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9 Introduction to Homological Algebra

9.1 Exact Sequences

In homological algebra we consider sequences

· · · −→F p−→G q−→H ···−→

where F , G, H etc. are modules over some unital ring R and p, q etc. are
R-module homomorphisms. We denote the trivial module {0} by 0, and
we denote by 0−→G and G−→0 the zero homomorphisms from 0 to G and
from G to 0 respectively. (These zero homomorphisms are of course the only
homomorphisms mapping out of and into the trivial module 0.)

Unless otherwise stated, all modules are considered to be left modules.

Definition Let R be a unital ring, let F , G and H be R-modules, and
let p:F → G and q:G → H be R-module homomorphisms. The sequence
F

p−→G q−→H of modules and homomorphisms is said to be exact at G if
and only if image(p:F → G) = ker(q:G → H). A sequence of modules and
homomorphisms is said to be exact if it is exact at each module occurring in
the sequence (so that the image of each homomorphism is the kernel of the
succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.

The following result follows directly from the relevant definitions.

Lemma 9.1 let R be a unital ring, and let h:G → H be a homomorphism
of R-modules. Then

• h:G → H is a monomorphism if and only if 0−→G h−→H is an exact
sequence;

• h:G → H is an epimorphism if and only if G
h−→H−→0 is an exact

sequence;

• h:G → H is an isomorphism if and only if 0−→G h−→H−→0 is an
exact sequence.

Let R be a unital ring, and let F be a submodule of an R-module G.
Then the sequence

0−→F i−→G q−→G/F−→0,
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is exact, where G/F is the quotient module, i:F ↪→ G is the inclusion ho-
momorphism, and q:G → G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0−→F i−→G q−→H−→0,

we can regard F as a submodule of G (on identifying F with i(F )), and then
H is isomorphic to the quotient module G/F . Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various modules
occurring on the diagram. The diagram is said to commute if, whenever
there are two routes through the diagram from a module G to a module H,
the homomorphism from G to H obtained by forming the composition of the
homomorphisms along one route in the diagram agrees with that obtained
by composing the homomorphisms along the other route. Thus, for example,
the diagram

A
f−→ B

g−→ Cyp yq yr
D

h−→ E
k−→ F

commutes if and only if q ◦ f = h ◦ p and r ◦ g = k ◦ q.

Proposition 9.2 Let R be a unital ring. Suppose that the following diagram
of R-modules and R-module homomorphisms

G1
θ1−→ G2

θ2−→ G3
θ3−→ G4

θ4−→ G5yψ1

yψ2

yψ3

yψ4

yψ5

H1
φ1−→ H2

φ2−→ H3
φ3−→ H4

φ4−→ H5

commutes and that both rows are exact sequences. Then the following results
follow:

(i) if ψ2 and ψ4 are monomorphisms and if ψ1 is a epimorphism then ψ3

is an monomorphism,

(ii) if ψ2 and ψ4 are epimorphisms and if ψ5 is a monomorphism then ψ3

is an epimorphism.

Proof First we prove (i). Suppose that ψ2 and ψ4 are monomorphisms and
that ψ1 is an epimorphism. We wish to show that ψ3 is a monomorphism.
Let x ∈ G3 be such that ψ3(x) = 0. Then ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0,
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and hence θ3(x) = 0. But then x = θ2(y) for some y ∈ G2, by exactness.
Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z = ψ1(w) for some
w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

by exactness. Thus ψ3 is a monomorphism.
Next we prove (ii). Thus suppose that ψ2 and ψ4 are epimorphisms and

that ψ5 is a monomorphism. We wish to show that ψ3 is an epimorphism.
Let a be an element of H3. Then φ3(a) = ψ4(b) for some b ∈ G4, since ψ4 is
an epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists c ∈ G3

such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),

hence φ3 (a− ψ3(c)) = 0, and thus a − ψ3(c) = φ2(d) for some d ∈ H2, by
exactness. But ψ2 is an epimorphism, hence there exists e ∈ G2 such that
ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).

Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This shows that
ψ3 is an epimorphism, as required.

The following result is an immediate corollary of Proposition 9.2.

Lemma 9.3 (Five-Lemma) Suppose that the rows of the commutative dia-
gram of Proposition 9.2 are exact sequences and that ψ1, ψ2, ψ4 and ψ5 are
isomorphisms. Then ψ3 is also an isomorphism.
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9.2 Chain Complexes

Definition A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z) of
modules over some unital ring, together with homomorphisms ∂i:Ci → Ci−1
for each i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to be the
quotient group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of ∂i:Ci → Ci−1
and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Note that if the modules C∗ occuring in a chain complex C∗ are modules
over some unital ring R then the homology groups of the complex are also
modules over this ring R.

Definition Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗ is
a sequence fi:Ci → Di of homomorphisms which satisfy the commutativity
condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

Note that a collection of homomorphisms fi:Ci → Di defines a chain map
f∗:C∗ → D∗ if and only if the diagram

· · · −→ Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 −→· · ·yfi+1

yfi yfi−1

· · · −→ Di+1
∂i+1−→ Di

∂i−→ Di−1 −→· · ·

is commutative.
Let C∗ and D∗ be chain complexes, and let f∗:C∗ → D∗ be a chain map.

Then fi(Zi(C∗)) ⊂ Zi(D∗) and fi(Bi(C∗)) ⊂ Bi(D∗) for all i. It follows
from this that fi:Ci → Di induces a homomorphism f∗:Hi(C∗) → Hi(D∗)
of homology groups sending [z] to [fi(z)] for all z ∈ Zi(C∗), where [z] =
z +Bi(C∗), and [fi(z)] = fi(z) +Bi(D∗).

Definition A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps p∗:A∗ → B∗
and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.
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We see that 0−→A∗
p∗−→B∗

q∗−→C∗−→0 is a short exact sequence of chain
complexes if and only if the diagram

...
...

...y∂i+2

y∂i+2

y∂i+2

0 −→ Ai+1
pi+1−→ Bi+1

qi+1−→ Ci+1 −→ 0y∂i+1

y∂i+1

y∂i+1

0 −→ Ai
pi−→ Bi

qi−→ Ci −→ 0y∂i y∂i y∂i
0 −→ Ai−1

pi−1−→ Bi−1
qi−1−→ Ci−1 −→ 0y∂i−1

y∂i−1

y∂i−1

...
...

...

.

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.

Lemma 9.4 Given any short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of
chain complexes, there is a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗)

which sends the homology class [z] of z ∈ Zi(C∗) to the homology class [w] of
any element w of Zi−1(A∗) with the property that pi−1(w) = ∂i(b) for some
b ∈ Bi satisfying qi(b) = z.

Proof Let z ∈ Zi(C∗). Then there exists b ∈ Bi satisfying qi(b) = z, since
qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since the se-
quence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1
is exact. Therefore there exists a unique element w of Ai−1 such that ∂i(b) =
pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦ ∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 → Bi−2 is
injective). Thus w ∈ Zi−1(A∗).
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Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈ Zi−1(A∗)

satisfy pi−1(w) = ∂i(b) and pi−1(w
′) = ∂i(b

′). Then qi(b− b′) = 0, and hence
b′ − b = pi(a) for some a ∈ Ai, by exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b) = ∂i(b

′) = pi−1(w
′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′, and hence
[w] = [w′] in Hi−1(A∗). Thus there is a well-defined function α̃i:Zi(C∗) →
Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈ Hi−1(A∗), where w ∈ Zi−1(A∗) is
chosen such that pi−1(w) = ∂i(b) for some b ∈ Bi satisfying qi(b) = z. This
function α̃i is clearly a homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same homology
class in Hi(C∗). Then z′ = z+∂i+1c for some c ∈ Ci+1. Moreover c = qi+1(d)
for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Choose b ∈ Bi such
that qi(b) = z, and let b′ = b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0). Therefore

α̃i(z) = α̃i(z
′). It follows that the homomorphism α̃i:Zi(C∗)→ Hi−1(A∗) in-

duces a well-defined homomorphism αi:Hi(C∗)→ Hi−1(A∗), as required.

Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 and 0−→A′∗
p′∗−→B′∗

q′∗−→C ′∗−→0 be short ex-
act sequences of chain complexes, and let λ∗:A∗ → A′∗, µ∗:B∗ → B′∗ and
ν∗:C∗ → C ′∗ be chain maps. For each integer i, let αi:Hi(C∗) → Hi−1(A∗)
and α′i:Hi(C

′
∗) → Hi−1(A

′
∗) be the homomorphisms defined as described in

Lemma 9.4. Suppose that the diagram

0 −→ A∗
p∗−→ B∗

q∗−→ C∗ −→ 0yλ∗ yµ∗ yν∗
0 −→ A′∗

p′∗−→ B′∗
q′∗−→ C ′∗ −→ 0

commutes (i.e., p′i ◦λi = µi ◦ pi and q′i ◦µi = νi ◦ qi for all i). Then the square

Hi(C∗)
αi−→ Hi−1(A∗)yν∗ yλ∗

Hi(C
′
∗)

α′i−→ Hi−1(A
′
∗)

commutes for all i ∈ Z (i.e., λ∗ ◦ αi = α′i ◦ ν∗).
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Proposition 9.5 Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 be a short exact sequence of
chain complexes. Then the (infinite) sequence

· · · αi+1−→Hi(A∗)
p∗−→Hi(B∗)

q∗−→Hi(C∗)
αi−→Hi−1(A∗)

p∗−→Hi−1(B∗)
q∗−→· · ·

of homology groups is exact, where αi:Hi(C∗)→ Hi−1(A∗) is the well-defined
homomorphism that sends the homology class [z] of z ∈ Zi(C∗) to the homol-
ogy class [w] of any element w of Zi−1(A∗) with the property that pi−1(w) =
∂i(b) for some b ∈ Bi satisfying qi(b) = z.

Proof First we prove exactness at Hi(B∗). Now qi ◦ pi = 0, and hence
q∗ ◦ p∗ = 0. Thus the image of p∗:Hi(A∗) → Hi(B∗) is contained in the
kernel of q∗:Hi(B∗) → Hi(C∗). Let x be an element of Zi(B∗) for which
[x] ∈ ker q∗. Then qi(x) = ∂i+1(c) for some c ∈ Ci+1. But c = qi+1(d) for
some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Then

qi(x− ∂i+1(d)) = qi(x)− ∂i+1(qi+1(d)) = qi(x)− ∂i+1(c) = 0,

and hence x− ∂i+1(d) = pi(a) for some a ∈ Ai, by exactness. Moreover

pi−1(∂i(a)) = ∂i(pi(a)) = ∂i(x− ∂i+1(d)) = 0,

since ∂i(x) = 0 and ∂i ◦ ∂i+1 = 0. But pi−1:Ai−1 → Bi−1 is injective.
Therefore ∂i(a) = 0, and thus a represents some element [a] of Hi(A∗). We
deduce that

[x] = [x− ∂i+1(d)] = [pi(a)] = p∗([a]).

We conclude that the sequence of homology groups is exact at Hi(B∗).
Next we prove exactness at Hi(C∗). Let x ∈ Zi(B∗). Now

αi(q∗[x]) = αi([qi(x)]) = [w],

where w is the unique element of Zi(A∗) satisfying pi−1(w) = ∂i(x). But
∂i(x) = 0, and hence w = 0. Thus αi ◦ q∗ = 0. Now let z be an element
of Zi(C∗) for which [z] ∈ kerαi. Choose b ∈ Bi and w ∈ Zi−1(A∗) such
that qi(b) = z and pi−1(w) = ∂i(b). Then w = ∂i(a) for some a ∈ Ai, since
[w] = αi([z]) = 0. But then qi(b − pi(a)) = z and ∂i(b − pi(a)) = 0. Thus
b − pi(a) ∈ Zi(B∗) and q∗([b − pi(a)]) = [z]. We conclude that the sequence
of homology groups is exact at Hi(C∗).

Finally we prove exactness at Hi−1(A∗). Let z ∈ Zi(C∗). Then αi([z]) =
[w], where w ∈ Zi−1(A∗) satisfies pi−1(w) = ∂i(b) for some b ∈ Bi satisfying
qi(b) = z. But then p∗(αi([z])) = [pi−1(w)] = [∂i(b)] = 0. Thus p∗ ◦ αi = 0.
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Now let w be an element of Zi−1(A∗) for which [w] ∈ ker p∗. Then [pi−1(w)] =
0 in Hi−1(B∗), and hence pi−1(w) = ∂i(b) for some b ∈ Bi. But

∂i(qi(b)) = qi−1(∂i(b)) = qi−1(pi−1(w)) = 0.

Therefore [w] = αi([z]), where z = qi(b). We conclude that the sequence of
homology groups is exact at Hi−1(A∗), as required.
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10 The Mayer-Vietoris Exact Sequence

10.1 The Mayer Vietoris Sequence of Homology Groups

Proposition 10.1 (The Mayer Vietoris Exact Sequence) Let K be a sim-
plicial complex, let L and M be subcomplexes of K such that K = L ∪M ,
and let R be an unital ring. Let

iq:Cq(L ∩M ;R)→ Cq(L;R), jq:Cq(L ∩M ;R)→ Cq(M ;R),

uq:Cq(L;R)→ Cq(K;R), vq:Cq(M ;R)→ Cq(K;R)

be the inclusion homomorphisms induced by the inclusion maps i:L∩M ↪→ L,
j:L ∩M ↪→M , u:L ↪→ K and v:M ↪→ K, and let

kq(c) = (iq(c),−jq(c)),
wq(c

′, c′′) = uq(c
′) + vq(c

′′),

∂q(c
′, c′′) = (∂q(c

′), ∂q(c
′′))

for all c ∈ Cq(L ∩ M ;R), c′ ∈ Cq(L;R) and c′′ ∈ Cq(M ;R). Then there
is a well-defined homomorphism αq:Hq(K;R) → Hq−1(L ∩M ;R) such that
αq([z]) = [∂q(c

′)] = −[∂q(c
′′)] for any z ∈ Zq(K;R), where c′ and c′′ are any

q-chains of L and M respectively satisfying z = c′+ c′′. The resulting infinite
sequence

· · · αq+1−→Hq(L ∩M ;R)
k∗−→Hq(L;R)⊕Hq(M ;R)

w∗−→Hq(K;R)
αq−→Hq−1(L ∩M ;R)

k∗−→· · · ,
of homology groups is then exact.

Proof The sequence

0−→C∗(L ∩M ;R)
k∗−→C∗(L;R)⊕ C∗(M ;R)

w∗−→C∗(K;R)−→0

is a short exact sequence of chain complexes. The existence and basic prop-
erties of the homomorphism αq:Hq(K;R)→ Hq−1(L∩M ;R) then follow on
applying Lemma 9.4. Indeed if c′ and c′′ are q-chains of L and M respectively,
and if c′+ c′′ ∈ Zq(K;R) then ∂q(c

′) = −∂q(c′′). But ∂q(c
′) ∈ Zq−1(L;R) and

∂q(c
′′) ∈ Zq−1(M ;R) and Zq−1(L;R)∩Zq−1(M ;R) = Zq−1(L∩M ;R). There-

fore ∂q(c
′) ∈ Zq−1(L ∩M ;R). Lemma 9.4 then ensures that the homology

class of ∂q(c
′) in Hq−1(L∩M ;R) is determined by the homology class of c+c′′

in Zq(K;R). The exactness of the resulting infinite sequence of homology
groups then follows on applying Proposition 9.5.

