 and Tys.
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Now the inclusion map %¢: ﬁg — L induces isomorphisms
ioe: Hy(Lo; Z) — H,(L;Z)

of homology groups for all non-negative integers ¢q. The justification for this
corresponds to the justification of the corresponding result in the preceding
discussion of the homology of the torus. The subcomplex L is obtained Ly
by the successive addition of 16 triangles together with their vertices and
edges. At each stage the intersection of the triangle to be added with the
polygon of the subcomplex built up prior to the addition of the triangle
under consideration is either a single edge of the added triangle or else is the
union of two edges of the added triangle. It then follows from applications of
Lemma 7.4 and Lemma 7.5 that the addition of new triangles in the specified
sequence does not change homology groups, and therefore the inclusion of Lo
in L induces isomorphisms of homology groups.

Now Hl(ﬁo; Z) =27 ®Z. Indeed let z; and 29 be the 1-cycles of Lo with
integer coefficients defined such that

2 = (Voo V1) + (V1,0 V20) + (V2,0 Vo)

2o = (Voo Vo) + (Vo1 Voz) + (Vo2 Vo).

A simple calculation shows that ZQ(EO;Z) > 7 & 7Z, and moreover, given
any l-cycle z of io, there exist uniquely-determined integers ry and ry such
that z = r121 + r925. It follows that, given any 1-cycle z of ﬁ, there exist
uniquely-determined integers r; and 7o such that [z]; = ri[z1]; + 7222,
where [z];, [21]; and [23]; denote the homology classes of the 1-cycles z, z;
and zy in Hl(f/;Z). In consequence, given any l-cycle z of f}, there exist
uniquely-determined integers r; and 7o such that z —r1z; — 1929 € Bl(ﬁ; 7).
Let
23 = (V1,1 Vi2) + (V12 Va2) + (Vo2 Va1) + (Vo1 Vig).

Then [z3];, = —2[z2]r. Indeed each triangle 7; determines a corresponding

A

generator 9; of Cy(L;Z) for i = 1,2,...,16 that is determined by an anti-
clockwise ordering of the vertices of 7;, so that

= (VooVioVii), Y= (VooViiVo1), 3= (Va0VooVo2) etc.,

and direct computation shows that if ¢ € Cy(L; Z) is the 2-chain of L defined
such that
c=N+%+ -+,

then 0yc = —229 — 23. Indeed terms corresponding to the edges

VoooVi1, VioViil, VioV2i1, V20V21, Vo2Vo2, V21Vo2,
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V21Vo,1, V22Vo1, V22Vpo, V22V20, V22Vap, Vi2Vap,
Vi2V1i0, Vo02Vio, Vo2V1i2, Vo1Vi2 and Vo,1 Vi1

cancel off in pairs, with the result that

Osc = (Voo V10) + (V10 V20) + (V20 Vo)
+ (Vo0 Vo,2) + (Vo2 Vo1) + (Vo Voo
+ (Vo0 V2,0) + (V2,0 V1)
+ (Vo0 Voz) + (Vo2 Vo)
— (V11 Vi2) — (V12 Vap2)

= 21 —R2— Rk — Rk —2Z3

= = —222 — Z3

(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex Kxkiin in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that [z3]; = —2[20]; in Hy(L;Z).

The subcomplex Ly is connected, and therefore Hy(Lg,Z) = Z. Indeed
Hy(Lo,Z) is generated by [(Voo)lz,- It follows that Ho(L;7Z) = 7, and in-
deed the homology class [(V; ;)] of any vertex of Kk in Ho(L; Z) generates
Ho(L; 7).

