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1 Rings and Modules

1.1 Rings and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication that satisfy the following properties:

• the ring is an Abelian group with respect to the operation of addition;

• the operation of multiplication on the ring is associative, and thus
x(yz) = (xy)z for all elements x, y and z of the ring.

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the ring.

Let R be a ring. Then R is an Abelian group with respect to the operation
of addition, and therefore x+ (y+ z) = (x+ y) + z and x+ y = y+ x for all
x, y ∈ R. Also the ring R contains a unique zero element 0R characterized
by the property that x + 0R = x for all x ∈ R. Moreover given any element
x of R, there exists a unique element −x of R for which x+ (−x) = 0R. This
element −x is the negative of the element x. An element x of a ring R is said
to be non-zero if x 6= 0R.

The operation of subtraction in a ring R is defined such that x − y =
x + (−y) for all x, y ∈ R, where −y is the unique element of R for which
y + (−y) = 0R.

Let R be a ring, and let 0R be the zero element of R. It is a straightforward
exercise to verify from the defining properties of rings that x0R = 0R, 0Rx =
0R, (−x)y = −(xy) and x(−y) = −(xy) for all elements x and y of R.

Definition A subset S of a ring R is said to be a subring of R if 0R ∈ S,
a + b ∈ S, −a ∈ S and ab ∈ S for all a, b ∈ S, where 0R denotes the zero
element of the ring R.

Definition A ring R is said to be commutative if xy = yx for all x, y ∈ R.

Not every ring is commutative: an example of a non-commutative ring is
provided by the ring of n×n matrices with real or complex coefficients when
n > 1.

Definition A ring R is said to be unital if it possesses a (necessarily unique)
non-zero multiplicative identity element 1R satisfying 1Rx = x = x1R for all
x ∈ R.
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Definition A field consists of a set on which are defined operations of ad-
dition and multiplication that satisfy the following properties:

• the field is an Abelian group with respect to the operation of addition;

• the non-zero elements of the field constitute an Abelian group with
respect to the operation of multiplication;

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the field.

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element x−1 of R such that xx−1 = 1R. Moreover a ring R is a
field if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

1.2 Left Modules

Definition Let R be a unital ring. A set M is said to be a left module over
the ring R (or left R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and rx of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1Rx = x

are satisfied for all x, y ∈ M and r, s ∈ R, where 1R denotes the
multiplicative identity element of the ring R.

Let M be a left module over a unital ring R. Then M is an Abelian group
with respect to the operation of addition, and therefore x+(y+z) = (x+y)+z
and x+y = y+x for all x, y ∈M . Also the left module M contains a unique
zero element 0M characterized by the property that x+0M = x for all x ∈M .
Moreover given any element x of M , there exists a unique element −x of M
for which x+ (−x) = 0M . This element −x is the negative of the element x.
An element x of a left module M is said to be non-zero if x 6= 0M .

The operation of subtraction in a left module M is defined such that
x− y = x+ (−y) for all x, y ∈M , where −y is the unique element of M for
which y + (−y) = 0M .
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Lemma 1.1 Let M be a left module over a unital ring R, and let and let
0R and 0M be the zero elements of R and M respectively. Then 0Rx = 0M ,
r0M = 0M and (−r)x = r(−x) = −(rx) for all r ∈ R and x ∈M .

Proof Let r ∈ R and x ∈M . Then

rx = (r + 0R)x = rx+ 0Rx.

On subtracting rx from both sides of this equation, we find that 0Rx = 0M .
Similarly

rx = r(x+ 0M) = rx+ r0M ,

and therefore r0M = 0M . Also

(−r)x+ rx = ((−r) + r)x = 0Rx = 0M

and
r(−x) + rx = r((−x) + x) = r0M = 0M ,

and therefore (−r)x = r(−x) = −(rx), as required.

1.3 Submodules and Quotient Modules

Definition Let R be a unital ring, and let M be a left R-module. A non-
empty subset L of M is said to be a submodule of M if x+y ∈ L and rx ∈ L
for all x, y ∈ L and r ∈ R.

Let M be a left module over a unital ring R, and let L be a submodule
of M . Then L contains at least one element x, and therefore contains the
zero element 0M of M , because 0M = 0Rx. Thus every submodule of a left
module contains the zero element of that module. Also −x ∈ L for all x ∈ L,
because −x = (−1R)x, where 1R denotes the multiplicative identity element
of the unital ring R.

Example A subset L of a ring R is said to be a left ideal of R if 0R ∈ L,
−x ∈ L, x + y ∈ L and rx ∈ L for all x, y ∈ L and r ∈ R. Any unital
ring R may be regarded as a left R-module, where multiplication on the left
by elements of R is defined in the obvious fashion using the multiplication
operation on the ring R itself. A subset of R is then a submodule of R (when
R is regarded as a left module over itself) if and only if this subset is a left
ideal of R.
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Given any submodule L of the left R-module M , we denote by M/L the
set of cosets of L in M . These cosets are the subsets of M that are of the
form L+ x for some x ∈M , where

L+ x = {l + x : l ∈ L}.

Let x and y be elements of M . If y ∈ L+ x then y = ly + x for some ly ∈ L.
But then x = (−ly) + y, and therefore x ∈ L+ y. Moreover

l + y = l + ly + x ∈ L+ x

and
l + x = l + (−ly) + y ∈ L+ y

for all l ∈ L. Thus if y ∈ L + x then L + y = L + x. It follows that
L+ x = L+ y if and only if x− y ∈ L.

Let x, x′, y, y′ ∈ M and r ∈ R. Suppose that L + x = L + x′ and
L+ y = L+ y′. Then x′ − x ∈ L and y′ − y ∈ L. But then

(x+ y)− (x′ + y′) = (x− x′) + (y − y′) ∈ L,

because the operation of addition on M is both commutative and associative,
and

rx− rx′ = r(x− x′) ∈ L,
and therefore L + (x + y) = L + (x′ + y′) and L + rx = L + rx′. It follows
that there is a well-defined operation of addition on the set M/L of cosets of
L in M , where

(L+ x) + (L+ y) = L+ (x+ y)

for all x, y ∈M . This addition operation on M/L is associative and commu-
tative. Also L+(L+x) = (L+0M)+(L+x) = L+x and (L+(−x))+(L+x) =
L + ((−x) + x) = L + 0M = L for all x ∈ M . It follows that the set M/L
of cosets of L in M is an Abelian group with respect to the operation of
addition of cosets. We define r(L+ x) = L+ rx for all r ∈ R. Then

r((L+ x) + (L+ y)) = r(L+ (x+ y)) = L+ r(x+ y)

= L+ (rx+ ry) = (L+ rx) + (L+ ry)

= r(L+ x) + r(L+ y),

(r + s)(L+ x) = L+ (r + s)x = L+ (rx+ sx)

= (L+ rx) + (L+ sx)

= r(L+ x) + s(L+ x),

(rs)(L+ x) = L+ (rs)x = L+ r(sx) = r(L+ sx)

= r(s(L+ x)),
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and
1R(L+ x) = L+ 1Rx = L+ x

for all r, s ∈ R and x, y ∈ M . It follows that the set M/L of left cosets of L
in M is itself a left module over the unital ring R.

Definition Let M be a left module over a unital ring R, and let L be a
submodule of M . The corresponding quotient module M/L is the left R-
module M/L whose elements are the cosets of L in M , with operations of
addition of cosets and left multiplication of cosets by elements of the ring R
defined such that

(L+ x) + (L+ y) = L+ x+ y and r(L+ x) = L+ rx

for all x, y ∈M and r ∈ R.

1.4 Homomorphisms of Left Modules

Definition Let M and N be left modules over some unital ring R. A
function ϕ:M → N is said to be a homomorphism of left R-modules if
ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(rx) = rϕ(x) for all x, y ∈ M and r ∈ R. A
homomorphism of R-modules is said to be an isomorphism if it is invertible.

Let M and N be left modules over a unital ring R. A homomorphism
ϕ:M → N from M to N is said to be a monomorphism if it is injective. A
homomorphism ϕ:M → N from M to N is said to be a epimorphism if it
is surjective. A homomorphism ϕ:M → N from M to N is said to be an
isomorphism if it is bijective. A homomorphism ϕ:M →M from M to itself
is referred to as an endomorphism of M . An isomorphism ϕ:M → M from
M to itself is referred to as an automorphism of M .

Let ϕ:M → N be an isomorphism from M to N . Then the function ϕ
has a well-defined inverse ϕ−1:N → M . Let u, v ∈ N , and let x = ϕ−1(u)
and y = ϕ−1(v). Then ϕ(x) = u and ϕ(y) = v, and therefore

ϕ(x+ y) = ϕ(x) + ϕ(y) = u+ v and ϕ(rx) = rϕ(x) = ru.

It follows that

ϕ−1(u+ v) = ϕ−1(u) + ϕ−1(v) and ϕ−1(ru) = rϕ−1(u).

Thus the inverse ϕ−1:N →M of any left R-module isomorphism ϕ:M → N
is itself a left R-module isomorphism.
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Lemma 1.2 Let M and N be left modules over a unital ring R, and let
ϕ:M → N be a left R-module homomorphism from M to N . Then ϕ(0M) =
0N , where 0M and 0N denote the zero elements of the left modules M and N
respectively. Moreover ϕ(−x) = −ϕ(x) for all x ∈M .

Proof Let x ∈M . Then

ϕ(x) = ϕ(x+ 0M) = ϕ(x) + ϕ(0M).

On subtracting ϕ(x) from both sides of this identity, we find that 0N =
ϕ(0M). It follows that

ϕ(x) + ϕ(−x) = ϕ(x+ (−x)) = ϕ(0M) = 0N ,

and therefore ϕ(−x) = −ϕ(x), as required.

Definition Let M and N be left modules over some unital ring R, and let
ϕ:M → N be a left R-module homomorphism. The kernel kerϕ of the
homomorphism ϕ is defined so that

kerϕ = {x ∈M : ϕ(x) = 0N},

where 0N denotes the zero element of the module N .

The kernel kerϕ of a left R-module homomorphism ϕ:M → N is itself a
left R-module. Indeed let x, y ∈ kerϕ and r ∈ R. Then

ϕ(x+ y) = ϕ(x) + ϕ(y) = 0N + 0N = 0N

and
ϕ(rx) = rϕ(x) = r0N = 0N ,

and therefore x+ y ∈ kerϕ and rx ∈ kerϕ.
The image or range ϕ(M) of a left R-module homomorphism ϕ:M → N

is defined such that
ϕ(N) = {ϕ(x) : x ∈M}.

The image of any left R-module homomorphism is itself a left R-module.

Proposition 1.3 Let M and N be left modules over a unital ring R, let
ϕ:M → N be a left R-module homomorphism from M and N , and let L
be a submodule of M . Suppose that L ⊂ kerϕ. Then ϕ:M → N induces
a homomorphism ϕ:M/L→ N defined on the quotient module M/L, where
ϕ(L + x) = ϕ(x) for all x ∈ M . This induced homomorphism is injective if
and only if L = kerϕ.

6



Proof Let x, x′ ∈ M . Then L + x = L + x′ if and only if x′ − x ∈ L. Also
ϕ(x′ − x) = ϕ(x′)− ϕ(x), and therefore ϕ(x) = ϕ(x′) if and only if x′ − x ∈
kerϕ. But L ⊂ kerϕ. It follows that if L+x = L+x′ then ϕ(x) = ϕ(x′), and
therefore there exists a well-defined function ϕ:M/L → N characterized by
the property that ϕ(L + x) = ϕ(x) for all x ∈ M . The function from M/L
to N characterized by this property is uniquely determined. Moreover the
function ϕ is injective if and only if L + x = L + x′ whenever ϕ(x) = ϕ(x′).
It follows that ϕ:M/L→ N is injective if and only if L = kerϕ.

Let x, y ∈M . Then

ϕ((L+ x) + (L+ y)) = ϕ(L+ x+ y) = ϕ(x+ y) = ϕ(x) + ϕ(y)

= ϕ(L+ x) + ϕ(L+ y).

Also
ϕ(r(L+ x)) = ϕ(L+ rx) = ϕ(rx) = rϕ(x)

for all r ∈ R. It follows that ϕ:M/L → N is a homomorphism of left
R-modules with the required properties.

The following corollary follows immediately on applying Proposition 1.3.

Corollary 1.4 Let M and N be left modules over a unital ring R, and let
ϕ:M → N be a left R-module homomorphism from M and N . Then ϕ(M) ∼=
M/ kerϕ.