The long exact sequence of homology groups Proposition 10.1 is referred
to as the Mayer-Vietoris sequence associated with the decomposition of K
as the union of the subcomplexes L and M .

86



10.2 The Homology Groups of a Torus

We construct a simplicial complex KSq in the plane whose polyhedron is the
square [0, 3] × [0, 3]. We let ui,j = (i, j) for i = 0, 1, 2, 3 and j = 0, 1, 2, 3.
Then the simplicial complex KSq consists of the triangles ui,j ui+1,j ui+1,j+1

and ui,j ui+1,j+1 ui,j+1 for i = 0, 1, 2 and j = 0, 1, 2, together with all the
vertices and edges of those triangles. This simplicial complex is depicted in
the following diagram:—
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u0,0 u1,0 u2,0 u3,0

u0,1 u1,1 u2,1 u3,1

u0,2 u1,2 u2,2 u3,2

u0,3 u1,3 u2,3 u3,3

The simplicial complex KSq has 24 vertices, 33 edges and 18 triangles.
One can construct a simplicial map s:KSq → KTorus mapping the sim-

plicial complex KSq onto a simplicial complex KTorus whose polyhedron is
homeomorphic to a torus. One way of achieving this is to determine points
vi,j of R3 for i = 0, 1, 2 and j = 0, 1, 2 such that

v0,0 = (1,−1, 0), v0,1 = (3,−1, 1), v0,2 = (1,−3,−1),

v1,0 = (0, 1,−1), v1,1 = (1, 3,−1), v1,2 = (−1, 1,−3),

v2,0 = (−1, 0, 1), v2,1 = (−1, 1, 3), v2,2 = (−3,−1, 1).

One can verify that these nine points are vertices of a simplicial complexKTorus

in R3 which consists of the 18 triangles

v0,0 v1,0 v1,1, v0,0 v1,1 v0,1, v1,0 v2,0 v2,1,

v1,0 v2,1 v1,1, v2,0 v0,0 v0,1, v2,0 v0,1 v2,1,
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v0,1 v1,1 v1,2, v0,1 v1,2 v0,2, v1,1 v2,1 v2,2,

v1,1 v2,2 v1,2, v2,1 v0,1 v0,2, v2,1 v0,2 v2,2,

v0,2 v1,2 v1,0, v0,2 v1,0 v0,0, v1,2 v2,2 v2,0,

v1,2 v2,0 v1,0, v2,2 v0,2 v0,0, v2,2 v0,0 v2,0,

together with all the vertices and edges of these triangles. This simplicial
complex KTorus has 9 vertices, 27 edges and 18 triangles.

There is then a well-defined simplicial map s:KSq → KTorus defined such
that

sVert(ui,j) = vi,j for i = 0, 1, 2 and j = 0, 1, 2;

sVert(ui,3) = vi,0 for i = 0, 1, 2;

sVert(u3,j) = v0,j for j = 0, 1, 2;

sVert(u3,3) = v0,0.

Each triangle of KTorus is then the image under this simplicial map of exactly
one triangle of KSq.

The following diagram represents the simplicial complex KTorus. The
18 triangles in this diagram represent the 18 triangles of KTorus and are
labelled τ1, τ2, . . . , τ18. Moreover the vertices of each triangle in the diagram
are labelled by the vertices of the corresponding triangle of the simplicial
complex KTorus.
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v0,0 v1,0 v2,0 v0,0

v0,1 v1,1 v2,1 v0,1

v0,2 v1,2 v2,2 v0,2

v0,0 v1,0 v2,0 v0,0

τ1
τ2

τ3
τ4

τ5
τ6

τ7
τ8

τ9
τ10

τ11
τ12τ13

τ14

τ15
τ16

τ17
τ18
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These 18 triangles τ1, τ2, . . . , τ18 are determined by their vertices as fol-
lows:

τ1 = v0,0 v1,0 v1,1, τ2 = v0,0 v1,1 v0,1, τ3 = v2,0 v0,0 v0,1,

τ4 = v2,0 v0,1 v2,1, τ5 = v0,2 v1,0 v0,0, τ6 = v0,2 v1,2 v1,0,

τ7 = v2,2 v0,0 v2,0, τ8 = v2,2 v0,2 v0,0, τ9 = v1,0 v2,0 v2,1,

τ10 = v1,0 v2,1 v1,1, τ11 = v2,1 v0,1 v0,2, τ12 = v2,1 v0,2 v2,2,

τ13 = v0,1 v1,2 v0,2, τ14 = v0,1 v1,1 v1,2, τ15 = v1,2 v2,0 v1,0,

τ16 = v1,2 v2,2 v2,0, τ17 = v1,1 v2,1 v2,2, τ18 = v1,1 v2,2 v1,2.

Let L0 be the subcomplex of KTorus consisting of the five vertices

v0,0, v1,0, v2,0, v0,1 and v0,2

and the six edges

v0,0 v1,0, v1,0 v2,0, v2,0 v0,0, v0,0 v0,1, v0,1 v0,2 and v0,2 v0,0,

and let L be the subcomplex of KTorus consisting of the vertices and edges
of L0 together with the 16 triangles τi for 0 ≤ i ≤ 16 and all the vertices
and edges of those triangles. This subcomplex L is the subcomplex of KTorus

obtained from removing from KTorus the two triangles τ17 and τ18 together
with the edge v1,1 v2,2 of KTorus that is common to τ17 and τ18.

We claim that the inclusion map i0:L0 ↪→ L induces isomorphisms

i0∗:Hq(L0;Z)→ Hq(L;Z)

of homology groups for all non-negative integers q. To see this note that there
is a finite sequence L0, L1, L2, . . . , L16 of subcomplexes of K, where, for each
integer k between 1 and 16, the subcomplex Lk is obtained by adding to Lk−1
the triangle τk together with all its vertices and faces. The order in which
the triangles τ1, τ2, . . . , τ16 have been listed then ensures that the intersection
τk ∩ |Lk−1| of the triangle τk with the polyhedron of the subcomplex Lk−1 is
either a single edge of τk or else is the union of two edges of τk. Lemma 7.4
and Lemma 7.5 then ensure that the inclusion of the subcomplex Lk−1 in
Lk induces isomorphisms of homology groups for k = 1, 2, . . . , 16. It follows
that i0∗:Hq(L0;Z)→ Hq(L;Z) is an isomorphism for q = 0, 1, 2.

Let z1 and z2 be the 1-cycles of L0 with integer coefficients defined such
that

z1 = 〈v0,0 v1,0〉+ 〈v1,0 v2,0〉+ 〈v2,0 v0,0〉
z2 = 〈v0,0 v0,1〉+ 〈v0,1 v0,2〉+ 〈v0,2 v0,0〉.
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A simple calculation shows that Z2(L0;Z) ∼= Z ⊕ Z, and moreover, given
any 1-cycle z of L0, there exist uniquely-determined integers r1 and r2 such
that z = r1z1 + r2z2. Moreover H1(L0;Z) = Z1(L;Z), because B1(L0;Z) =
0. (The subcomplex L0 has no 2-simplices, and therefore it has no non-
zero 1-boundaries.) The inclusion map i0:L0 → L induces isomorphisms
of homology groups, and therefore H1(L;Z) must also be freely generated
by the homology classes of the cycles z1 and z2. Therefore, given any 2-
cycle z of L, there exist uniquely determined integers r1 and r2 such that
[z]L = r1[z1]L + r2[z2]L, where [z]L, [z1]L and [z2]L denote the homology
classes of the 1-cycles z, z1 and z2 in H1(L;Z). In consequence, given any
1-cycle z of L, there exist uniquely-determined integers r1 and r2 such that
z − r1z1 − r2z2 ∈ B1(L;Z).