Let M be the subcomplex of Kiein consisting of the union of the two
triangles 717 and 75, together with the vertices and edges of those triangles.
Then M has 4 vertices, 5 edges and 2 triangles. The vertices of M are Vi1
Va1, Vo2 and vy 9, the edges of M are

91,1 92,1, {’2,1 {’2727 \A/'2,2 91,2, {’1,2 {’1,1 and {71,1 {’2,27
and the triangles of M are
‘71,1 \A/'2,1 92,2 and \71,1 92,2 ‘71,2~
Then HO(M, Z7) = Z, and HQ(M, Z) = 0 for all integers ¢ satisfying ¢ > 0.
The intersection L N M of the subcomplexes L and M of Kiein consists

of the four vertices V11 Va1, Voo and v; 2 and the four edges

Vi1V21, V21V22, V29Vi2 and Via2Vig.
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Then Ho(LNM;Z) = Z and Hy(L ﬂAM; Z) = Z, and moreover Ho(LNM;7Z)
is generated by [(vi1)];~y and Hi(LNM;Z) is generated by [23]; -y, Where

23 = (V11 Via) + (V12 Voo) + (Voo Vo1) + (Vo1 Vi),

We now have the necessary information to compute the homology groups
of Kxuein using the Mayer-Vietoris exact sequence associated with the decom-
position of Kkjen as the union of subcomplexes L and M as described above.
The homomorphisms

iv: Ho(LNM;Z) — Ho(L:Z) and j,: Hy(L N M;Z) — Hy(M;Z)

induced by the inclusions #: LNM < L and 7 LOM < M are isomorphisms
of Abelian groups that satisfy

(Vi) o) = [V = [Voo)]; and  5u({(Vi) paxr) = (Vi)

Next we note that the homology group Hy(LNM:;Z) is generated by [z3] PO
the homology group Hi(L;Z) is isomorphic to Z @& Z and is freely generated
by [z1]; and [22];, where

21 = (Voo Vi) + (VioVao) + (Voo Voo)

2o = (VooVo1)+ (VoiVoz) + (Vo2 Voo),

and moreover the homomorphism i,: Hy (L N M;Z) satisfies

tl[zslznmr) = 28]y = —2[2];.

Also R X R
Hy(L;Z) =0, Hy(M;Z)=0 and Hy(M;Z)=0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0— Ho( Kitein: Z) 22 Hy (L N M3 Z) -5 Hy (L Z) 2 Hy ( Kilein; Z)
S Ho(L 0 M; Z2) 25 Ho(L Z) @ Ho(M;Z),

where u,: Hl(ﬁ; Z) — Hi(Kxiein; Z) is induced by the inclusion map u: L
KKiein, the homomorphims s and «a; are defined as described in Proposi-
tion 10.1, and

kel imir) = Gl ) =2 (0000 o))
= ([(Voo)zs =l{vi)]wm)-
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Now [(V1.1)]; sy generates Ho(L; Z) ® Ho(M;Z), and k. ([(V1.1)];5) # 0. Tt
follows that o ) R
kot Ho(L 0 N Z) — Ho(L; Z) @ Hy(M; Z)

is injective. The exactness of the Mayer-Vietoris sequence at HO(L N M; A
then ensures that the homomorphism oy Hy ( Kkein — HO(L NM: ; ZL) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence H;(Kkjein that the homo-
morphism

Uy H1(f/;Z) — Hy(Kkiein; Z)

is surjective. Thus the sequence
0— Ho(Kxtein; Z) -2 Hi (L 0 M; Z) =" Hy (L; Z) > Hy (Kctein; Z) —0

derived from the Mayer-Vietoris sequence is exact. It follows from exactness
that o )
Hy(Kxiein; Z) = ker(i: Hi(LNM;Z) — H(L; Z))

and

Hy (Kein; Z) = Hy(Kei; Z) /i (Hy (L N M Z2)).

Let ¢: Hl(j}; Z) — Z. @ Z be the isomorphism of Abelian groups defined such
that o(r1]z1]; + 72(22];) = (11, 7r2) for all ri, 7, € Z. Then

plixlza]jomr) = @(=2[2];) = (0, -2).

It follows that ¢(i,(Hy(L N M;Z))) = K, where K is the subgroup of Z & Z
such that K = {(0,2r) : r € Z}. Then

H1<KKlein) =7Z® Z/K =7Z& ZQ,

where Z, = Z/2Z. Also i,: Hi(L N M;Z) — Hy(L;Z)) is injective, and
therefore Ho(KKein; Z) = 0.