1.5 Direct Sums of Left Modules

Definition Let M1,M2, . . . ,Mk be left modules over a unital ring R. The
direct sum M1⊕M2⊕· · ·⊕Mk of the modules M1,M2, . . . ,Mk is defined to be
the set of ordered k-tuples (x1, x2, . . . , xk), where xi ∈Mi for i = 1, 2, . . . , k.
This direct sum is itself a left R-module, where

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk),

r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all xi, yi ∈Mi and r ∈ R.

Definition Let R be a unital ring, and let n be a positive integer. We define
the left R-module Rn to be the direct sum of n copies of the ring R. The ele-
ments of this leftR-moduleRn are thus represented as n-tuples (r1, r2, . . . , rn)
whose components are elements of the ring R.
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Definition Let M be a left module over some unital ring R. Given any
subset X of M , the submodule of M generated by the set X is defined to be
the intersection of all submodules of M that contain the set X. It is therefore
the smallest submodule of M that contains the set X. A left R-module M is
said to be finitely-generated if it is generated by some finite subset of itself.

Lemma 1.5 Let M be a left module over some unital ring R. Then the
submodule of M generated by some finite subset {x1, x2, . . . , xk} of M consists
of all elements of M that are of the form

r1x1 + r2x2 + · · ·+ rkxk

for some r1, r2, . . . , rk ∈ R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M . Moreover it is contained in every submodule of M that
contains the set {x1, x2, . . . , xk}. The result follows.

8



2 Free Modules

2.1 Linear Independence

Let M be a left module over a unital ring R, and let b1, b2, . . . , bk be elements
of M . A linear combination of the elements b1, b2, . . . , bk with coefficients
r1, r2, . . . , rk is an element of M that is represented by means of an expression
of the form

r1b1 + r2b2 + · · ·+ rkbk,

where r1, r2, . . . , rk are elements of the ring R.

Definition Let M be a left module over a unital ring R. The elements of a
subsetX ofM are said to be linearly dependent if there exist distinct elements
b1, b2, . . . , bk of X (where bi 6= bj for i 6= j) and elements r1, r2, . . . , rk of the
ring R, not all zero, such that

r1b1 + r2b2 + · · ·+ rkbk = 0M ,

where 0M denotes the zero element of the module M .

The elements of a subset X of M are said to be linearly independent over
the ring R if they are not linearly dependent over R. Thus the elements of
X are linearly independent over R, if and only if, given distinct elements
b1, b2, . . . , bk of X, and given elements r1, r2, . . . , rk of R satisfying

r1b1 + r2b2 + · · ·+ rkbk = 0,

it must necessarily follow that rj = 0 for j = 1, 2, . . . , k.

2.2 Free Generators

Let M be a left module over a unital ring R, and let X be a (finite or
infinite) subset of M . The set X generates M as a left R-module if and only
if, given any non-zero element m of M , there exist b1, b2, . . . , bk ∈ X and
r1, r2, . . . , rk ∈ R such that

m = r1b1 + r2b2 + · · ·+ rkbk

(see Lemma 1.5). In particular, a left module M over a unital ring R is
generated by a finite set {b1, b2, . . . , bk} if and only if any element of M can
be represented as a linear combination of b1, b2, . . . , bk with coefficients in the
ring R.

A left module over a unital ring is freely generated by the empty set if
and only if it is the zero module.
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Definition Let M be a left module over a unital ring R, and let X be a
subset of M . The left module M is said to be freely generated by the set X
if the following conditions are satisfied:

(i) the elements of X are linearly independent over the ring R;

(ii) the module M is generated by the subset X.

Definition Let M be a left module over a unital ring R. Elements

b1, b2, . . . , bk

of M are said to constitute a free basis of M if these elements are distinct,
and if the left R-module M is freely generated by the set {b1, b2, . . . , bk}.

Example Let K be a field, let V be a finite-dimensional vector space over
K, and let b1, b2, . . . , bm be a basis of V over the field K. Then V is a
left K-module, and moreover V is freely generated by the set B, where
B = {b1, b2, . . . , bm}.

Example The additive group Z3 whose elements are ordered triples of inte-
gers is a left module over the ring Z of integers. The triples (1, 0, 0), (0, 1, 0)
and (0, 0, 1) constitute a free basis of Z3 over the coefficient ring Z.

Definition A module M over a unital ring R is said to be free if there exists
a free basis for M over R.

Lemma 2.1 Let M be a left module over an unital ring R. Elements

b1, b2, . . . , bk

of M constitute a free basis of that left module if and only if, given any
element m of M , there exist uniquely determined elements r1, r2, . . . , rk of
the ring R such that

m = r1b1 + r2b2 + · · ·+ rkbk.

Proof First suppose that b1, b2, . . . , bk is a list of elements of M with the
property that, given any element m of M , there exist uniquely determined
elements r1, r2, . . . , rk of R such that

m = r1b1 + r2b2 + · · ·+ rkbk.

Then the elements b1, b2, . . . , bk generate M . Also the uniqueness of the
coefficients r1, r2, . . . , rk ensures that the zero element 0M of M cannot be
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expressed as a linear combination of b1, b2, . . . , bk unless the coeffients involved
are all zero. Therefore these elements are linearly independent and thus
constitute a free basis of the left module M .

Conversely suppose that b1, b2, . . . , bk is a free basis of M . Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
r1, r2, . . . , rk and s1, s2, . . . , sk be elements of the coefficient ring R satisfying

r1b1 + r2b2 + · · ·+ rkbk = s1b1 + s2b2 + · · ·+ skbk.

Then
(r1 − s1)b1 + (r2 − s2)b2 + · · ·+ (rk − sk)bk = 0M .

But then rj−sj = 0 and thus rj = sj for j = 1, 2, . . . , n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M , as required.

Lemma 2.2 Let M be a left module over a unital ring that is freely generated
by elements b1, b2, . . . , bn of M . Then there is an isomorphism from Rn to
M that sends each element (r1, r2, . . . , rn) of Rn to

r1b1 + r2b2 + · · ·+ rnbn.

Proof Let the homomorphism ϕ:Rn →M be defined such that

ϕ(r1, r2, . . . , rn) = r1b1 + r2b2 + · · ·+ rnbn

for all r1, r2, . . . , rn ∈ R. Lemma 2.1 then ensures that ϕ:Rn → M is both
surjective and injective. This homomorphism is thus an isomorphism from
Rn →M , as required.

2.3 The Free Module on a Given Set

Definition Let X be a set, let R be a unital ring with zero element 0R and
multiplicative identity element 1R. We say that a function σ:X → R from
X to R is finitely-supported if

{x ∈ X : σ(x) 6= 0R}

is a finite subset of X.
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Let X be a set, let R be a unital ring with zero element 0R and multi-
plicative identity element 1R, and let R(X) denote the set of finitely-supported
functions from X to the ring R. For each σ ∈ R(X), let

Xσ = {x ∈ X : σ(x) 6= 0R}.

If σ and τ are finitely-supported functions from X to R, then so is σ+τ , where
(σ + τ)(x) = σ(x) + τ(x) for all x ∈ X. Indeed Xσ+τ ⊂ Xσ ∪Xτ , and thus
if both Xσ and Xτ are finite subsets of X then so is Xσ+τ . Also Xrσ ⊂ Xσ

for all r ∈ R, and therefore rσ:X → R is a finitely-supported function
for all r ∈ R. Thus there are well-defined operations of addition and scalar
multiplication defined on R(X) defined such that (σ+τ)(x) = σ(x)+τ(x) and
(rσ)(x) = rσ(x) for all σ, τ ∈ R(X), r ∈ R and x ∈ X. These operations give
R(X) the structure of a left module over the unital ring R. Each element x of
the set X determines a corresponding finitely-supported function δx:X → R,
where

δx(x
′) =

{
1R if x′ = x;

0R if x′ 6= x.

Proposition 2.3 Let X be a set, let R be a unital ring with zero element
0R and multiplicative identity element 1R, and let R(X) be the left R-module
whose elements are finitely-supported functions from X to R, with operations
of addition and scalar multiplication defined such that

(σ + τ)(x) = σ(x) + τ(x) and (rσ)(x) = rσ(x)

for all σ, τ ∈ R(X) r ∈ R and x ∈ X. Then the left R-module R(X) is freely
generated by (δx : x ∈ X), where δx:X → R is defined for each x ∈ X so
that δx(x) = 1R and δx(x

′) = 0R for all x′ ∈ X satisfing x′ 6= x.

Proof First we note that each of the functions δx:X → R is a finitely-
supported function fromX toR and is thus an element ofR(X). Let σ ∈ R(X),
and let Xσ = {x ∈ X : σ(x) 6= 0R}. Then Xσ is a finite subset of X. Let
x1, x2, . . . , xk be a list of distinct elements of X that includes all elements of
Xσ, and let rj = σ(xj) for j = 1, 2, . . . , k. Then

σ =
k∑
j=1

rjδxj .

Thus the elements (δx : x ∈ X) generate R(X).
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We must show that the generators (δx : x ∈ X) are linearly independent
over the coefficient ring R. Suppose that

k∑
j=1

rjδxj = 0R(X) ,

where x1, x2, . . . , xk are distinct elements of X and r1, r2, . . . , rk are elements
of the coefficient ring R. Then

0R =

(
k∑
j=1

rjδxj

)
(xi) =

k∑
j=1

rjδxj(xi) = ri

for i = 1, 2, . . . , k, because δxi(xi) = 1R and δxj(xi) = 0R when j 6= i. Thus
δx1 , δx2 , . . . , δxk are linearly independent whenever x1, x2, . . . , xk are distinct.
It follows that R(X) is freely generated by (δx : x ∈ X), as required.

Definition Let X be a set, and let R be a unital ring with zero element
0R and multiplicative identity element 1R. The free left R-module on the
set X is defined to be the module R(X) whose elements are represented as
finitely-supported functions from X to R, with operations of addition and
scalar multiplication defined such that

(σ + τ)(x) = σ(x) + τ(x) and (rσ)(x) = rσ(x)

for all σ, τ ∈ R(X), r ∈ R and x ∈ X. The natural embedding ιX :X → R(X)

of the set X in the R-module R(X) is the injective function that sends each
element x of X to the corresponding finitely-supported function δx:X → R
defined so that δx(x) = 1R and δx(x

′) = 0R for all x′ ∈ X satisfying x′ 6= x.

Proposition 2.4 Let X be a set, let R be a unital ring, let R(X) denote
the free left R-module on set X, and let ιX :X → R(X) denote the natural
embedding that maps the set X into the free left R-module R(X). Let N be
a left R-module, and let f :X → N be a function from X to N . Then there
exists a uniquely-determined R-module homomorphism ϕ:R(X) → N such
that f = ϕ ◦ ιX .

Proof Let 0R and 1R denote the zero element and multiplicative identity
element respectively of the unital ring R. We represent the elements of R(X)

as finitely-supported functions from X to R, as in the statement and proof
of Proposition 2.3. Then ιX(x) = δx for all x ∈ X, where δx(x) = 1R and
δx(x

′) = 0R for all x′ ∈ X satisfying x′ 6= x.

13



For each element σ of R(X) let Xσ = {x ∈ X : σ(x) 6= 0R}. We define a
function ϕ:R(X) → N so that ϕ maps the zero element of R(X) to the zero
element of N and

ϕ(σ) =
∑
x∈Xσ

σ(x)f(x)

for all non-zero elements σ of R(X). Moreover

ϕ(σ) =
∑
x∈Z

σ(x)f(x)

for all supersets Z of Xσ.
Let σ and τ be elements of R(X), and let r be an element of the coefficient

ring R. Then Xrσ is a subset of Xσ, and Xσ, Xτ and Xσ+τ are all subsets of
Xσ ∪Xτ . It follows that

ϕ(σ + τ) =
∑

x∈Xσ∪Xτ

(σ(x) + (τ(x))f(x)

=
∑

x∈Xσ∪Xτ

σ(x)f(x) +
∑

x∈Xσ∪Xτ

τ(x)f(x)

= ϕ(σ) + ϕ(τ)

and
ϕ(rσ) =

∑
x∈Xσ

rσ(x) = rϕ(σ).