Let
z3 = 〈v1,1 v1,2〉+ 〈v1,2 v2,2〉+ 〈v2,2 v2,1〉+ 〈v2,1 v1,1〉.

Then [z3]L = 0. Indeed each triangle τi determines a corresponding generator
γi of C2(L;Z) for i = 1, 2, . . . , 16 that is determined by an anti-clockwise
ordering of the vertices of τi, so that

γ1 = 〈v0,0 v1,0 v1,1〉, γ2 = 〈v0,0 v1,1 v0,1〉, γ3 = 〈v2,0 v0,0 v0,1〉 etc.,

and direct computation shows that if c ∈ C2(L;Z) is the 2-chain of L defined
such that

c = γ1 + γ2 + · · ·+ γ16,

then ∂2c = −z3. Indeed terms corresponding to the edges

v0,0 v1,1, v1,0 v1,1, v1,0 v2,1, v2,0 v2,1, v0,2 v0,1, v2,1 v0,1,

v2,1 v0,2, v2,2 v0,2, v2,2 v0,0, v2,2 v2,0, v2,2 v2,0, v1,2 v2,0,

v1,2 v1,0, v0,2 v1,0, v0,2 v1,2, v0,1 v1,2 and v0,1 v1,1

cancel off in pairs, with the result that

∂2c = 〈v0,0 v1,0〉+ 〈v1,0 v2,0〉+ 〈v2,0 v0,0〉
+ 〈v0,0 v0,1〉+ 〈v0,2 v0,2〉+ 〈v0,2 v0,0〉
+ 〈v0,0 v2,0〉+ 〈v2,0 v1,0〉+ 〈v1,0 v0,0〉
+ 〈v0,0 v0,2〉+ 〈v0,2 v0,1〉+ 〈v0,1 v0,0〉
− 〈v1,1 v1,2〉 − 〈v1,2 v2,2〉 − 〈v2,2 v1,2〉 − 〈v1,2 v1,1〉

= z1 + z2 − z1 − z2 − z3
= = −z3
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(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex KTorus in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that z3 ∈ B1(L;Z), and thus [z3]L = 0
in H1(L;Z). The subcomplex L0 is connected, and therefore H0(L0,Z) ∼= Z.
Indeed H0(L0,Z) is generated by [〈v0,0〉]L0 . It follows that H0(L;Z) ∼= Z,
and indeed the homology class [〈vi,j〉] of any vertex of KTorus in H0(L;Z)
generates H0(L;Z).

Let M be the subcomplex of KTorus consisting of the union of the two
triangles τ17 and τ18, together with the vertices and edges of those triangles.
Then M has 4 vertices, 5 edges and 2 triangles. The vertices of M are v1,1

v2,1, v2,2 and v1,2, the edges of M are

v1,1 v2,1, v2,1 v2,2, v2,2 v1,2, v1,2 v1,1 and v1,1 v2,2,

and the triangles of M are

v1,1 v2,1 v2,2 and v1,1 v2,2 v1,2.

Then H0(M,Z) ∼= Z, and Hq(M,Z) = 0 for all integers q satisfying q > 0.
The intersection L ∩M of the subcomplexes L and M of KTorus consists

of the four vertices v1,1 v2,1, v2,2 and v1,2 and the four edges

v1,1 v2,1, v2,1 v2,2, v2,2 v1,2 and v1,2 v1,1.

Then H0(L∩M ;Z) ∼= Z and H1(L∩M ;Z) ∼= Z, and moreover H0(L∩M ;Z)
is generated by [〈v1,1〉]L∩M and H1(L∩M ;Z) is generated by [z3]L∩M , where

z3 = 〈v1,1 v1,2〉+ 〈v1,2 v2,2〉+ 〈v2,2 v2,1〉+ 〈v2,1 v1,1〉.

We now have the necessary information to compute the homology groups
of KTorus using the Mayer-Vietoris exact sequence associated with the de-
composition of KTorus as the union of subcomplexes L and M as described
above. The homomorphisms

i∗:H0(L ∩M ;Z)→ H0(L;Z) and j∗:H0(L ∩M ;Z)→ H0(M ;Z)

induced by the inclusions i:L∩M ↪→ L and j:L∩M ↪→M are isomorphisms
of Abelian groups that satisfy

i∗([〈v1,1〉]L∩M) = [〈v1,1〉]L = [〈v0,0〉]L and j∗(〈[v1,1〉]L∩M) = [〈v1,1〉]M .
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Next we note that the homology group H1(L∩M ;Z) is generated by [z3]L∩M ,
the homology group H1(L;Z) is isomorphic to Z⊕Z and is freely generated
by [z1]L and [z2]L, where

z1 = 〈v0,0 v1,0〉+ 〈v1,0 v2,0〉+ 〈v2,0 v0,0〉
z2 = 〈v0,0 v0,1〉+ 〈v0,1 v0,2〉+ 〈v0,2 v0,0〉,

and moreover the homomorphism i∗:H1(L∩M ;Z) is the zero homomorphism.
Also

H2(L;Z) = 0, H2(M ;Z) = 0 and H1(M ;Z) = 0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0−→H2(KTorus;Z)
α2−→H1(L ∩M ;Z)

i∗−→H1(L;Z)
u∗−→H1(KTorus;Z)

α1−→H0(L ∩M ;Z)
k∗−→H0(L;Z)⊕H0(M ;Z),

where u∗:H1(L;Z)→ H1(KTorus;Z) is induced by the inclusion map u:L ↪→
KTorus, the homomorphims α2 and α1 are defined as described in Proposi-
tion 10.1, and

k∗([〈v1,1〉]L∩M) = (i∗([〈v1,1〉]L∩M),−j∗([〈v1,1〉]L∩M))

= ([〈v0,0〉]L,−[〈v1,1〉]M).

Now [〈v1,1〉]L∩M generates H0(L;Z)⊕H0(M ;Z), and k∗([〈v1,1〉]L∩M) 6= 0. It
follows that

k∗:H0(L ∩M ;Z)→ H0(L;Z)⊕H0(M ;Z)

is injective. The exactness of the Mayer-Vietoris sequence at H0(L ∩M ;Z)
then ensures that the homomorphism α1H1(KTorus → H0(L∩M ;Z) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence H1(KTorus that the homo-
morphism

u∗:H1(L;Z)→ H1(KTorus;Z)

is surjective. Thus the sequence

0−→H2(KTorus;Z)
α2−→H1(L ∩M ;Z)

i∗−→H1(L;Z)
u∗−→H1(KTorus;Z)−→0

derived from the Mayer-Vietoris sequence is exact. However i∗:H1(L ∩
M ;Z)toH1(L;Z) is the zero homomorphism. It follows from exactness that
α2:H2(KTorus;Z) → H1(L ∩ M ;Z) and u∗:H1(L;Z) → H1(KTorus;Z) are
isomorphisms. We deduce that

H2(KTorus;Z) ∼= H1(L ∩M ;Z) ∼= Z
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and
H1(KTorus;Z) ∼= H1(L;Z) ∼= Z⊕ Z.