Now the polyhedron of Kk, is connected. It follows from Theorem 8.6
that Ho(Kkiein; Z) = Z. This result can also be deduced from the exactness
of the the portion

Ho(L N M; Z)-5 Ho(L; Z) ® Ho(M; Z), ~* Ho( Kiciein; Z)—0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex Kkjei, tri
angulating the Klein Bottle are as follows:

Hy(Kxiein; Z) =0,  Hi(Kxiein; Z) 2 Z & Lo, Ho(Kkiein; Z) = Z.
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10.4 The Homology Groups of a Real Projective Plane

Let Kgq be the simplicial complex triangulating the square [0, 3] x [0, 3] de-
fined as in the above discussions of the homology groups of the torus and the
Klein Bottle.

There exists a simplicial complex Kgp2 in R* with vertices w; for i =
0,1,2,3 and w; ; for ¢ = 1,2 and j = 0, 1,2 whose polyhedron is homeomor-
phic to a real projective plane, and a simplicial map 5: Kgq — Krp2 mapping
the simplicial complex Kgq onto the simplicial complex Kgp2, where this sim-
plicial map is defined such that

Svert (Ws5) w;; fori=0,1,2and j =0,1,2;
Svert(Uz0) = Wsp;
Svert(Us1) = Wog;
Svert(Us2) = Wou;
Svert(Wo3) = Wsp;
Svert(U1,3) Wo,2;
Svert(U23) = Wou;
Svert(Uzz) = Wop.

Each triangle of Kgp2 is then the image under this simplicial map of exactly
one triangle of Kg,. We do not discuss here the details of how the simplicial
complex representing the real projective plane is embedded in R*.

The following diagram represents the simplicial complex Kgp2. The 18
triangles in this diagram represent the 18 triangles of Krp2 and are labelled
T1,To,...,T18- Moreover the vertices of each triangle in the diagram are
labelled by the vertices of the corresponding triangle of the simplicial complex
Kgpe.
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W30 W20 W10 Wo,0
Ts T15 T7
T6 T16 T8
Wo,2 W12 W22 Wo,1
T3,/ _ T18 /_ T12
T14 T17 T11
Wo,1 Wi1 Wa1 Wo,2
To Ti0,/_ T4
T1 To9 T3
Wo,0 W10 W20 W30
These 18 triangles 7y, 7, ..., 715 are determined by their vertices as fol-

lows:
T1=WooWi oW1, T2=WooWi1Wqg1, T3= WgqW3qW2,

T4 = WooWgooWao1, T5=WoaWoogW39, Tg= Wg2Wj3Wsp,
T7 = W2 WooWig, Tg=Woo2Wg1Wgg, Tg9=WigWoqWsq,
Ti0 = Wi oW21 W11, Ti11 = W21 Wo2Wqo1, Ti2 = W21 Wg1Wa,
T13 = W1 W12 W2, Ti14 = Wo1W11Wi2, Ti5 = Wi2WigWap,
Tie = Wi12Wo2Wig, Ti7 = W11 W21 Woo, Ti8= Wy W39 Wi,

Let Ly be the subcomplex of Kgpe consisting of the six vertices
W00, W10, Wa0, W30, Wo2 and wq,
and the six edges
Wo,0 W10, W1 0W20, W20W30, W30Wp2, Wp2Wp1 and Wo,1 W0,0,

and let L be the subcomplex of Kgpe consisting of the vertices and edges
of Ly together with the 16 triangles 7; for 0 < i < 16 and all the vertices
and edges of those triangles. This subcomplex L is the subcomplex of Kpgp2
obtained from removing from Kgrp2 the two triangles 717 and 713 together
with the edge w; 1 wo o of Kgpe that is common to 717 and 7.
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Now the inclusion map iy: Ly < L induces isomorphisms
iox: Hy(Lo; Z) — H,(L; Z)