It follows that ϕ:R(X) → N is a homomorphism of R-modules.
Now

ϕ(ιX(x)) = ϕ(δx) = f(x)δx(x) = f(x)

for all x ∈ X. It follows that ϕ ◦ ιX = f . Moreover if ψ:R(X) → N is a
R-module homomorphism that satisfies ψ ◦ ιX = f , then ψ(δx) = f(x) for
all x ∈ X. Let σ be an element of R(X). Then there exist distinct elements

x1, x2, . . . , xk of X and elements r1, r2, . . . , rk of R such that σ =
k∑
j=1

rjδxj

(see Proposition 2.3). Moreover rj = σ(xj) for j = 1, 2, . . . , k. But then

ψ(σ) = ψ

(
k∑
j=1

rjδxj

)
=

k∑
j=1

rjψ(δxj) =
k∑
j=1

rjf(xj) = ϕ(σ)

for all σ:R(X), and therefore ψ = ϕ. Thus ϕ:R(X) → N is the unique
R-module homomorphism satisfying ϕ ◦ ιX = f , as required.
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Corollary 2.5 Let R be a unital ring, and let M be a left R-module that
is freely generated by X, where X ⊂ M . Let R(X) be the free left R-module
on the set X, and let ιX :X → R(X) be the natural embedding that maps
the set X into the free left R-module R(X). Then there exists a uniquely-
determined R-module isomorphism ν:R(X) →M such that ν(ιX(x)) = x for
all x ∈ X.

Proof Let e:X → M be the inclusion function from X to M defined such
that e(x) = x for all x ∈ X. It follows from Proposition 2.4 that there exists
a uniquely-determined R-module homomorphism ν:R(X) → M such that
e = ν ◦ ιX . Now x ∈ ν(R(X)) for all x ∈ X, because x = e(x) = ν(ιX(x)).
Moreover the module M is generated by the subset X of M . It follows that
the homomorphism ν:R(X) →M is surjective.

Let σ ∈ ker ν. Then there is some finite list x1, x2, . . . , xk of distinct
elements of X that includes all elements of X at which the finitely-supported
function σ has a non-zero value. Then

0M = ν(σ) = ν

(∑
x∈Xσ

σ(x)δx

)
=
∑
x∈Xσ

σ(x)ν(δx) =
∑
x∈Xσ

σ(x)x

=
k∑
j=1

σ(xi)xi.

But the elements x1, x2, . . . , xk are linearly independent over R, because M
is freely generated by X. It follows that σ(xj) = 0R for j = 1, 2, . . . , k,
and therefore σ is the zero element of the R-module R(X). Thus proves that
ν:R(X) →M is injective.

We have now shown that the homomorphism ν:R(X) → M is both sur-
jective and injective. It follows that this homomorphism is an isomorphism,
as required.

Proposition 2.4 establishes the universal property satisfied by the free
module R(X) on a given set X: given any left R-module N , and given any
function f :X → N , there exists a unique homomorphism ϕ:R(X) → N of
left R-modules that satisfies ϕ ◦ ιX = f , where ιX :X → R(X) denotes the
natural embedding mapping the set X into the free module R(X).

Corollary 2.6 Let M be a free left module over a unital ring R, and let X
be a subset of M that freely generates M . Then, given any left R-module N ,
and given any function f :X → N from X to N , there exists a unique left
R-module homomorphism ϕ:M → N such that ϕ|X = f .
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Proof Let R(X) be the free module on the set X, and let ιX :X → R(X) be
the natural embedding from X to R(X). The inclusion function i:X → M
then induces an isomorphism ν:R(X) →M with the property that ν ◦ ιX = i.
Also the function f :X → N induces a homomorphism ψ:R(X) → N with the
property that ψ ◦ ιX = f (Proposition 2.4). Let ϕ:M → N be defined such
that ϕ = ψ◦ν−1. Then ψ = ϕ◦ν, and therefore ϕ◦i = ϕ◦ν◦ιX = ψ◦ιX = f .

Now let ϕ′:M → N be a homomorphism that satisfies ϕ′ ◦ i = f . Then

ϕ′ ◦ ν ◦ ιX = ϕ′ ◦ i = f = ψ ◦ ιX .

But ψ:R(X) → N is the unique homomorphism from R(X) to N satisfying
ψ ◦ ιX = f (Proposition 2.4). It follows that ϕ′ ◦ ν = ψ, and therefore
ϕ′ = ϕ. Thus the homomorphism ϕ:M → N is uniquely determined by the
requirement that ϕ|X = f .

Let R be a unital ring with zero element 0R and multiplicative identity
element 1R, let X be a set, let R(X) be the free left module over R on the
set X, and let ιX :X → R(X) be the natural embedding mapping the set X
into the left R-module R(X). Let us denote ιX(x)by(x) for all x ∈ X. Thus
if the elements of the free module R(X) are represented as finitely-supported
functions from X to R, then the element (x) of R(X) corresponding to an
element x of X is represented by the function δx:X → R that takes the
value 1R at x and takes the value 0R throughout X \{x}. Then R(X) is freely
generated by ((x) : x ∈ X). It follows that, given any element σ of R(X),
there exist elements x1, x2, . . . , xk of X and r1, r2, . . . , rk of R such that

σ = r1(x1) + r2(x2) + · · ·+ rk(xk).

Moreover if
r1(x1) + r2(x2) + · · ·+ rk(xk) = 0R(X),

and if x1, x2, . . . , xk are distinct, then rj = 0R for j = 1, 2, . . . , k (see
Lemma 2.1).

2.4 The Free Module on a Finite Set

Let X be a finite set with n elements, let R be a unital ring with zero element
0R and multiplicative identity element 1R, let R(X) be the free R-module over
the ring R on the set X, and let ιX :X → R(X) be the natural embedding
mapping the set X into the R-module R(X). Let x1, x2, . . . , xn be a listing of
the elements of X, where every element of X occurs exactly once in the list,
and let (xj) = ιX(xj) for j = 1, 2, . . . , n. Then R(X) is freely generated by
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(x1), (x2), . . . , (xn). It follows that, given any element σ of R(X), there exist
uniquely determined elements r1, r2, . . . , rn of R such that

σ = r1(x1) + r2(x2) + · · ·+ rn(xn).

(see Lemma 2.1). It follows that the free left R-module R(X) on the set X is
isomorphic to the direct sum Rn of n copies of the coefficient ring R.

Example Let K be a field, let V be a finite-dimensional vector space over
K, and let b1, b2, . . . , bm be a basis of V . Then V is a free left K-module that
is freely generated by the basis. Then, given any vector space W over K,
and given any function f :B → W , there is a unique linear transformation
ϕ:V → W from V to B that extends f . Moreover

ϕ

(
m∑
j=1

vjbj

)
=

m∑
j=1

vjf(bj)

for all v1, v2, . . . , vm ∈ K. This linear transformation is a homomorphism of
left modules over the field K.

If the vector space W is finite-dimensional, and if c1, c2, . . . , cn is a basis
for W over K, then there exist elements Ti,j of K for i = 1, 2, . . . , n and
j = 1, 2, . . . ,m such that

f(bj) = T1,jc1 + T2,jc2 + · · ·+ Tn,jcn

for j = 1, 2, . . . ,m. Then

ϕ

(
m∑
j=1

vjbj

)
=

n∑
i=1

wici,

where

wi =
m∑
j=1

Ti,jvj

for i = 1, 2, . . . , n. The elements Ti,j of the coefficient field K are thus the
elements of the n × m matrix over the field K that represents the linear
transformation ϕ with respect to the basis b1, b2, . . . , bm of V and the basis
c1, c2, . . . , cn of W .

Let R be an integral domain, and let M be a free left module over M that
is freely generated by some finite subset of M . Then it can be shown that
the number of elements in any free basis of M is finite and is independent of
the choice of free basis. The rank of the free R-module M is defined to be
the number of elements in a free basis of M .

17



Example Abelian groups are left modules over the ring Z of integers. Let
M be a free Abelian group (i.e., a free left Z-module) that is freely generated
by a subset of M with exactly n elements. Then M ∼= Zn. Let p be a positive
integer, and let pM = {pm : m ∈ M}. Then pM is a submodule of M , and
the quotient module M/pM is isomorphic to (Z/pZ)n. This quotient module
is a finite Abelian group with pn elements. Now the number of elements in
the quotient group M/pM does not depend in any way on a choice of a free
basis for M . It follows that every free basis of M has n elements. This shows
that any finitely-generated free Abelian group is isomorphic to Zn for exactly
one value of n. This non-negative integer n is the rank of the free Abelian
group M .

Lemma 2.7 Let R be an integral domain, let M be a free left R-module of
rank m, let N be a free left R-module of rank n, and let ϕ:M → N be an
R-module homomorphism from M to N . Let b1, b2, . . . , bm be a free basis of
M , and let c1, c2, . . . , cn be a free basis of N . Then there exists an n × m
matrix 

T1,1 T1,2 · · · T1,m
T2,1 T2,2 · · · T2,m

...
...

. . .
...

Tn,1 Tn,2 · · · Tn,m


with coefficients Ti,j in the coefficient ring R, so that

ϕ

(
m∑
j=1

rjbj

)
=

n∑
i=1

sici,

for all r1, r2, . . . , rm ∈ R, where

ϕ(bj) =
n∑
i=1

Ti,jci

for j = 1, 2, . . . ,m, and

si =
m∑
j=1

Ti,jrj

for i = 1, 2, . . . , n.

Proof The module N is generated by the free basis c1, c2, . . . , cn. Therefore
there exists elements Ti,j of R for i = 1, 2, . . . , n and j = 1, 2, . . . ,m such
that

ϕ(bj) =
n∑
i=1

Ti,jci.
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Then

ϕ

(
m∑
j=1

rjbj

)
=

m∑
j=1

rjϕ(bj) =
n∑
i=1

m∑
j=1

Ti,jrjci.

The result follows.
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3 Simplicial Complexes

3.1 Geometrical Independence

Definition Points v0,v1, . . . ,vq in some Euclidean space Rk are said to be
affinely independent (or geometrically independent) if the only solution of the
linear system 

q∑
j=0

sjvj = 0,

q∑
j=0

sj = 0

is the trivial solution s0 = s1 = · · · = sq = 0.

Lemma 3.1 Let v0,v1, . . . ,vq be points of Euclidean space Rk of dimen-
sion k. Then the points v0,v1, . . . ,vq are affinely independent if and only if
the displacement vectors v1−v0,v2−v0, . . . ,vq−v0 are linearly independent.

Proof Suppose that the points v0,v1, . . . ,vq are affinely independent. Let
s1, s2, . . . , sq be real numbers which satisfy the equation

q∑
j=1

sj(vj − v0) = 0.

Then
q∑
j=0

sjvj = 0 and
q∑
j=0

sj = 0, where s0 = −
q∑
j=1

sj, and therefore

s0 = s1 = · · · = sq = 0.

It follows that the displacement vectors v1 − v0,v2 − v0, . . . ,vq − v0 are
linearly independent.

Conversely, suppose that these displacement vectors are linearly inde-
pendent. Let s0, s1, s2, . . . , sq be real numbers which satisfy the equations
q∑
j=0

sjvj = 0 and
q∑
j=0

sj = 0. Then s0 = −
q∑
j=1

sj, and therefore

0 =

q∑
j=0

sjvj = s0v0 +

q∑
j=1

sjvj =

q∑
j=1

sj(vj − v0).

It follows from the linear independence of the displacement vectors vj − v0

for j = 1, 2, . . . , q that

s1 = s2 = · · · = sq = 0.
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But then s0 = 0 also, because s0 = −
q∑
j=1

sj. It follows that the points

v0,v1, . . . ,vq are affinely independent, as required.

It follows from Lemma 3.1 that any set of affinely independent points
in Rk has at most k + 1 elements. Moreover if a set consists of affinely
independent points in Rk, then so does every subset of that set.

3.2 Simplices

Definition A q-simplex in Rk is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are affinely independent points of Rk. The points v0,v1, . . . ,vq
are referred to as the vertices of the simplex. The non-negative integer q is
referred to as the dimension of the simplex.

Example A 0-simplex in a Euclidean space Rk is a single point of that space.

Example A 1-simplex in a Euclidean space Rk of dimension at least one is
a line segment in that space. Indeed let λ be a 1-simplex in Rk with vertices
v and w. Then

λ = {sv + tw : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 and s+ t = 1}
= {(1− t)v + tw : 0 ≤ t ≤ 1},

and thus λ is a line segment in Rk with endpoints v and w.

Example A 2-simplex in a Euclidean space Rk of dimension at least two is
a triangle in that space. Indeed let τ be a 2-simplex in Rk with vertices u, v
and w. Then

τ = {r u + sv + tw : 0 ≤ r, s, t ≤ 1 and r + s+ t = 1}.