Now the polyhedron of KTorus is connected. It follows from Theorem 8.6
that H0(KTorus;Z) ∼= Z. This result can also be deduced from the exactness
of the the portion

H0(L ∩M ;Z)
k∗−→H0(L;Z)⊕H0(M ;Z),

w∗−→H0(KTorus;Z)−→0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex KTorus

triangulating the torus are as follows:

H2(KTorus;Z) ∼= Z, H1(KTorus;Z) ∼= Z⊕ Z, H0(KTorus;Z) ∼= Z.

10.3 The Homology Groups of a Klein Bottle

Let KSq be the simplicial complex triangulating the square [0, 3]× [0, 3] de-
fined as in the above discussion of the homology groups of the torus.

There exists a simplicial complex KKlein in R4 with vertices v̂i,j for i =
0, 1, 2 and j = 0, 1, 2 whose polyhedron is homeomorphic to a Klein Bottle,
and a simplicial map ŝ:KSq → KKlein mapping the simplicial complex KSq

onto the simplicial complex KKlein, where this simplicial map is defined such
that

ŝVert(ui,j) = v̂i,j for i = 0, 1, 2 and j = 0, 1, 2;

ŝVert(ui,3) = v̂i,0 for i = 0, 1, 2;

ŝVert(u3,0) = v̂0,0;

ŝVert(u3,1) = v̂0,2;

ŝVert(u3,2) = v̂0,1;

ŝVert(u3,3) = v̂0,0.

Each triangle of KKlein is then the image under this simplicial map of exactly
one triangle of KSq. We do not discuss here the details of how the simplicial
complex representing the Klein Bottle is embedded in R4.

The following diagram represents the simplicial complex KKlein. The 18
triangles in this diagram represent the 18 triangles of KKlein and are labelled
τ̂1, τ̂2, . . . , τ̂18. Moreover the vertices of each triangle in the diagram are la-
belled by the vertices of the corresponding triangle of the simplicial complex
KKlein.
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v̂0,0 v̂1,0 v̂2,0 v̂0,0

v̂0,1 v̂1,1 v̂2,1 v̂0,2

v̂0,2 v̂1,2 v̂2,2 v̂0,1

v̂0,0 v̂1,0 v̂2,0 v̂0,0

τ̂1
τ̂2

τ̂3
τ̂4

τ̂5
τ̂6

τ̂7
τ̂8

τ̂9
τ̂10

τ̂11
τ̂12τ̂13

τ̂14

τ̂15
τ̂16

τ̂17
τ̂18

These 18 triangles τ1, τ2, . . . , τ18 are determined by their vertices as fol-
lows:

τ̂1 = v̂0,0 v̂1,0 v̂1,1, τ̂2 = v̂0,0 v̂1,1 v̂0,1, τ̂3 = v̂2,0 v̂0,0 v̂0,2,

τ̂4 = v̂2,0 v̂0,2 v̂2,1, τ̂5 = v̂0,2 v̂1,0 v̂0,0, τ̂6 = v̂0,2 v̂1,2 v̂1,0,

τ̂7 = v̂2,2 v̂0,0 v̂2,0, τ̂8 = v̂2,2 v̂0,1 v̂0,0, τ̂9 = v̂1,0 v̂2,0 v̂2,1,

τ̂10 = v̂1,0 v̂2,1 v̂1,1, τ̂11 = v̂2,1 v̂0,2 v̂0,1, τ̂12 = v̂2,1 v̂0,1 v̂2,2,

τ̂13 = v̂0,1 v̂1,2 v̂0,2, τ̂14 = v̂0,1 v̂1,1 v̂1,2, τ̂15 = v̂1,2 v̂2,0 v̂1,0,

τ̂16 = v̂1,2 v̂2,2 v̂2,0, τ̂17 = v̂1,1 v̂2,1 v̂2,2, τ̂18 = v̂1,1 v̂2,2 v̂1,2.

Let L̂0 be the subcomplex of KKlein consisting of the five vertices

v̂0,0, v̂1,0, v̂2,0, v̂0,1 and v̂0,2

and the six edges

v̂0,0 v̂1,0, v̂1,0 v̂2,0, v̂2,0 v̂0,0, v̂0,0 v̂0,1, v̂0,1 v̂0,2 and v̂0,2 v̂0,0,

and let L̂ be the subcomplex of KKlein consisting of the vertices and edges
of L̂0 together with the 16 triangles τ̂i for 0 ≤ i ≤ 16 and all the vertices
and edges of those triangles. This subcomplex L̂ is the subcomplex of KKlein

obtained from removing from KKlein the two triangles τ̂17 and τ̂18 together
with the edge v̂1,1 v̂2,2 of KKlein that is common to τ̂17 and τ̂18.
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Now the inclusion map i0: L̂0 ↪→ L induces isomorphisms

i0∗:Hq(L̂0;Z)→ Hq(L̂;Z)

of homology groups for all non-negative integers q. The justification for this
corresponds to the justification of the corresponding result in the preceding
discussion of the homology of the torus. The subcomplex L̂ is obtained L̂0

by the successive addition of 16 triangles together with their vertices and
edges. At each stage the intersection of the triangle to be added with the
polygon of the subcomplex built up prior to the addition of the triangle
under consideration is either a single edge of the added triangle or else is the
union of two edges of the added triangle. It then follows from applications of
Lemma 7.4 and Lemma 7.5 that the addition of new triangles in the specified
sequence does not change homology groups, and therefore the inclusion of L̂0

in L̂ induces isomorphisms of homology groups.
Now H1(L̂0;Z) ∼= Z⊕ Z. Indeed let z1 and z2 be the 1-cycles of L̂0 with

integer coefficients defined such that

z1 = 〈v̂0,0 v̂1,0〉+ 〈v̂1,0 v̂2,0〉+ 〈v̂2,0 v̂0,0〉
z2 = 〈v̂0,0 v̂0,1〉+ 〈v̂0,1 v̂0,2〉+ 〈v̂0,2 v̂0,0〉.

A simple calculation shows that Z2(L̂0;Z) ∼= Z ⊕ Z, and moreover, given
any 1-cycle z of L̂0, there exist uniquely-determined integers r1 and r2 such
that z = r1z1 + r2z2. It follows that, given any 1-cycle z of L̂, there exist
uniquely-determined integers r1 and r2 such that [z]L̂ = r1[z1]L̂ + r2[z2]L̂,
where [z]L̂, [z1]L̂ and [z2]L̂ denote the homology classes of the 1-cycles z, z1
and z2 in H1(L̂;Z). In consequence, given any 1-cycle z of L̂, there exist
uniquely-determined integers r1 and r2 such that z− r1z1− r2z2 ∈ B1(L̂;Z).

Let
z3 = 〈v̂1,1 v̂1,2〉+ 〈v̂1,2 v̂2,2〉+ 〈v̂2,2 v̂2,1〉+ 〈v̂2,1 v̂1,1〉.