of homology groups for all non-negative integers q. The justification for this
corresponds to the justification of the corresponding results in the preceding
discussions of the homology of the torus and the Klein Bottle. The subcom-
plex L is obtained Ly by the successive addition of 16 triangles together with
their vertices and edges. At each stage the intersection of the triangle to be
added with the polygon of the subcomplex built up prior to the addition of
the triangle under consideration is either a single edge of the added triangle
or else is the union of two edges of the added triangle. It then follows from
applications of Lemma 7.4 and Lemma 7.5 that the addition of new triangles
in the specified sequence does not change homology groups, and therefore
the inclusion of Ly in L induces isomorphisms of homology groups.
Let 2z, be the 1-cycle of Ly with integer coefficients defined such that

2o = (Wo,0Wi0) + (Wi0Wao0) + (WaoWsp)

+ (W30 Wo2) + (Wo2Wo1) + (Wo1 Woy)-

A simple calculation shows that Z,(Lo;Z) = Z, and moreover, given any 1-
cycle z of Ly, there exist a uniquely-determined integer r such that z = rz.
It follows that, given any l-cycle z of L, there exist a uniquely-determined
integer r such that [z]; = r[20]3, where [2]; and [2]; denote the homology
classes of the l-cycles z and z, in H(L;Z). In consequence, given any 1-
cycle z of L, there exist a uniquely-determined integer r such that z —rz, €
Bi(L; 7).
Let

23 = (W11 Wi2) + (W12 Woo) + (Woo Wai) + (Wa i Wig).

Then (23] = 2[20]. Indeed each triangle T; determines a corresponding
generator 7, of Co(L;Z) for i = 1,2,...,16 that is determined by an anti-
clockwise ordering of the vertices of 7;, so that

F1 = (WooWi1oW11), 7o = (WooW11Wo1), 73= (Wo0WsoWpo) etc.,

and direct computation shows that if ¢ € C5(L; Z) is the 2-chain of L defined
such that

C=7+% + + T

then dyc = 22y — 23. Indeed terms corresponding to the edges

Wo,o0Wi1, WioWi1, WioWa1, WooW21, WpaWp2, W21 Wpo,
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W21Wo1, W22Wp1, W29Wppo, W2o2Wsog, Woo2Wso0, Wj9oWypo,
Wi2Wi0, Wo2Wip, Wo2Wig, Wp1Wio and Wo,1 W11

cancel off in pairs, with the result that

Osc = (W0 Wi) + (W19 Wo) + (Wa o Wsp)
+ (W30 Wo2) + (W02 Wo1) + (Wo1 Woy
Wo,0 W20

+ (WoogWi0) + (Wi oW3p

~ ~— ~— ~—

+ )+ )+
+ (W30 Wo,2) + (Wo2 Wo1) + (Wo1 Woyo
— ) — ) —

W11 Wi12) — (W12W22) — (W22 Wj2 —<W1,2W1,1>

220 — Z3

= :220—23

(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex Krpz in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that [z3]t = 2[z]7 in Hi(L; Z).

The subcomplex Lg is connected, and therefore Hy(Lg,Z) = Z. Indeed
Ho(Lo,Z) is generated by [(woo)]z,. It follows that Ho(L;Z) = Z, and
indeed the homology class [(w; ;)] of any vertex of Kgpz in Hy(L; Z) generates
Ho(L; 7).

Let M be the subcomplex of Kros consisting of the union of the two
triangles 717 and 715, together with the vertices and edges of those triangles.
Then M has 4 vertices, 5 edges and 2 triangles. The vertices of M are w
W1, Wao and wy o, the edges of M are

W11 Wa1, W21Wo2, W2oWi9, W;jo2Wjj and Wi,1 Wa o,
and the triangles of M are
W11 W21 W22 and W11 W2 Wjpo.

Then Hy(M,7) = Z,_and_Hq(M, Z) = 0 for all integers ¢ satisfying g > 0.
The intersection L N M of the subcomplexes L and M of Krp2 consists
of the four vertices wi ;1 Wa 1, Woo and wy o and the four edges

Wi1,1Wa1, Wgz1Ws9, WyoWjio and Wi2Wi1.