Let x ∈ τ . Then there exist r, s, t ∈ [0, 1] such that x = r u + sv + tw and
r + s+ t = 1. If r = 1 then x = u. Suppose that r < 1. Then

x = r u + (1− r)
(

(1− p)v + pw
)
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where p =
t

1− r
. Moreover 0 ≤ r < 1 and 0 ≤ p ≤ 1. Moreover the above

formula determines a point of the 2-simplex τ for each pair of real numbers
r and p satisfying 0 ≤ r ≤ 1 and 0 ≤ p ≤ 1. Thus

τ =
{
r u + (1− r)

(
(1− p)v + pw

)
: 0 ≤ p, r ≤ 1.

}
.

Now the point (1 − p)v + pw traverses the line segment v w from v to w
as p increases from 0 to 1. It follows that τ is the set of points that lie on
line segments with one endpoint at u and the other at some point of the line
segment v w. This set of points is thus a triangle with vertices u, v and w.

Example A 3-simplex in a Euclidean space Rk of dimension at least three
is a tetrahedron on that space. Indeed let x be a point of a 3-simplex σ in
R3 with vertices a, b, c and d. Then there exist non-negative real numbers
s, t, u and v such that

x = s a + tb + u c + v d,

and s+t+u+v = 1. These real numbers s, t, u and v all have values between
0 and 1, and moreover 0 ≤ t ≤ 1 − s, 0 ≤ u ≤ 1 − s and 0 ≤ v ≤ 1 − s.
Suppose that x 6= a. Then 0 ≤ s < 1 and x = s a + (1− s)y, where

y =
t

1− s
b +

u

1− s
c +

v

1− s
d.

Moreover y is a point of the triangle b c d, because

0 ≤ t

1− s
≤ 1, 0 ≤ u

1− s
≤ 1, 0 ≤ v

1− s
≤ 1

and
t

1− s
+

u

1− s
+

v

1− s
= 1.
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It follows that the point x lies on a line segment with one endpoint at the
vertex a of the 3-simplex and the other at some point y of the triangle b c d.
Thus the 3-simplex σ has the form of a tetrahedron (i.e., it has the form of
a pyramid on a triangular base b c d with apex a).

A simplex of dimension q in Rk determines a subset of Rk that is a
translate of a q-dimensional vector subspace of Rk. Indeed let the points
v0,v1, . . . ,vq be the vertices of a q-dimensional simplex σ in Rk. Then these
points are affinely independent. It follows from Lemma 3.1 that the displace-
ment vectors v1 − v0,v2 − v0, . . . ,vq − v0 are linearly independent. These
vectors therefore span a k-dimensional vector subspace V of Rk. Now, given
any point x of σ, there exist real numbers t0, t1, . . . , tq such that 0 ≤ tj ≤ 1

for j = 0, 1, . . . , q,
q∑
j=0

tj = 1 and x =
q∑
j=0

tjvj. Then

x =

(
q∑
j=0

tj

)
v0 +

q∑
j=1

tj(vj − v0) = v0 +

q∑
j=1

tj(vj − v0).

It follows that

σ =

{
v0 +

q∑
j=1

tj(vj − v0) : 0 ≤ tj ≤ 1 for j = 1, 2, . . . , q and

q∑
j=1

tj ≤ 1

}
,

and therefore σ ⊂ v0 + V . Moreover the q-dimensional vector subspace V
of Rk is the unique q-dimensional vector subspace of Rk that contains the
displacement vectors between each pair of points belonging to the simplex σ.

3.3 Barycentric Coordinates

Let σ be a q-simplex in Rk with vertices v0,v1, . . . ,vq. If x is a point of σ
then there exist real numbers t0, t1, . . . , tq such that

q∑
j=0

tjvj = x,

q∑
j=0

tj = 1 and 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q.

Moreover t0, t1, . . . , tq are uniquely determined: if
q∑
j=0

sjvj =
q∑
j=0

tjvj and

q∑
j=0

sj =
q∑
j=0

tj = 1, then
q∑
j=0

(tj− sj)vj = 0 and
q∑
j=0

(tj− sj) = 0, and therefore

tj − sj = 0 for j = 0, 1, . . . , q, because the points v0,v1, . . . ,vq are affinely
independent.
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Lemma 3.2 Let q be a non-negative integer, let σ be a q-simplex in Rm,
and let τ be a q-simplex in Rn, where m ≥ q and n ≥ q. Then σ and τ are
homeomorphic.

Proof Let v0,v1, . . . ,vq be the vertices of σ, and let w0,w1, . . . ,wq be the
vertices of τ . The required homeomorphism h:σ → τ is given by

h

(
q∑
j=0

tjvj

)
=

q∑
j=0

tjwj

for all t0, t1, . . . , tq satisfying 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and
q∑
j=0

tj = 1.

A homeomorphism between two q-simplices defined as in the above proof
is referred to as a simplicial homeomorphism.

It follows from Lemma 3.2 that every q-simplex is homeomorphic to the
standard q-simplex in Rq+1 whose vertices are the points

(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1).

This standard q-simplex is the subset of Rq+1 consisting of those points
(t0, t1, . . . , tq) of Rq+1 which satisfy 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and
q∑
j=0

tj = 1.

Example Consider the triangle σ in R2 with vertices at (1, 2), (3, 3) and
(4, 5). Let t0, t1 and t2 be the barycentric coordinates of a point (x, y) of this
triangle. Then t0, t1, t2 are non-negative real numbers, and t0 + t1 + t2 = 1.
Moreover

(x, y) = (1− t1 − t2)(1, 2) + t1(3, 3) + t2(4, 5),

and thus
x = 1 + 2t1 + 3t2 and y = 2 + t1 + 3t2.

It follows that

t1 = x− y + 1 and t2 = 1
3
(x− 1− 2t1) = 2

3
y − 1

3
x− 1,

and therefore
t0 = 1− t1 − t2 = 1

3
y − 2

3
x+ 1.

In order to verify these formulae it suffices to note that (t0, t1, t2) = (1, 0, 0)
when (x, y) = (1, 2), (t0, t1, t2) = (0, 1, 0) when (x, y) = (3, 3) and (t0, t1, t2) =
(0, 0, 1) when (x, y) = (4, 5).
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Let the map h:σ → R3 from σ to R3 be defined such that

h(x, y) =
(

1
3
y − 2

3
x+ 1, x− y + 1, 2

3
y − 1

3
x− 1

)
.

Then the components of this map h are the barycentric coordinate functions
on the triangle σ. It follows that h maps this triangle homeomorphically onto
the triangle in R3 with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

3.4 Simplicial Complexes in Euclidean Spaces

Definition Let σ and τ be simplices in Rk. We say that τ is a face of σ if
the set of vertices of τ is a subset of the set of vertices of σ. A face of σ is
said to be a proper face if it is not equal to σ itself. An r-dimensional face
of σ is referred to as an r-face of σ. A 1-dimensional face of σ is referred to
as an edge of σ.

Note that any simplex is a face of itself. Also the vertices and edges of
any simplex are by definition faces of the simplex.

Definition The interior of a simplex σ is defined to be the set consisting of
all points of σ that do not belong to any proper face of σ.

Definition A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1 ∩ σ2 = ∅ or
else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of all
the simplices of K is a compact subset |K| of Rk referred to as the polyhedron
of K. (The polyhedron is compact since it is both closed and bounded in
Rk.)

Example Let Kσ consist of some n-simplex σ together with all of its faces.
Then Kσ is a simplicial complex of dimension n, and |Kσ| = σ.

Lemma 3.3 Let K be a simplicial complex, and let X be a topological space.
A function f : |K| → X is continuous on the polyhedron |K| of K if and only
if the restriction of f to each simplex of K is continuous on that simplex.
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Proof If a topological space can be expressed as a finite union of closed
subsets, then a function is continuous on the whole space if and only if its
restriction to each of the closed subsets is continuous on that closed set. The
required result is a direct application of this general principle.

We shall denote by VertK the set of vertices of a simplicial complex K
(i.e., the set consisting of all vertices of all simplices belonging to K). A
collection of vertices of K is said to span a simplex of K if these vertices are
the vertices of some simplex belonging to K.

Definition Let K be a simplicial complex in Rk. A subcomplex of K is a
collection L of simplices belonging to K with the following property:—

• if σ is a simplex belonging to L then every face of σ also belongs to L.

Note that every subcomplex of a simplicial complex K is itself a simplicial
complex.

3.5 Triangulations

Definition A triangulation (K,h) of a topological space X consists of a sim-
plicial complex K in some Euclidean space, together with a homeomorphism
h: |K| → X mapping the polyhedron |K| of K onto X.

The polyhedron of a simplicial complex is a compact Hausdorff space.
Thus if a topological space admits a triangulation then it must itself be a
compact Hausdorff space.

Lemma 3.4 Let X be a Hausdorff topological space, let K be a simplicial
complex, and let h: |K| → X be a bijection mapping |K| onto X. Suppose that
the restriction of h to each simplex of K is continuous on that simplex. Then
the map h: |K| → X is a homeomorphism, and thus (K,h) is a triangulation
of X.

Proof Each simplex of K is a closed subset of |K|, and the number of sim-
plices ofK is finite. It follows from Lemma 3.3 that h: |K| → X is continuous.
Also the polyhedron |K| of K is a compact topological space. But every con-
tinuous bijection from a compact topological space to a Hausdorff space is a
homeomorphism. Thus (K,h) is a triangulation of X.
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3.6 Simplicial Maps

Definition A simplicial map ϕ:K → L between simplicial complexes K
and L is a function ϕ: VertK → VertL from the vertex set of K to that of
L such that ϕ(v0), ϕ(v1), . . . , ϕ(vq) span a simplex belonging to L whenever
v0,v1, . . . ,vq span a simplex of K.

Note that a simplicial map ϕ:K → L between simplicial complexes K
and L can be regarded as a function from K to L: this function sends a
simplex σ of K with vertices v0,v1, . . . ,vq to the simplex ϕ(σ) of L spanned
by the vertices ϕ(v0), ϕ(v1), . . . , ϕ(vq).

A simplicial map ϕ:K → L also induces in a natural fashion a continuous
map ϕ: |K| → |L| between the polyhedra of K and L, where

ϕ

(
q∑
j=0

tjvj

)
=

q∑
j=0

tjϕ(vj)

whenever 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q,
q∑
j=0

tj = 1, and v0,v1, . . . ,vq span a

simplex ofK. The continuity of this map follows immediately from a straight-
forward application of Lemma 3.3. Note that the interior of a simplex σ of
K is mapped into the interior of the simplex ϕ(σ) of L.

There are thus three equivalent ways of describing a simplicial map: as
a function between the vertex sets of two simplicial complexes, as a function
from one simplicial complex to another, and as a continuous map between
the polyhedra of two simplicial complexes. In what follows, we shall describe
a simplicial map using the representation that is most appropriate in the
given context.
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4 The Chain Groups of a Simplicial Complex

4.1 Basic Properties of Permutations of a Finite Set

A permutation of a set T is a bijection mapping T onto itself. The set of
all permutations of some set T is a group with respect to the operation of
composition of permutations. A transposition is a permutation of a set T
which interchanges two elements of T , leaving the remaining elements of the
set fixed. If T is finite, and has more than one element, then any permu-
tation of T can be expressed as a product of transpositions. In particular
any permutation of the set {0, 1, . . . , q} can be expressed as a product of
transpositions (j − 1, j) that interchange j − 1 and j for some j.

Associated to any permutation π of a finite set T is a number επ, known as
the parity or signature of the permutation, which can take on the values ±1.
If π can be expressed as the product of an even number of transpositions,
then επ = +1; if π can be expressed as the product of an odd number of
transpositions then επ = −1. The function π 7→ επ is a homomorphism
from the group of permutations of a finite set T to the multiplicative group
{+1,−1} (i.e., επρ = επερ for all permutations π and ρ of the set T ). Note in
particular that the parity of any transposition is −1.

4.2 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer q, let Wq,K de-
note the set of all ordered (q+1)-tuples of vertices of K that span simplices of
K. An element of Wq,K is thus an ordered (q+1)-tuple (v0,v1, . . . ,vq), where
v0,v1, . . . ,vq span a simplex of K. The vertices in the list v0,v1, . . . ,vq are
not required to be distinct.