Then [z3]L = −2[z2]L. Indeed each triangle τ̂i determines a corresponding
generator γ̂i of C2(L̂;Z) for i = 1, 2, . . . , 16 that is determined by an anti-
clockwise ordering of the vertices of τ̂i, so that

γ̂1 = 〈v̂0,0 v̂1,0 v̂1,1〉, γ̂2 = 〈v̂0,0 v̂1,1 v̂0,1〉, γ̂3 = 〈v̂2,0 v̂0,0 v̂0,2〉 etc.,

and direct computation shows that if c ∈ C2(L̂;Z) is the 2-chain of L̂ defined
such that

c = γ̂1 + γ̂2 + · · ·+ γ̂16,

then ∂2c = −2z2 − z3. Indeed terms corresponding to the edges

v̂0,0 v̂1,1, v̂1,0 v̂1,1, v̂1,0 v̂2,1, v̂2,0 v̂2,1, v̂0,2 v̂0,2, v̂2,1 v̂0,2,
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v̂2,1 v̂0,1, v̂2,2 v̂0,1, v̂2,2 v̂0,0, v̂2,2 v̂2,0, v̂2,2 v̂2,0, v̂1,2 v̂2,0,

v̂1,2 v̂1,0, v̂0,2 v̂1,0, v̂0,2 v̂1,2, v̂0,1 v̂1,2 and v̂0,1 v̂1,1

cancel off in pairs, with the result that

∂2c = 〈v̂0,0 v̂1,0〉+ 〈v̂1,0 v̂2,0〉+ 〈v̂2,0 v̂0,0〉
+ 〈v̂0,0 v̂0,2〉+ 〈v̂0,2 v̂0,1〉+ 〈v̂0,1 v̂0,0〉
+ 〈v̂0,0 v̂2,0〉+ 〈v̂2,0 v̂1,0〉+ 〈v̂1,0 v̂0,0〉
+ 〈v̂0,0 v̂0,2〉+ 〈v̂0,2 v̂0,1〉+ 〈v̂0,1 v̂0,0〉
− 〈v̂1,1 v̂1,2〉 − 〈v̂1,2 v̂2,2〉 − 〈v̂2,2 v̂1,2〉 − 〈v̂1,2 v̂1,1〉

= z1 − z2 − z1 − z2 − z3
= = −2z2 − z3

(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex KKlein in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that [z3]L̂ = −2[z2]L̂ in H1(L̂;Z).

The subcomplex L̂0 is connected, and therefore H0(L̂0,Z) ∼= Z. Indeed
H0(L̂0,Z) is generated by [〈v̂0,0〉]L̂0

. It follows that H0(L̂;Z) ∼= Z, and in-

deed the homology class [〈v̂i,j〉] of any vertex of KKlein in H0(L̂;Z) generates

H0(L̂;Z).
Let M̂ be the subcomplex of KKlein consisting of the union of the two

triangles τ17 and τ18, together with the vertices and edges of those triangles.
Then M̂ has 4 vertices, 5 edges and 2 triangles. The vertices of M̂ are v̂1,1

v̂2,1, v̂2,2 and v̂1,2, the edges of M̂ are

v̂1,1 v̂2,1, v̂2,1 v̂2,2, v̂2,2 v̂1,2, v̂1,2 v̂1,1 and v̂1,1 v̂2,2,

and the triangles of M̂ are

v̂1,1 v̂2,1 v̂2,2 and v̂1,1 v̂2,2 v̂1,2.

Then H0(M̂,Z) ∼= Z, and Hq(M̂,Z) = 0 for all integers q satisfying q > 0.

The intersection L̂ ∩ M̂ of the subcomplexes L̂ and M̂ of KKlein consists
of the four vertices v̂1,1 v̂2,1, v̂2,2 and v̂1,2 and the four edges

v̂1,1 v̂2,1, v̂2,1 v̂2,2, v̂2,2 v̂1,2 and v̂1,2 v̂1,1.
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Then H0(L̂∩M̂ ;Z) ∼= Z and H1(L̂∩M̂ ;Z) ∼= Z, and moreover H0(L̂∩M̂ ;Z)
is generated by [〈v1,1〉]L̂∩M̂ and H1(L̂∩ M̂ ;Z) is generated by [z3]L̂∩M̂ , where

z3 = 〈v̂1,1 v̂1,2〉+ 〈v̂1,2 v̂2,2〉+ 〈v̂2,2 v̂2,1〉+ 〈v̂2,1 v̂1,1〉.

We now have the necessary information to compute the homology groups
of KKlein using the Mayer-Vietoris exact sequence associated with the decom-
position of KKlein as the union of subcomplexes L̂ and M̂ as described above.
The homomorphisms

i∗:H0(L̂ ∩ M̂ ;Z)→ H0(L̂;Z) and j∗:H0(L̂ ∩ M̂ ;Z)→ H0(M̂ ;Z)

induced by the inclusions i: L̂∩M̂ ↪→ L̂ and j: L̂∩M̂ ↪→ M̂ are isomorphisms
of Abelian groups that satisfy

i∗([〈v̂1,1〉]L̂∩M̂) = [〈v̂1,1〉]L̂ = [〈v̂0,0〉]L̂ and j∗(〈[v̂1,1〉]L̂∩M̂) = [〈v̂1,1〉]M̂ .

Next we note that the homology group H1(L̂∩M̂ ;Z) is generated by [z3]L̂∩M̂ ,

the homology group H1(L̂;Z) is isomorphic to Z⊕Z and is freely generated
by [z1]L̂ and [z2]L̂, where

z1 = 〈v̂0,0 v̂1,0〉+ 〈v̂1,0 v̂2,0〉+ 〈v̂2,0 v̂0,0〉
z2 = 〈v̂0,0 v̂0,1〉+ 〈v̂0,1 v̂0,2〉+ 〈v̂0,2 v̂0,0〉,

and moreover the homomorphism i∗:H1(L̂ ∩ M̂ ;Z) satisfies

i∗([z3]L̂∩M̂) = [z3]L̂ = −2[z2]L̂.

Also
H2(L̂;Z) = 0, H2(M̂ ;Z) = 0 and H1(M̂ ;Z) = 0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0−→H2(KKlein;Z)
α2−→H1(L̂ ∩ M̂ ;Z)

i∗−→H1(L̂;Z)
u∗−→H1(KKlein;Z)

α1−→H0(L̂ ∩ M̂ ;Z)
k∗−→H0(L̂;Z)⊕H0(M̂ ;Z),

where u∗:H1(L̂;Z)→ H1(KKlein;Z) is induced by the inclusion map u: L̂ ↪→
KKlein, the homomorphims α2 and α1 are defined as described in Proposi-
tion 10.1, and

k∗([〈v̂1,1〉]L̂∩M̂) = (i∗([〈v̂1,1〉]L̂∩M̂),−j∗([〈v̂1,1〉]L̂∩M̂))

= ([〈v̂0,0〉]L̂,−[〈v̂1,1〉]M̂).
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Now [〈v̂1,1〉]L̂∩M̂ generates H0(L̂;Z)⊕H0(M̂ ;Z), and k∗([〈v̂1,1〉]L̂∩M̂) 6= 0. It
follows that

k∗:H0(L̂ ∩ M̂ ;Z)→ H0(L̂;Z)⊕H0(M̂ ;Z)

is injective. The exactness of the Mayer-Vietoris sequence at H0(L̂ ∩ M̂ ;Z)
then ensures that the homomorphism α1H1(KKlein → H0(L̂∩M̂ ;Z) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence H1(KKlein that the homo-
morphism

u∗:H1(L̂;Z)→ H1(KKlein;Z)

is surjective. Thus the sequence

0−→H2(KKlein;Z)
α2−→H1(L̂ ∩ M̂ ;Z)

i∗−→H1(L̂;Z)
u∗−→H1(KKlein;Z)−→0

derived from the Mayer-Vietoris sequence is exact. It follows from exactness
that

H2(KKlein;Z) ∼= ker(i∗:H1(L̂ ∩ M̂ ;Z)→ H1(L̂;Z))

and
H1(KKlein;Z) ∼= H1(KKlein;Z)/i∗(H1(L̂ ∩ M̂ ;Z)).