Then Ho(LNM;Z) = Z and H, (fﬂ_ﬁﬁ) = 7, and moreover Hy(LNM;7Z)
is generated by [(v11)]z~37 and Hi(L N M;Z) is generated by [z3]7~77, where

23 = (W11 Wi2) + (W12 Wao) + (WaoWaq) + (Woq Wyg).
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We now have the necessary information to compute the homology groups
of Krp2 using the Mayer-Vietoris exact sequence associated with the decom-
position of Kgp2 as the union of subcomplexes L and M as described above.
The homomorphisms

iv: H(LNM;Z) — Ho(L;Z) and j.: Ho(L N M;Z) — Hy(M;Z)

induced by the inclusions i: LN M < L and j: LN M < M are isomorphisms
of Abelian groups that satisfy

i ([((W1)zrar) = [(wi)z = [(woo)lz and (w11 |zmar) = (W) |3

Next we note that the homology group H; (LNM;Z) is generated by (23] 21
the homology group Hi(L;Z) is isomorphic to Z and is freely generated by
[20], where

Zo = (Wo,0Wi0) + (Wi0Wao0) + (WaoWsp)

+ (W30 Wo,1) + (W01 Wo2) + (Wo2 Woy),

and moreover the homomorphism i,: H, (L N M;Z) satisfies

ix([23]zmmr) = [23lz = 2[20l7-
Also
Hy(L;Z) =0, Hy(M;Z)=0 and H,(M;Z)=0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0— Hy(Kgp2: 2)-22H (L N M; Z)-25 Hy(L; Z) -2 Hy (Kgp2; Z)
Y Ho(L N M; 2) 25 Ho(L: Z) ® Ho(M; Z),
where u,: Hy(L;Z) — Hy(Kgp2;Z) is induced by the inclusion map u: L <

Kgrpe2, the homomorphims «s and «; are defined as described in Proposi-
tion 10.1, and

ke ([(W1,1) [ 2037) i (W1, zra7) s =3« (W10) | zrmr))

[(wWo.0)lz —[(Wi1)]77)-

Now [(Wy1)|7~37 generates Ho(z; 7)® HO(M; Z), and k.([(w11)]z-37) # 0.
It follows that

= (
= (

ko Ho(LNM;Z) — Ho(L; Z) ® Ho(M;7Z)
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is injective. The exactness of the Mayer-Vietoris sequence at Ho(L N M;7Z)
then ensures that the homomorphism o Hy (Kgp> — Hy(L N M;Z) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence H(Kgp2 that the homo-
morphism

u,: Hi(L; Z) — Hy(Kgp2; 7)

is surjective. Thus the sequence
0—s Hy(Kgpe; Z) 22 H (L N M; Z) -5 Hy (L: Z) -5 Hy (Kp p2; Z) —0

derived from the Mayer-Vietoris sequence is exact. It follows from exactness
that o B
Hy(Kgpe; Z) = ker(iy: Hi(LNM;Z) — Hi(L; Z))

and

Hy(Kgp2; Z) = Hy(Kgp2; Z) /i (H (L 0 M; Z)).
Now H,(Kgp2;Z) is generated by [z0]z, Hi(LNM;Z) is generated by [23]7-77
and i, ([23]737) = 2[20]7- It follows that

Hy(Kgp2) = Zs,

where Zy = Z/27Z. Also i,: Hi(L N M;Z) — H,(L;Z)) is injective, and
therefore Hy(Kgp2;7Z) = 0.

Now the polyhedron of Kgp2 is connected. It follows from Theorem 8.6
that Ho(Kgrpz;Z) = Z. This result can also be deduced from the exactness
of the the portion

Ho(L N M; Z) 25 Ho(L: Z) @ Ho(M; Z), 2 Ho(Kgpe; Z)—0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex Kgp2 tri-
angulating the real projective plane are as follows:

HQ(KRP2; Z) = O, Hl(KRPQ; Z) = Zg, Ho(KRPZ; Z) &= Z
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