Let R be a unital ring. We refer to this ring in the following discussion
as the coefficient ring. We denote by ∆q(K;R) the free left R-module on
the set Wq,K , and we denote by ιq:Wq,K → ∆q(K;R) the natural embedding
that maps the set Wq,K bijectively onto a free basis of ∆q(K;R). Then, given
any element θ of ∆q(K;R), there exist uniquely-determined elements rw of
the coefficient ring R for all w ∈ Wq,K such that

θ =
∑

w∈Wq,K

rwδw,

where δw = ιq(w) for all w ∈ Wq,K .
We now give a formal definition of the qth chain group of a simplicial

complex K with coefficients in a unital ring R.
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Definition Let K be a simplicial complex, let q be a non-negative integer,
and let R be a unital ring. Let Wq,K denote the set of ordered (q+ 1)-tuples
of vertices of K that span simplices of K, let ∆q(K;R) denote the free left
R-module on the set Wq,K , let ιq:Wq,K → ∆q(K;R) denote the natural
embedding that maps the set Wq,K bijectively onto the corresponding free
basis of ∆q(K;R), and let δw = ιq(w) for all w ∈ Wq,K . Let Pq,K be the
subset of ∆q(K;R) consisting of those basis elements δ(v0,v1,...,vq) for which the
vertices v0,v1, . . . ,vq are not all distinct, let Qq,K be the subset of ∆q(K;R)
consisting of elements of the form

δ(vπ(0),vπ(1),...,vπ(q)) − επδ(v0,v1,...,vq)

where v0,v1, . . . ,vq are vertices of K that span some simplex of K and π
is a permutation of {0, 1, . . . , q} with parity επ, and let ∆0

q(K;R) denote
the submodule of ∆q(K;R) generated by Pq,K ∪Qq,K . The qth chain group
Cq(K;R) with coefficients in the unital ring R is then defined to be the
quotient module ∆q(K;R)/∆0

q(K;R).

We now discuss in more detail the essential features of this definition of
the chain groups of a simplicial complex. We have defined the chain group
Cq(K;R) to be the quotient module ∆q(K;R)/∆0

q(K;R). It follows that
each element of Cq(K;R) can be represented in the form ∆0

q(K;R) + θ for
some θ ∈ ∆q(K;R). Moreover elements θ and θ′ satisfy ∆0

q(K;R) + θ =
∆0
q(K;R) + θ′ if and only if θ− θ′ ∈ ∆0

q(K;R). Now the algebraic operations
on ∆q(K;R)/∆0

q(K;R) are defined so that

(∆0
q(K;R) + θ) + (∆0

q(K;R) + θ′) = ∆0
q(K;R) + θ + θ′

and
r(∆0

q(K;R) + θ) = ∆0
q(K;R) + rθ

for all θ, θ′ ∈ ∆q(K;R) and r ∈ R. It follows that there is a well-defined
quotient homomorphism ρq: ∆q(K;R)→ Cq(K;R), where

ρq(θ) = ∆0
q(K;R) + θ

for all θ ∈ ∆q(K;R). This quotient homomorphism is surjective, and ker ρq =
∆0
q(K;R).

We now establish some notation for representing elements of the qth chain
group.

Given vertices v0,v1, . . . ,vq of K that span some simplex of K, we denote
by

〈v0,v1, . . . ,vq〉,
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the element of Cq(K;R) defined so that

〈v0,v1, . . . ,vq〉 = ρq
(
δ(v0,v1,...,vq)

)
where ρq: ∆q(K;R) → Cq(K;R) is the quotient homomorphism discussed
above.

A list consisting of (q + 1) vertices of K that span some simplex of K
determines an element w of the set Wq,K , which in turn determines a corre-
sponding generator δw of ∆q(K;R). We denote by 〈w〉 the image of δw under
the quotient homomorphism ρq: ∆q(K;R)→ Cq(K;R), so that 〈w〉 = ρq(δw)
for all w ∈ Wq,K . If

w = (v0,v1, . . . ,vq),

where v0,v1, . . . ,vq are vertices of K that span some simplex of K, then

〈w〉 = 〈v0,v1, . . . ,vq〉.

Let c be an element of Cq(K;R). Then c = ρq(θ) for some element θ of
∆q(K;R). This element θ may be represented (uniquely) as a linear combi-
nation of elements of the free basis (δw : w ∈ Wq,K). Therefore there exist
elements rw of the coefficient ring R for all w ∈ Wq,K such that

θ =
∑

w∈Wq,K

rwδw.

But then
c = ρq(θ) =

∑
w∈Wq,K

rw〈w〉.

Thus any element of Cq(K;R) can be represented as a linear combination of
generator elements 〈v0,v1, . . . ,vq〉, where each of these generator elements
corresponds to some ordered list consisting of q + 1 vertices of K that span
some simplex of K. However these generator elements are not linearly inde-
pendent. The following lemma establishes the basic identities used in per-
forming calculations with linear combinations of these generator elements.

Lemma 4.1 Let K be a simplicial complex, let R be a unital ring, let v0,v1, . . . ,vq
be vertices of K that span a simplex of K. Then the following identities are
satisfied within the R-module Cq(K;R):—

(i) 〈v0,v1, . . . ,vq〉 = 0 if v0,v1, . . . ,vq are not all distinct;

(ii) 〈vπ(0),vπ(1), . . . ,vπ(q)〉 = επ〈v0,v1, . . . ,vq〉 for any permutation π of the
set {0, 1, . . . , q}.
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Proof If the vertices v0,v1, . . . ,vq are not all distinct then δ(v0,v1,...,vq) be-
longs to the kernel ∆0(K;R) of the quotient homomorphism ρq: ∆q(K;R)→
∆q(K;R), and therefore

〈v0,v1, . . . ,vq〉 = ρq(δ(v0,v1,...,vq)) = 0.

This proves (i).
Now suppose that the vertices v0,v1, . . . ,vq of K span a simplex of K but

are not necessarily distinct. Let π be a permutation of the set {0, 1, . . . , q}.
Then

〈vπ(0),vπ(1), . . . ,vπ(q)〉 − επ〈v0,v1, . . . ,vq〉
= ρq(δ(vπ(0),vπ(1),...,vπ(q)))− επρq(δ(v0,v1,...,vq〉))

= ρq

(
δ(vπ(0),vπ(1),...,vπ(q)) − επδ(v0,v1,...,vq〉)

)
= 0,

because the element

δ(vπ(0),vπ(1),...,vπ(q)) − επδ(v0,v1,...,vq)

of ∆q(K;R) is one of the generators of the kernel ∆0
q(K;R) of the quo-

tient homomorphism ρq: ∆q(K;R) → Cq(K;R) specified in the definition of
∆0
q(K;R). This proves (ii).

4.3 Homomorphisms defined on Chain Groups

Lemma 4.2 Let K be a simplicial complex, let R be a unital ring, and let
N be a left module over R with zero element 0N . Let Wq,K denote the set
consisting of all (q+ 1)-tuples of vertices of K that span simplices of K, and
let f :Wq,K → N be a function from Wq,K to N . Suppose that this function f
has the following properties:—

• f(v0,v1, . . . ,vq) = 0N unless v0,v1, . . . ,vq are all distinct;

• f(v0,v1, . . . ,vq) changes sign on interchanging any two adjacent ver-
tices vj−1 and vj.

Then there exists a unique R-module homomorphism ϕ:Cq(K;R)→ N char-
acterized by the property that

ϕ(〈v0,v1, . . . ,vq〉) = f(v0,v1, . . . ,vq)

whenever v0,v1, . . . ,vq span a simplex of K.
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Proof Let ιq:Wq,K → ∆q(K;R) denote the natural embedding of the setWq,K

into the free left R-module ∆q(K;R), and let δw = ιq(w) for all w ∈ Wq,K .
Then (δw : w ∈ Wq,k) is a free basis of ∆q(K). The function f :Wq,K → N
then induces a homomorphism ψ: ∆q(K;R) → N for which f = ψ ◦ ι (see
Proposition 2.4). Then ψ(δw) = f(w) for all w ∈ Wq,K .

Let ρq: ∆q(K;R) → Cq(K;R) denote the quotient homomorphism from
∆q(K;R) to Cq(K;R) whose kernel is the submodule ∆0

q(K;R) of ∆q(K;R)
generated by the set Pq,K ∪Qq,K , where Pq,K is the subset of ∆q(K;R) con-
sisting of those basis elements δ(v0,v1,...,vq) for which the vertices v0,v1, . . . ,vq
are not all distinct, and Qq,K is the subset of ∆q(K;R) consisting of elements
of the form

δ(vπ(0),vπ(1),...,vπ(q)) − επδ(v0,v1,...,vq)

where v0,v1, . . . ,vq are vertices of K that span some simplex of K and
π is a permutation of {0, 1, . . . , q} with parity επ. The requirement that
f(v0,v1, . . . ,vq) = 0N unless v0,v1, . . . ,vq are all distinct ensures that

ψ(δ(v0,v1,...,vq)) = 0N

unless v0,v1, . . . ,vq are all distinct. It follows that Pq,K ⊂ kerψ. Also the
requirement that f(v0,v1, . . . ,vq) changes sign on interchanging any two
adjacent vertices vj−1 and vj ensures that

ψ(δ(vπ(0),vπ(1),...,vπ(q))) = f(vπ(0),vπ(1), . . . ,vπ(q)) = επf(v0,v1, . . . ,vq)

= επψ(δ(v0,v1,...,vq))

for all (v0,v1, . . . ,vq) ∈ Wq,K and for all permutations π of {0, 1, . . . , q}. It
follows from that

δ(vπ(0),vπ(1),...,vπ(q)) − επδ(v0,v1,...,vq) ∈ kerψ

for all (v0,v1, . . . ,vq) ∈ Wq,K and for all permutations π of {0, 1, . . . , q}, and
thus Qq,K ⊂ kerψ.

We have now shown that Pq,K ⊂ ψ and Qq,K ⊂ ψ. Now the kernel
∆0
q(K;R) of the quotient homomorphism ρq: ∆q(K;R) → Cq(K;R) is gen-

erated by Pq,K ∪Qq,K . It follows that ∆0
q(K;R) ⊂ kerψ.

Now Cq(K;R) = ∆q(K;R)/∆0
q(K;R). Therefore the R-module homo-

morphism ψ: ∆q(K;R) → N induces a well-defined R-module homomor-
phism ϕ:Cq(K;R)→ N characterized by the property that ϕ(ρq(θ)) = ψ(θ)
for all θ ∈ Cq(K;R). Then

ϕ(〈v0,v1, . . . ,vq〉) = ϕ(ρq(δ(v0,v1,...,vq))) = ψ(δ(v0,v1,...,vq))

= f(v0,v1, . . . ,vq)

whenever v0,v1, . . . ,vq span a simplex of K, as required.
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4.4 Free Bases for Chain Groups

The chain groups Cq(K;R) have been defined as quotients of free left R-
modules. We shall show that they are themselves free left R-modules, and
that each chain group Cq(K;R) has a free basis whose elements are in one-to-
one correspondence with the q-simplices of the simplicial complex K. How-
ever, in order to construct such a free basis, it is necessary to choose an
ordering of the vertices of each q-simplex of K.

Lemma 4.3 Let K be a simplicial complex, let q be a non-negative integer,
let R be a unital ring, let Wq,K denote the set consisting of all (q+1)-tuples of
vertices of K that span simplices of K, let ∆q(K;R) be the free left R-module
on the set Wq,K, and let ιq:Wq,K → ∆q(K;R) denote the natural embedding
of Wq,K into ∆q(K;R). For each q-simplex σ of K let vσ0 ,v

σ
1 , . . . ,v

σ
q be a

listing of the vertices of σ in some chosen order. Then there is a well-defined
homomorphism

λq:Cq(K;R)→ ∆q(K;R)

characterized by the property that

λq(〈vσ0 ,vσ1 , . . . ,vσq 〉) = ιq(v
σ
0 ,v

σ
1 , . . . ,v

σ
q )

for all q-simplices σ of K.

Proof Let W dist
q,K denote the subset of Wq,K consisting of those (q+ 1)-tuples

(u0,u1, . . . ,uq) of vertices of K for which u0,u1, . . . ,uq are distinct and span
some simplex of K, and let W rep

q,K denote the complement of W dist
q,K in Wq,K .