Let ϕ:H1(L̂;Z)→ Z⊕Z be the isomorphism of Abelian groups defined such
that ϕ(r1[z1]L̂ + r2[z2]L̂) = (r1, r2) for all r1, r2 ∈ Z. Then

ϕ(i∗[z3]L̂∩M̂) = ϕ(−2[z2]L̂) = (0,−2).

It follows that ϕ(i∗(H1(L̂ ∩ M̂ ;Z))) = K, where K is the subgroup of Z⊕ Z
such that K = {(0, 2r) : r ∈ Z}. Then

H1(KKlein) ∼= Z⊕ Z/K ∼= Z⊕ Z2,

where Z2 = Z/2Z. Also i∗:H1(L̂ ∩ M̂ ;Z) → H1(L̂;Z)) is injective, and
therefore H2(KKlein;Z) = 0.

Now the polyhedron of KKlein is connected. It follows from Theorem 8.6
that H0(KKlein;Z) ∼= Z. This result can also be deduced from the exactness
of the the portion

H0(L̂ ∩ M̂ ;Z)
k∗−→H0(L̂;Z)⊕H0(M̂ ;Z),

w∗−→H0(KKlein;Z)−→0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex KKlein tri-

angulating the Klein Bottle are as follows:

H2(KKlein;Z) = 0, H1(KKlein;Z) ∼= Z⊕ Z2, H0(KKlein;Z) ∼= Z.
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10.4 The Homology Groups of a Real Projective Plane

Let KSq be the simplicial complex triangulating the square [0, 3]× [0, 3] de-
fined as in the above discussions of the homology groups of the torus and the
Klein Bottle.

There exists a simplicial complex KRP 2 in R4 with vertices wi,0 for i =
0, 1, 2, 3 and wi,j for i = 1, 2 and j = 0, 1, 2 whose polyhedron is homeomor-
phic to a real projective plane, and a simplicial map s:KSq → KRP 2 mapping
the simplicial complex KSq onto the simplicial complex KRP 2 , where this sim-
plicial map is defined such that

sVert(ui,j) = wi,j for i = 0, 1, 2 and j = 0, 1, 2;

sVert(u3,0) = w3,0;

sVert(u3,1) = w0,2;

sVert(u3,2) = w0,1;

sVert(u0,3) = w3,0;

sVert(u1,3) = w0,2;

sVert(u2,3) = w0,1;

sVert(u3,3) = w0,0.

Each triangle of KRP 2 is then the image under this simplicial map of exactly
one triangle of KSq. We do not discuss here the details of how the simplicial
complex representing the real projective plane is embedded in R4.

The following diagram represents the simplicial complex KRP 2 . The 18
triangles in this diagram represent the 18 triangles of KRP 2 and are labelled
τ 1, τ 2, . . . , τ 18. Moreover the vertices of each triangle in the diagram are
labelled by the vertices of the corresponding triangle of the simplicial complex
KRP 2 .
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w0,0 w1,0 w2,0 w3,0

w0,1 w1,1 w2,1 w0,2

w0,2 w1,2 w2,2 w0,1

w3,0 w2,0 w1,0 w0,0

τ 1
τ 2

τ 3
τ 4

τ 5
τ 6

τ 7
τ 8

τ 9
τ 10

τ 11
τ 12τ 13

τ 14

τ 15
τ 16

τ 17
τ 18

These 18 triangles τ1, τ2, . . . , τ18 are determined by their vertices as fol-
lows:

τ 1 = w0,0 w1,0 w1,1, τ 2 = w0,0 w1,1 w0,1, τ 3 = w2,0 w3,0 w0,2,

τ 4 = w2,0 w0,2 w2,1, τ 5 = w0,2 w2,0 w3,0, τ 6 = w0,2 w1,2 w2,0,

τ 7 = w2,2 w0,0 w1,0, τ 8 = w2,2 w0,1 w0,0, τ 9 = w1,0 w2,0 w2,1,

τ 10 = w1,0 w2,1 w1,1, τ 11 = w2,1 w0,2 w0,1, τ 12 = w2,1 w0,1 w2,2,

τ 13 = w0,1 w1,2 w0,2, τ 14 = w0,1 w1,1 w1,2, τ 15 = w1,2 w1,0 w2,0,

τ 16 = w1,2 w2,2 w1,0, τ 17 = w1,1 w2,1 w2,2, τ 18 = w1,1 w2,2 w1,2.

Let L0 be the subcomplex of KRP 2 consisting of the six vertices

w0,0, w1,0, w2,0, w3,0, w0,2 and w0,1

and the six edges

w0,0 w1,0, w1,0 w2,0, w2,0 w3,0, w3,0 w0,2, w0,2 w0,1 and w0,1 w0,0,

and let L be the subcomplex of KRP 2 consisting of the vertices and edges
of L0 together with the 16 triangles τ i for 0 ≤ i ≤ 16 and all the vertices
and edges of those triangles. This subcomplex L is the subcomplex of KRP 2

obtained from removing from KRP 2 the two triangles τ 17 and τ 18 together
with the edge w1,1 w2,2 of KRP 2 that is common to τ 17 and τ 18.
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Now the inclusion map i0:L0 ↪→ L induces isomorphisms

i0∗:Hq(L0;Z)→ Hq(L;Z)

of homology groups for all non-negative integers q. The justification for this
corresponds to the justification of the corresponding results in the preceding
discussions of the homology of the torus and the Klein Bottle. The subcom-
plex L is obtained L0 by the successive addition of 16 triangles together with
their vertices and edges. At each stage the intersection of the triangle to be
added with the polygon of the subcomplex built up prior to the addition of
the triangle under consideration is either a single edge of the added triangle
or else is the union of two edges of the added triangle. It then follows from
applications of Lemma 7.4 and Lemma 7.5 that the addition of new triangles
in the specified sequence does not change homology groups, and therefore
the inclusion of L0 in L induces isomorphisms of homology groups.

Let z0 be the 1-cycle of L0 with integer coefficients defined such that

z0 = 〈w0,0 w1,0〉+ 〈w1,0 w2,0〉+ 〈w2,0 w3,0〉
+ 〈w3,0 w0,2〉+ 〈w0,2 w0,1〉+ 〈w0,1 w0,0〉.

A simple calculation shows that Z2(L0;Z) ∼= Z, and moreover, given any 1-
cycle z of L0, there exist a uniquely-determined integer r such that z = rz0.
It follows that, given any 1-cycle z of L, there exist a uniquely-determined
integer r such that [z]L = r[z0]L, where [z]L and [z0]L denote the homology
classes of the 1-cycles z and z0 in H1(L;Z). In consequence, given any 1-
cycle z of L, there exist a uniquely-determined integer r such that z − rz0 ∈
B1(L;Z).

Let

z3 = 〈w1,1 w1,2〉+ 〈w1,2 w2,2〉+ 〈w2,2 w2,1〉+ 〈w2,1 w1,1〉.