An element (u0,u1, . . . ,uq) of Wq,K belongs of W rep
q,K if and only if some vertex

of K occurs more than once in the list u0,u1, . . . ,uq.
Let (u0,u1, . . . ,uq) ∈ W dist

q,K . Then the vertices u0,u1, . . . ,uq span some q-
simplex σ of K. All vertices of σ occur exactly once in the list vσ0 ,v

σ
1 , . . . ,v

σ
q

that is determined by the chosen ordering of the vertices of σ. It follows
that there exists some permutation τ of the set {0, 1, . . . , q} such that uj =
vστ(j) for j = 0, 1, . . . , q. The simplex σ and the permutation τ are uniquely

determined by the (q + 1)-tuple (u0,u1, . . . ,uq). It follows that there is a
well-defined function f :Wq,K → ∆q(K;R) characterized by the following two
properties:

• f(u0,u1, . . . ,uq) is the zero element of ∆q(K;R) for all (u0,u1, . . . ,uq) ∈
W rep
q,K ;

• f(vστ(0),v
σ
τ(1), . . . ,v

σ
τ(q)) = ετ ιq(v

σ
0 ,v

σ
1 , . . . ,v

σ
q ) for all q-simplices σ of K

and for all permutations τ of the set {0, 1, . . . , q}.
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Now f(u0,u1, . . . ,uq) is the zero element of ∆q(K;R) unless the vertices
u0,u1, . . . ,uq are distinct. Suppose that u0,u1, . . . ,uq are distinct, and
therefore span a q-simplex σ of K. Then there exists some permutaion τ
of the set {0, 1, . . . , q} such that uj = vστ(j) for j = 0, 1, . . . , q. Let π be a

permutation of {0, 1, . . . , q}. Then

f(uπ(0),uπ(1), . . . ,uπ(q)) = f(vστ(π(0)),v
σ
τ(π(1)), . . . ,v

σ
τ(π(q)))

= ετ◦πιq(v
σ
0 ,v

σ
1 , . . . ,v

σ
q )

= επετ ιq(v
σ
0 ,v

σ
1 , . . . ,v

σ
q )

= επf(u0,u1, . . . ,uq)

It now follows from Lemma 4.2 that the function f :Wq,K → ∆q(K;R) in-
duces a well-defined homomorphism λq:Cq(K;R)→ ∆q(K;R) with the prop-
erty that

λq (〈u1,u2, . . . ,uq〉) = f(u0,u1, . . . ,uq)

for all (u0,u1, . . . ,uq) ∈ Wq,K . Then

λq(〈vσ0 ,vσ1 , . . . ,vσq 〉) = f(vσ0 ,v
σ
1 , . . . ,v

σ
q ) = ιq(v

σ
0 ,v

σ
1 , . . . ,v

σ
q )

for all q-simplices σ of K, as required.

Proposition 4.4 Let K be a simplicial complex, let q be a non-negative
integer, let R be a unital ring, and let Cq(K;R) be the qth chain group of
K with coefficients in R. For each q-simplex σ of K let vσ0 ,v

σ
1 , . . . ,v

σ
q be a

listing of the vertices of σ in some chosen order, and let γσ = 〈vσ0 ,vσ1 , . . . ,vσq 〉
for each q-simplex σ of K. Then Cq(K;R) is freely generated by the set

{γσ : σ ∈ K and dimσ = q},

and thus the qth chain group Cq(K;R) of K with coeffficients in the unital
ring R is a free left R-module. on the q-simplices of K. Thus, given any
element c of Cq(K;R), there exist uniquely-determined elements rσ of the
coefficient ring R such that

c =
∑
σ∈K

dimσ=q

rσγσ.

Proof Let Simpq(K) denote the set of q-simplices of K, let Wq,K denote the
set consisting of all (q+1)-tuples of vertices of K that span simplices of K, let
∆q(K;R) be the free left R-module on the set Wq,K , let ιq:Wq,K → ∆q(K;R)
denote the natural embedding of Wq,K into ∆q(K;R), and let δw = ιq(w) for
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all w ∈ Wq,K . It then follows from Lemma 4.3 that there is a well-defined
homomorphism

λq:Cq(K;R)→ ∆q(K;R)

characterized by the property that

λq(〈vσ0 ,vσ1 , . . . ,vσq 〉) = ιq(v
σ
0 ,v

σ
1 , . . . ,v

σ
q ) = δ(vσ0 ,vσ1 ,...,vσq )

for all q-simplices σ of K. Let Γq(K;R) be the submodule of ∆q(K;R)
generated by

{δ(vσ0 ,vσ1 ,...,vσq ) : σ ∈ SimpqK}.
The elements of this generating set are independent, because (δw : w ∈ Wq,K)
is a free basis of ∆q(K;R). It follows that the submodule Γq(K;R) is a free
left R-module, and that

{δ(vσ0 ,vσ1 ,...,vσq ) : σ ∈ SimpqK}

is a free basis of Γq(K;R).
Now

λq(〈u0,u1, . . . ,uq〉) ∈ Γq(K;R)

for all u0,u1, . . . ,uq ∈ Wq,K , and therefore λq(Cq(K;R)) ⊂ Γq(K;R). But
δ(vσ0 ,vσ1 ,...,vσq ) ∈ λq(Cq(K;R)) for all q-simplices σ ofK, and therefore Γq(K;R) ⊂
λq(Cq(K;R)). We conclude therefore that λq(Cq(K;R)) = Γq(K;R).

Let ρq: ∆q(K;R) → Cq(K;R) denote the quotient homomorphism from
∆q(K;R)→ Cq(K;R). Then

〈u0,u1, . . . ,uq〉 = ρq(δ(u0,u1,...,uq))

for all (u0,u1, . . . ,uq) ∈ Wq,K . Now

ρq(λq(γσ)) = ρq(λq(〈vσ0 ,vσ1 , . . . ,vσq 〉)) = ρq(δ(vσ0 ,vσ1 ,...,vσq )) = 〈vσ0 ,vσ1 , . . . ,vσq 〉 = γσ

for all σ ∈ SimpqK. The properties of Cq(K;R) stated in Lemma 4.1 ensure
that every element Cq(K;R) can be expressed as a linear combination of
elements of the set {γσ : σ ∈ SimpqK}. It follows that ρq(λq(c)) = c for
all c ∈ Cq(K;R). Therefore the homomorphism λq:Cq(K;R)→ ∆q(K;R) is
injective. Now we have shown that λq(Cq(K;R)) = Γq(K;R). An injective
homorphism maps its domain isomorphically into its image. We conclude
therefore that the homomorphism λq maps the qth chain group Cq(K;R)
isomorphically onto the free left R-module Γq(K;R). Therefore Cq(K;R)
must itself be a free left R-module. Moreover (λq(γσ) : σ ∈ SimpqK) is a
free basis of Γ(K;R). It follows that (γσ : σ ∈ SimpqK) is a free basis of
Cq(K;R), as required.
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4.5 Homomorphisms of Chain Groups induced by Sim-
plicial Maps

Proposition 4.5 Let K and L be simplical complexes, and let ϕ:K → L
be a simplicial map, and let R be a unital ring. Then the simplicial map ϕ
induces well-defined homomorphisms ϕq:Cq:Cq(K;R) → Cq(L;R) of chain
groups, where

ϕq(〈v0,v1, . . . ,vq〉) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

whenever v0,v1, . . . ,vq span a simplex of K.

Proof Let Wq,K be the set consisting of all (q + 1)-tuples of vertices of K
that span simplices of K. If v0,v1, . . . ,vq are vertices of K that span a
simplex of K then their images ϕ(v0), ϕ(v1), . . . , ϕ(vq) under the simplicial
map ϕ are vertices of L that span a simplex of L. It follows that there is a
well-defined function f :Wq,k → Cq(L;R), where

f(v0,v1, . . . ,vq) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

for all (v0,v1, . . . ,vq) ∈ Wq,K . Moreover

f(vπ(0),vπ(1), . . . ,vπ(q)) = επf(v0,v1, . . . ,vq)

for all (v0,v1, . . . ,vq) ∈ Wq,K and for all permutations π of the set {0, 1, 2, . . . , q}.
(Here επ denotes the parity of the permutation π, defined such that επ = +1
when π is an even permutation, and επ = −1 when π is an odd per-
mutation.) Also if the list v0,v1, . . . ,vq contains repeated vertices then
the list ϕ(v0), ϕ(v1), . . . , ϕ(vq) also contains repeated vertices, and there-
fore f(v0,v1, . . . ,vq) is the zero element of Cq(L;R). It now follows from
Lemma 4.2 that there is a well-defined homomorphism ϕq:Cq(K;R)→ Cq(L;R)
that satisfies

ϕq〈v0,v1, . . . ,vq〉 = f(v0,v1, . . . ,vq) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

(v0,v1, . . . ,vq) ∈ Wq,K , as required.
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5 The Homology Groups of a Simplicial Com-

plex

5.1 Orientations on Simplices

Let V be a finite-dimensional real vector space. Then each ordered basis
of V determines one of two possible orientations on this vector space. Let
e1, e2, . . . , eq and f1, f2, . . . , fq be two ordered bases of a vector space V of
dimension q. Then there exists a non-singular q × q matrix (Ajk) such that

fk =
q∑
j=1

Ajkej for k = 1, 2, . . . , q. If this matrix (Ajk) has positive determinant

then the two bases determine the same orientation on the vector space V .
On the other hand, if the matrix (Ajk) has negative determinant then the two
bases determine the opposite orientation on the vector space V . In particular
if any two elements of an ordered basis e1, e2, . . . , eq of the vector space V
are interchanged with one another, then this reverses the orientation of the
vector space.

Let π be a permutation of the set {1, . . . , q}, and let e1, e2, . . . , eq be an or-
dered basis of the vector space V , determining a particular orientation of this
vector space. If the permutation π is even then the basis eπ(1), eπ(2), . . . , eπ(q)
of V obtained on reordering the elements of the given basis by means of the
permutation π determines the same orientation on the vector space V as the
original basis e1, e2, . . . , eq. On the other hand, if the permutation π is odd
then the basis eπ(1), eπ(2), . . . , eπ(q) determines the opposite orientation on V
to that determined by the original basis.

Let σ be a q-dimensional simplex in some Euclidean space Rk, where
k ≥ q, and let V be the unique q-dimensional vector subspace of Rk that
contains the displacement vectors between any two points of σ.

Let v0,v1, . . . ,vq an ordered list of the vertices of σ. Then these vertices
are affinely independent and determine an ordered basis e1, e2, . . . , eq of the
vector space V , where ej = vj−v0 for j = 1, 2, . . . , q. This ordered basis then
determines an orientation on the vector space V . We see therefore that each
ordering of the vertices of the q-simplex σ determines a corresponding orien-
tation on the q-dimensional vector space V determined by the q-simplex σ.

Proposition 5.1 Let σ be a q-dimensional simplex in some Euclidean space
Rk, where k ≥ q, and let V be the unique q-dimensional vector subspace of
Rk that contains the displacement vectors between any two points of σ (so
that V is parallel to the tangent space to σ at each point in the interior of σ).
Given any ordered list v0,v1, . . . ,vq of the vertices of σ, let the corresponding
orientation on the vector space V be the orientation determined by the ordered
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basis e1, e2, . . . , eq of V , where ej = vj − v0 for j = 1, 2, . . . , q. Then any
even permutation of the order of the vertices in the ordered list v0,v1, . . . ,vq
preserves the orientation on the vector space V , whereas any odd permutation
of the order of these vertices reverses the orientation on V .

Proof Let v0,v1, . . . ,vq be the ordered list of vertices determining the ori-
entation on the vector space V . If the vertex vj is transposed with vk, where
j > 0 and k > 0, then the corresponding basis elements ej and ek in the
ordered basis e1, e2, . . . , eq of V are also transposed, and this reverses the
orientation on V determined by that ordered basis.

If the vertices v0 and v1 are interchanged, then this has the effect of
replacing the ordered basis e1, e2, . . . , eq corresponding to the ordered list
v0,v1, . . . ,vq by the ordered basis f1, f2, . . . , fq, where

f1 = v0 − v1 = −e1

and
fj = vj − v1 = ej − e1 for j = 2, 3, . . . , q.

The non-singular q × q matrix that implements this change of basis is the
upper triangular matrix A, where

A =



−1 −1 −1 −1 · · · −1
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1


.

The determinant of an upper triangular matrix is the product of the matrix
elements along the leading diagonal, and therefore detA = −1. It follows
that transposing the vertices v0 and v1 occurring in the first two positions
in the ordered list v0,v1, . . . ,vq of vertices of σ reverses the orientation on
the vector space V determined by the ordering of the vertices of σ.

It now follows from standard properties of permutations of finite sets
that interchanging any two of the vertices in any ordered list v0,v1, . . . ,vq of
the vertices of the q-simplex σ reverses the orientation on the q-dimensional
real vector space V that is determined by the ordering of these vertices.
Indeed if the positions in the list are numbered from 0 to q then the vertex
in position 0 can be transposed with the vertex in position j, where j >
1, by first transposing the vertices in positions 1 and j, then transposing
the vertices in positions 0 and 1, and then again transposing the vertices
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in positions 1 and j. This involves three transpositions of vertices in the
list, and each of these transpositions reverses the orientation on the vector
space V . It follows that any even permutation of the ordering of the vertices
in the ordered list v0,v1, . . . ,vq preserves the corresponding orientation on
the vector space V , whereas any odd permutation of the ordering of these
vertices reverses the orientation on this vector space, as required.

We can regard the orientation on the vector space V as an orientation of
the simplex σ itself. Indeed this orientation may be viewed as an orientation
on the q-dimensional tangent space to the simplex σ at any interior point
of σ. In this fashion any ordering of the vertices of a simplex σ determines
a corresponding orientation on that simplex. If the ordering of the vertices
is permuted by means of an even permutation then the orientation of the
simplex is preserved. But if the ordering of the vertices is permuted by
means of an odd permutation then the orientation of the simplex is reversed.

Example Let u, v and w be the vertices of a triangle in a Euclidean space
Rk of dimension at least two. Then this triangle determines a 2-dimensional
vector subspace V of Rk. This 2-dimensional subspace V is spanned by the
displacement vectors v − u and w − u, and is parallel to the tangent plane
to the triangle at any interior point of the triangle.

Now it follows from Proposition 5.1 that the orientation of the triangle
should be preserved under cyclic permutations of its vertices. Now the order-
ing u,v,w of these vertices determines an ordered basis b1,b2 of the vector
space V , where b1 = v − u and b2 = w − u. The ordering v,w,u of the
vertices of the triangle corresponds to the orientation on the vector space V
determined by the ordered basis w − v, u − v. Now w − v = b2 − b1 and
u − v = −b1. Moreover the 2 × 2 matrix implementing the change of basis
from the ordered basis b1,b2 to the ordered basis b2−b1,−b1 is the matrix(

−1 −1
1 0

)
.

and this matrix has determinant 1. Similarly the ordering w,u,v of the
vertices of the triangle determines a corresponding ordered basis u−w, v−w
of the vector space V . Moreover u−w = −b2 and v−w = b1−b2, and the
2× 2 matrix implementing the change of basis from the ordered basis b1,b2

to the ordered basis −b2, b1 − b2 is the 2× 2 matrix(
0 1
−1 −1

)
.
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and this matrix also has determinant 1. It follows that an even permutation of
the ordering of the vertices of the triangle (resulting from a cyclic permutation
of those vertices) preserves the orientation on the vector space V determined
by the ordering of the vertices.

On the other hand the 2×2 matrices that implement the change of ordered
basis of the vector space V resulting from odd permutations of the order of
the vertices u,v and w are the matrices(

0 1
1 0

)
,

(
−1 −1
0 1

)
and

(
1 0
−1 −1

)
,

and these three matrices all have determinant −1. It follows that any odd
permutation of the vertices (resulting from a transposition of two of those
vertices that fixes the remaining vertex) results in a reversal of the orientation
on the vector space V .

Thus even permutations of the ordering of the vertices of the triangle
preserve the orientation of the triangle determined by the ordering of its
vertices, whereas odd permutations of the ordering reverse the orientation
determined by the ordering.

Let K be a simplicial complex, and let σ be a q-simplex of K with vertices
v0,v1, . . . ,vq. Then σ, with the chosen ordering of its vertices, determines
a corresponding element 〈v0,v1, . . . ,vq〉 of the chain group Cq(K;Z). This
element is in fact determined by the orientation on the simplex σ. If the
vertices v0,v1, . . . ,vq of the simplex are reordered by means of an even per-
mutation of the vertices in the list then both the orientation on the simplex
determined by the ordering of its vertices remains unchanged and the corre-
sponding element of Cq(K;Z) determined by the ordered list of the vertices
of the simplex also remains unchanged. On the other hand, if the vertices
are reordered through an odd permutation of the vertices in the list then
both the orientation of the simplex determined by the ordering of its ver-
tices is reversed, and the corresponding element 〈v0,v1, . . . ,vq〉 of Cq(K;Z)
determined by the ordered list of those vertices is replaced by the element
−〈v0,v1, . . . ,vq〉.

5.2 Boundary Homomorphisms

LetK be a simplicial complex, and let R be an integral domain. We introduce
below boundary homomorphisms ∂q:Cq(K;R) → Cq−1(K;R) between the
chain groups of K with coefficients in R.

In order to define and investigate the properties of this boundary homo-
morphism, we introduce a notation that is frequently used to indicate that
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some particular vertex is to be omitted from a ordered list of vertices of a
simplex. Let 〈v0,v1, . . . ,vq〉 be the element of the chain group Cq(K;R)
determined by some ordered list v0,v1, . . . ,vq of vertices of K that span a
simplex of K. We denote by 〈v0, . . . , v̂j, . . . ,vq〉 the element

〈v0, . . . ,vj−1,vj+1, . . . ,vq〉

of Cq−1(K;R) obtained on omitting the vertex vj from the list v0,v1, . . . ,vq
of vertices of K. Thus

〈v̂0,v1,v2,v3, . . . ,vq〉 = 〈v1,v2,v3, . . . ,vq〉,
〈v0, v̂1,v2,v3, . . . ,vq〉 = 〈v0,v2,v3, . . . ,vq〉,
〈v0,v1, v̂2,v3, . . . ,vq〉 = 〈v0,v1,v3, . . . ,vq〉,

...

〈v0,v1,v2, . . . ,vq−1, v̂q〉 = 〈v0,v1,v2, . . . ,vq−1〉.

We may employ analogous notation when omitting two or more vertices
from an ordered list of vertices. Thus if j and k are integers between 0 and q,
where j < k, we denote by

〈v0, . . . , v̂j, . . . , v̂k, . . .vq〉

the element 〈v0, . . . ,vj−1,vj+1, . . . ,vk−1,vk+1, . . . ,vq〉 of Cq−2(K;R) deter-
mined by the ordered list of vertices that results on omitting both vertices
vj and vk from the list v0,v1, . . . ,vq.

If the vertices v0,v1, . . . ,vq are distinct then they are the vertices of
a q-simplex σ of K, and this simplex is represented by the corresponding
generators ±〈v0,v1, . . . ,vq〉 of the chain group Cq(K;Z). Moreover there are
exactly two such generators in Cq(K;Z) corresponding to the simplex σ, and
these two generators represent the two possible orientations on the simplex.
The elements ±〈v0, . . . , v̂j, . . . ,vq〉 of the chain group Cq−1(K;Z) obtained
by omitting the vertex vj from the list of vertices then represent the unique
(q−1)-dimensional face of the simplex σ that does not contain the vertex vj.

Proposition 5.2 Let K be a simplicial complex, and let R be a unital ring.
Then there exist well-defined homomorphisms

∂q:Cq(K;R)→ Cq−1(K;R)

for all integers q characterized by the requirement that

∂q(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.
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whenever the vertices v0,v1, . . . ,vq of K span a simplex of K.

Proof If q ≤ 0, or if q > dimK, then at least one of the R-modules Cq(K;R)
and Cq−1(K;R) is the zero module: in those case we define ∂q:Cq(K;R) →
Cq−1(K;R) to be the zero homomorphism.

Suppose then that 0 < q ≤ dimK. We prove the existence of the required
homomorphism ∂q by means of Lemma 4.2.

Given vertices v0,v1, . . . ,vq spanning a simplex of K, let

f(v0,v1, . . . ,vq) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.

Let i be an integer between 1 and q. If 0 ≤ j < i− 1 then

〈v0, . . . , v̂j, . . . ,vi−1,vi, . . . ,vq〉

changes sign (i.e., it is replaced by the negative of itself) when the vertices
vi−1 and vi are transposed. Similarly if i < j ≤ q then

〈v0, . . . ,vi−1,vi, . . . , v̂j, . . . ,vq〉

changes sign when the vertices vi−1 and vi are transposed. Also

〈v0, . . . , v̂i−1, . . . ,vq〉 and 〈v0, . . . , v̂i, . . . ,vq〉

are transposed when the vertices vi−1 and vi are transposed. It follows that
the (q − 1)-chain f(v0,v1, . . . ,vq) changes sign when the vertices vi−1 and
vi are transposed for some integer i satisfying 1 ≤ i ≤ q.

Next suppose that vi = vk for some i and k satisfying i < k. Then

f(v0,v1, . . . ,vq) = (−1)i〈v0, . . . , v̂i, . . . ,vq〉+ (−1)k〈v0, . . . , v̂k, . . . ,vq〉,

since the remaining terms in the expression defining f(v0,v1, . . . ,vq) contain
both vi and vk and are therefore equal to the zero element of Cq−1(K;R)
when vi = vk. Also

〈v0, . . . , v̂k, . . . ,vq〉 = (−1)k−i−1〈v0, . . . , v̂i, . . . ,vq〉.

Indeed this identity is immediate when k = i+1. Suppose that k > i+1. Let
w = vi = vk. Then the vertex w occurs in the ordered list v0, . . . , v̂k, . . . ,vq
before vi+1 but is omitted after vk−1, whereas the vertex w occurs in the
ordered list v0, . . . , v̂i, . . . ,vq after vk−1 but is omitted before vi+1. Thus, in
order to convert the first ordered list to the second by successively transposing

42



vertices, it suffices to transpose the vertex w occurring before vi+1 in the first
list successively with the vertices vi+1,vi+2, . . . ,vk−1, shuffling it along the
list until it occurs after vk−1. This process requires k − i − 1 successive
transpositions and is thus results in a permutation of the vertices in the list
which is of parity (−1)k−i−1. It follows that

(−1)k〈v0, . . . , v̂k, . . . ,vq〉 = (−1)i−1〈v0, . . . , v̂i, . . . ,vq〉

and thus
f(v0,v1, . . . ,vq) = 0

whenever vi = vk, where 0 ≤ i < k ≤ q. We conclude therefore that
f(v0,v1, . . . ,vq) = 0 unless the vertices v0,v1, . . . ,vq are all distinct.

It now follows directly from Lemma 4.2 that there is a well-defined homo-
morphism ∂q:Cq(K;R)→ Cq−1(K;R), characterized by the property that

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K.

Let K be a simplicial complex, and let R be an integral domain. The
R-module homomorphism ∂q:Cq(K;R) → Cq−1(K;R) between the chain
groups of K in dimensions q and q − 1 is referred to as the boundary homo-
morphism between these chain groups.

Example Let K be a simplicial complex consisting of a triangle with vertices
a, b and c, together with all the vertices and edges of this triangle, and let
R be an integral domain. Then

C2(K;R) = {r 〈a,b, c〉 : r ∈ R}.

Now
∂2

(
r 〈a,b, c〉

)
= r ∂2(〈a,b, c〉),

because ∂2:C3(K;R) → C2(K;R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
∂2(〈a,b, c〉). Moreover

∂2(〈a,b, c〉) = 〈b, c〉 − 〈a, c〉+ 〈a,b〉,

and

∂1(〈b, c〉) = 〈c〉 − 〈b〉,
∂1(〈a, c〉) = 〈c〉 − 〈a〉,
∂1(〈a,b〉) = 〈b〉 − 〈a〉.
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Therefore

∂1

(
∂2

(
〈a,b, c〉

))
= 〈c〉 − 〈b〉 − 〈c〉+ 〈a〉+ 〈b〉 − 〈a〉 = 0.

It follows that ∂1(∂2(x)) = 0 for all x ∈ C2(K;R).

Example Let K be a simplicial complex consisting of a tetrahedron with
vertices a, b, c and d, together with all the vertices, edges and triangular
faces of this tetrahedron, and let R be an integral domain. Then

C3(K;R) = {r 〈a,b, c,d〉 : r ∈ R}.

Now
∂3

(
r 〈a,b, c,d〉

)
= r ∂3(〈a,b, c,d〉),

because ∂3:C3(K;R) → C2(K;R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
∂3(〈a,b, c,d〉). Moreover

∂3

(
〈a,b, c,d〉

)
= 〈b, c,d〉 − 〈a, c,d〉+ 〈a,b,d〉 − 〈a,b, c〉,

and

∂2(〈b, c,d〉) = 〈c,d〉 − 〈b,d〉+ 〈b, c〉,
∂2(〈a, c,d〉) = 〈c,d〉 − 〈a,d〉+ 〈a, c〉,
∂2(〈a,b,d〉) = 〈b,d〉 − 〈a,d〉+ 〈a,b〉,
∂2(〈a,b, c〉) = 〈b, c〉 − 〈a, c〉+ 〈a,b〉.

Therefore

∂2

(
∂3

(
〈a,b, c,d〉

))
= ∂2(〈b, c,d〉)− ∂2(〈a, c,d〉) + ∂2(〈a,b,d〉)

− ∂2(〈a,b, c〉)
= 〈c,d〉 − 〈b,d〉+ 〈b, c〉

− 〈c,d〉+ 〈a,d〉 − 〈a, c〉
+ 〈b,d〉 − 〈a,d〉+ 〈a,b〉
− 〈b, c〉+ 〈a, c〉 − 〈a,b〉

= 0.