Then [z3]L = 2[z0]L. Indeed each triangle τ i determines a corresponding
generator γi of C2(L;Z) for i = 1, 2, . . . , 16 that is determined by an anti-
clockwise ordering of the vertices of τ i, so that

γ1 = 〈w0,0 w1,0 w1,1〉, γ2 = 〈w0,0 w1,1 w0,1〉, γ3 = 〈w2,0 w3,0 w0,2〉 etc.,

and direct computation shows that if c ∈ C2(L;Z) is the 2-chain of L defined
such that

c = γ1 + γ2 + · · ·+ γ16,

then ∂2c = 2z0 − z3. Indeed terms corresponding to the edges

w0,0 w1,1, w1,0 w1,1, w1,0 w2,1, w2,0 w2,1, w0,2 w0,2, w2,1 w0,2,
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w2,1 w0,1, w2,2 w0,1, w2,2 w0,0, w2,2 w2,0, w2,2 w2,0, w1,2 w2,0,

w1,2 w1,0, w0,2 w1,0, w0,2 w1,2, w0,1 w1,2 and w0,1 w1,1

cancel off in pairs, with the result that

∂2c = 〈w0,0 w1,0〉+ 〈w1,0 w2,0〉+ 〈w2,0 w3,0〉
+ 〈w3,0 w0,2〉+ 〈w0,2 w0,1〉+ 〈w0,1 w0,0〉
+ 〈w0,0 w2,0〉+ 〈w2,0 w1,0〉+ 〈w1,0 w3,0〉
+ 〈w3,0 w0,2〉+ 〈w0,2 w0,1〉+ 〈w0,1 w0,0〉
− 〈w1,1 w1,2〉 − 〈w1,2 w2,2〉 − 〈w2,2 w1,2〉 − 〈w1,2 w1,1〉

= 2z0 − z3
= = 2z0 − z3

(The contributing edges may be identified by working round the outer bound-
ary of the large square in the diagram above depicting the structure of the
simplicial complex KRP 2 in an anticlockwise direction, starting at the bot-
tom left hand corner of the large square, and then subtracting off terms
corresponding to the edges of the small inner square.)

It follows from this computation that [z3]L = 2[z0]L in H1(L;Z).
The subcomplex L0 is connected, and therefore H0(L0,Z) ∼= Z. Indeed

H0(L0,Z) is generated by [〈w0,0〉]L0
. It follows that H0(L;Z) ∼= Z, and

indeed the homology class [〈wi,j〉] of any vertex of KRP 2 in H0(L;Z) generates
H0(L;Z).

Let M be the subcomplex of KTorus consisting of the union of the two
triangles τ17 and τ18, together with the vertices and edges of those triangles.
Then M has 4 vertices, 5 edges and 2 triangles. The vertices of M are w1,1

w2,1, w2,2 and w1,2, the edges of M are

w1,1 w2,1, w2,1 w2,2, w2,2 w1,2, w1,2 w1,1 and w1,1 w2,2,

and the triangles of M are

w1,1 w2,1 w2,2 and w1,1 w2,2 w1,2.

Then H0(M,Z) ∼= Z, and Hq(M,Z) = 0 for all integers q satisfying q > 0.
The intersection L ∩M of the subcomplexes L and M of KRP 2 consists

of the four vertices w1,1 w2,1, w2,2 and w1,2 and the four edges

w1,1 w2,1, w2,1 w2,2, w2,2 w1,2 and w1,2 w1,1.

Then H0(L∩M ;Z) ∼= Z and H1(L∩M ;Z) ∼= Z, and moreover H0(L∩M ;Z)
is generated by [〈v1,1〉]L∩M and H1(L∩M ;Z) is generated by [z3]L∩M , where

z3 = 〈w1,1 w1,2〉+ 〈w1,2 w2,2〉+ 〈w2,2 w2,1〉+ 〈w2,1 w1,1〉.
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We now have the necessary information to compute the homology groups
of KRP 2 using the Mayer-Vietoris exact sequence associated with the decom-
position of KRP 2 as the union of subcomplexes L and M as described above.
The homomorphisms

i∗:H0(L ∩M ;Z)→ H0(L;Z) and j∗:H0(L ∩M ;Z)→ H0(M ;Z)

induced by the inclusions i:L∩M ↪→ L and j:L∩M ↪→M are isomorphisms
of Abelian groups that satisfy

i∗([〈w1,1〉]L∩M) = [〈w1,1〉]L = [〈w0,0〉]L and j∗(〈[w1,1〉]L∩M) = [〈w1,1〉]M .

Next we note that the homology group H1(L∩M ;Z) is generated by [z3]L∩M ,
the homology group H1(L;Z) is isomorphic to Z and is freely generated by
[z0]L, where

z0 = 〈w0,0 w1,0〉+ 〈w1,0 w2,0〉+ 〈w2,0 w3,0〉
+ 〈w3,0 w0,1〉+ 〈w0,1 w0,2〉+ 〈w0,2 w0,0〉,

and moreover the homomorphism i∗:H1(L ∩M ;Z) satisfies

i∗([z3]L∩M) = [z3]L = 2[z0]L.

Also
H2(L;Z) = 0, H2(M ;Z) = 0 and H1(M ;Z) = 0.

It follows from the exactness of the Mayer-Vietoris sequence that the
following sequence of Abelian groups and homomorphisms is exact:—

0−→H2(KRP 2 ;Z)
α2−→H1(L ∩M ;Z)

i∗−→H1(L;Z)
u∗−→H1(KRP 2 ;Z)

α1−→H0(L ∩M ;Z)
k∗−→H0(L;Z)⊕H0(M ;Z),

where u∗:H1(L;Z) → H1(KRP 2 ;Z) is induced by the inclusion map u:L ↪→
KRP 2 , the homomorphims α2 and α1 are defined as described in Proposi-
tion 10.1, and

k∗([〈w1,1〉]L∩M) = (i∗([〈w1,1〉]L∩M),−j∗([〈w1,1〉]L∩M))

= ([〈w0,0〉]L,−[〈w1,1〉]M).

Now [〈w1,1〉]L∩M generates H0(L;Z) ⊕ H0(M ;Z), and k∗([〈w1,1〉]L∩M) 6= 0.
It follows that

k∗:H0(L ∩M ;Z)→ H0(L;Z)⊕H0(M ;Z)
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is injective. The exactness of the Mayer-Vietoris sequence at H0(L ∩M ;Z)
then ensures that the homomorphism α1H1(KRP 2 → H0(L∩M ;Z) occuring
in the Mayer-Vietoris sequence is the zero homomorphism. It then follows
from the exactness of the Mayer-Vietoris sequence H1(KRP 2 that the homo-
morphism

u∗:H1(L;Z)→ H1(KRP 2 ;Z)

is surjective. Thus the sequence

0−→H2(KRP 2 ;Z)
α2−→H1(L ∩M ;Z)

i∗−→H1(L;Z)
u∗−→H1(KRP 2 ;Z)−→0

derived from the Mayer-Vietoris sequence is exact. It follows from exactness
that

H2(KRP 2 ;Z) ∼= ker(i∗:H1(L ∩M ;Z)→ H1(L;Z))

and
H1(KRP 2 ;Z) ∼= H1(KRP 2 ;Z)/i∗(H1(L ∩M ;Z)).

Now H1(KRP 2 ;Z) is generated by [z0]L, H1(L∩M ;Z) is generated by [z3]L∩M
and i∗([z3]L∩M) = 2[z0]L. It follows that

H1(KRP 2) ∼= Z2,

where Z2 = Z/2Z. Also i∗:H1(L ∩ M ;Z) → H1(L;Z)) is injective, and
therefore H2(KRP 2 ;Z) = 0.

Now the polyhedron of KRP 2 is connected. It follows from Theorem 8.6
that H0(KRP 2 ;Z) ∼= Z. This result can also be deduced from the exactness
of the the portion

H0(L ∩M ;Z)
k∗−→H0(L;Z)⊕H0(M ;Z),

w∗−→H0(KRP 2 ;Z)−→0

of the Mayer-Vietoris sequence.
To summarize, the homology groups of the simplicial complex KRP 2 tri-

angulating the real projective plane are as follows:

H2(KRP 2 ;Z) = 0, H1(KRP 2 ;Z) ∼= Z2, H0(KRP 2 ;Z) ∼= Z.
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