It follows that ∂2(∂3(x)) = 0 for all x ∈ C3(K;R). Also the boundary
homomorphism ∂2:C2(K;R)→ C1(K;R) is determined by the values of

∂2(〈b, c,d〉), ∂2(〈a, c,d〉), ∂2(〈a,b,d〉) and ∂2(〈a,b, c〉).

It follows from the calculation in the preceding example that ∂1(∂2(x)) = 0
for all x ∈ C2(K;R).
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Lemma 5.3 Let K be a simplicial complex, let R be an integral domain, and,
for each integer q, let ∂q:Cq(K;R)→ Cq−1(K;R) be the boundary homomor-
phism between the chain groups Cq(K;R) and Cq−1(K;R). Then ∂q−1◦∂q = 0
for all integers q.

Proof The result is trivial if q < 2, since in this case ∂q−1 = 0. Suppose
that q ≥ 2. Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=1

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q−1∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism ∂q−1 ◦∂q is determined by its values on the elements
of any free basis of Cq(K;R).

5.3 The Homology Groups of a Simplicial Complex

Let K be a simplicial complex, and let R be an integral domain, and, for each
non-negative integer q, let Cq(K;R) denote the R-module whose elements are
q-chains of K with coefficients in the coefficient ring R. A q-chain z is said
to be a q-cycle if ∂qz = 0. A q-chain b is said to be a q-boundary if b = ∂q+1c

′

for some (q+ 1)-chain c′. The R-module consisting of the q-cycles of K with
coefficients in the integral domain R is denoted by Zq(K;R), and the R-
module consisisting of the q-boundaries of K with coefficients in R is denoted
by Bq(K;R). Thus Zq(K;R) is the kernel of the boundary homomorphism
∂q:Cq(K;R) → Cq−1(K;R), and Bq(K;R) is the image of the boundary
homomorphism ∂q+1:Cq+1(K;R) → Cq(K;R). However ∂q ◦ ∂q+1 = 0 (see
Lemma 5.3). It follows that Bq(K;R) ⊂ Zq(K;R). But these R-modules are
submodules of the R-module Cq(K;R). We can therefore form the quotient
module Hq(K;R), where Hq(K;R) = Zq(K;R)/Bq(K;R). The R-module
Hq(K;R) is referred to as the qth homology group of the simplicial complex K
with coefficients in the integral domain R. Note that Hq(K;R) = 0 if q < 0
or q > dimK (since Zq(K;R) = 0 and Bq(K;R) = 0 in these cases).
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The element [z] ∈ Hq(K;R) of the homology group Hq(K;R) determined
by an element z of Zq(K;R) is referred to as the homology class of the q-
cycle z. Note that [z1+z2] = [z1]+[z2] for all z1, z2 ∈ Zq(K;R), and [z1] = [z2]
if and only if z1− z2 = ∂q+1c for some (q+ 1)-chain c with coefficients in the
coefficient ring R.

An important special case of the above definitions is that in which the
coefficient ring R is the ring Z of integers. The resultant Abelian groups
Cq(K;Z), Zq(K;Z), Bq(K;Z) and Hq(K;Z) defined as described above are
often denoted simply by Cq(K), Zq(K), Bq(K) and Hq(K) respectively. Thus
if a group of q-dimensional chains, cycles, boundaries or homology classes is
specified, but the ring of coefficients is not specified, then the coefficient ring
is by default taken to be the ring of integers.

Remark It can be shown that the homology groups of a simplicial complex
are topological invariants of the polyhedron of that complex. This fact is
far from obvious, and a lot of basic theory must be developed in order to
establish the tools to prove this result.
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6 Homology Calculations

6.1 The Homology Groups of an Octahedron

Let K be the simplicial complex consisting of the triangular faces, edges and
vertices of an octahedron in R3 with vertices P1, P2, P3, P4, P5 and P6, where

P1 = (0, 0, 1), P2 = (1, 0, 0), P3 = (0, 1, 0),

P4 = (−1, 0, 0), P5 = (0,−1, 0), P6 = (0, 0,−1)
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This octahedron consists of the four triangular faces P1P2P3, P1P3P4, P1P4P5

and P1P5P2 of the pyramid whose base is the square P2P3P4P5 and whose
apex is P1, together with the four triangular faces P6P2P3, P6P3P4, P6P4P5

and P6P5P2 of the pyramid whose base is P2P3P4P5 and whose apex is P6.
A typical 2-chain c2 of K is a linear combination, with integer coeffi-

cients, of eight oriented 2-simplices that represent the triangular faces of the
octahedron. Thus we can write

c2 =
8∑
i=1

niσi,

where ni ∈ Z for i = 1, 2, . . . , 8 and

σ1 = 〈P1, P2, P3〉, σ2 = 〈P1, P3, P4〉, σ3 = 〈P1, P4, P5〉,

σ4 = 〈P1, P5, P2〉, σ5 = 〈P6, P3, P2〉, σ6 = 〈P6, P4, P3〉,
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σ7 = 〈P6, P5, P4〉, σ8 = 〈P6, P2, P5〉.

(The orientation on each of these triangles has been chosen such that the
vertices of the triangle are listed in anticlockwise order when viewed from a
point close to the centre of triangle that lies outside the octahedron.)

Similarly a typical 1-chain c1 of K is a linear combination, with integer
coefficients, of twelve 1-simplices that represent the edges of the octahedron.
Thus we can write

c1 =
12∑
j=1

mjρj,

where mj ∈ Z for j = 1, 2, . . . , 12 and

ρ1 = 〈P1, P2〉, ρ2 = 〈P1, P3〉, ρ3 = 〈P1, P4〉, ρ4 = 〈P1, P5〉,

ρ5 = 〈P2, P3〉, ρ6 = 〈P3, P4〉, ρ7 = 〈P4, P5〉, ρ8 = 〈P5, P2〉,

ρ9 = 〈P2, P6〉, ρ10 = 〈P3, P6〉, ρ11 = 〈P4, P6〉, ρ12 = 〈P5, P6〉,

A typical 0-chain c0 takes the form

c0 =
6∑

k=1

rk〈Pk〉,

where rk ∈ Z for k = 1, 2, . . . , 6.
We now calculate the boundary of a 2-chain. It follows from the definition

of the boundary homomorphism ∂2 that

∂2σ1 = ∂2〈P1, P2, P3〉 = 〈P2P3〉 − 〈P1P3〉+ 〈P1P2〉 = ρ5 − ρ2 + ρ1.

Similarly

∂2σ2 = ∂2〈P1, P3, P4〉 = ρ6 − ρ3 + ρ2,

∂2σ3 = ∂2〈P1, P4, P5〉 = ρ7 − ρ4 + ρ3,

∂2σ4 = ∂2〈P1, P5, P2〉 = ρ8 − ρ1 + ρ4,

∂2σ5 = ∂2〈P6, P3, P2〉 = −ρ5 + ρ9 − ρ10,
∂2σ6 = ∂2〈P6, P4, P3〉 = −ρ6 + ρ10 − ρ11,
∂2σ7 = ∂2〈P6, P5, P4〉 = −ρ7 + ρ11 − ρ12,
∂2σ8 = ∂2〈P6, P2, P5〉 = −ρ8 + ρ12 − ρ9.

Thus

∂2c2 = ∂2 (n1σ1 + n2σ2 + n3σ3 + n4σ4 + n5σ5 + n6σ6 + n7σ7 + n8σ8)
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= n1∂2σ1 + n2∂2σ2 + n3∂2σ3 + n4∂2σ4

+ n5∂2σ5 + n6∂2σ6 + n7∂2σ7 + n8∂2σ8

= (n1 − n4)ρ1 + (n2 − n1)ρ2 + (n3 − n2)ρ3 + (n4 − n3)ρ4

+ (n1 − n5)ρ5 + (n2 − n6)ρ6 + (n3 − n7)ρ7 + (n4 − n8)ρ8

+ (n5 − n8)ρ9 + (n6 − n5)ρ10 + (n7 − n6)ρ11 + (n8 − n7)ρ12

It follows that ∂2c2 = 0 if and only if

n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8.

Therefore

Z2(K;Z) = ker ∂2 = {nµ : n ∈ Z}, where µ =
8∑
i=1

σi.

Now C3(K;Z) = 0, and thus B2(K;Z) = 0 (where 0 here denotes the zero
group), since the complex K has no 3-simplices. Therefore

H2(K;Z) ∼= Z2(K;Z) ∼= Z.

Next we calculate the boundary of a 1-chain. It follows from the definition
of the boundary homomorphism ∂1 that

∂1c1 = ∂1

(
12∑
j=1

mjρj

)
= m1(〈P2〉 − 〈P1〉) +m2(〈P3〉 − 〈P1〉)

+m3(〈P4〉 − 〈P1〉) +m4(〈P5〉 − 〈P1〉)
+m5(〈P3〉 − 〈P2〉) +m6(〈P4〉 − 〈P3〉)
+m7(〈P5〉 − 〈P4〉) +m8(〈P2〉 − 〈P5〉)
+m9(〈P6〉 − 〈P2〉) +m10(〈P6〉 − 〈P3〉)
+m11(〈P6〉 − 〈P4〉) +m12(〈P6〉 − 〈P5〉)

= −(m1 +m2 +m3 +m4)〈P1〉+ (m1 −m5 +m8 −m9)〈P2〉
+ (m2 +m5 −m6 −m10)〈P3〉+ (m3 +m6 −m7 −m11)〈P4〉
+ (m4 +m7 −m8 −m12)〈P5〉+ (m9 +m10 +m11 +m12)〈P6〉

It follows that the 1-chain c1 is a 1-cycle if and only if

m1 +m2 +m3 +m4 = 0, m1 −m5 +m8 −m9 = 0,

m2 +m5 −m6 −m10 = 0, m3 +m6 −m7 −m11 = 0,
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m4 +m7 −m8 −m12 = 0 and m9 +m10 +m11 +m12 = 0.

On examining the structure of these equations, we see that, when c1 is a 1-
cycle, it is possible to eliminate five of the integer quantities mj, expressing
them in terms of the remaining quantities. For example, we can eliminate
m4, m6, m7, m8 and m12, expressing these quantities in terms of m1, m2, m3,
m5, m9 m10 and m11 by means of the equations

m4 = −m1 −m2 −m3,

m6 = m2 −m10 +m5,

m7 = m2 +m3 −m10 −m11 +m5,

m8 = −m1 +m9 +m5,

m12 = −m9 −m10 −m11

It follows that

Z2(K;Z) = {m1z1 +m2z2 +m3z3 +m5z5 +m9z9 +m10z10 +m11z11},

where

z1 = ρ1 − ρ4 − ρ8 = −∂2σ4,
z2 = ρ2 − ρ4 + ρ6 + ρ7 = ∂2(σ2 + σ3),

z3 = ρ3 − ρ4 + ρ7 = ∂2σ3,

z5 = ρ5 + ρ6 + ρ7 + ρ8 = ∂2(σ1 + σ2 + σ3 + σ4),

z9 = ρ8 + ρ9 − ρ12 = −∂2σ8,
z10 = −ρ6 − ρ7 + ρ10 − ρ12 = ∂2(σ6 + σ7),

z11 = ρ11 − ρ7 − ρ12 = ∂2σ7.

From these equations, we see that the generators z1, z2, z3, z5, z9, z10 and
z11 of the group Z1(K;Z) of 1-cycles all belong to the group B1(K;Z) of 1-
boundaries. It follows that Z1(K;Z) = B1(K;Z), and therefore H1(K;Z) =
0.

In order to determine H0(K;Z) it suffices to note that the 0-chains

〈P2〉 − 〈P1〉, 〈P3〉 − 〈P1〉, 〈P4〉 − 〈P1〉, 〈P5〉 − 〈P1〉 and 〈P6〉 − 〈P1〉

are 0-boundaries. Indeed

〈P2〉 − 〈P1〉 = ∂1ρ1, 〈P3〉 − 〈P1〉 = ∂1ρ2, 〈P4〉 − 〈P1〉 = ∂1ρ3,

〈P5〉 − 〈P1〉 = ∂1ρ4 and 〈P6〉 − 〈P1〉 = ∂1(ρ1 + ρ9).
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Therefore
6∑

k=1

rk〈Pk〉 −

(
6∑

k=1

rk

)
〈P1〉 ∈ B0(K;Z)

for all integers r1, r2, r3, r4, r5 and r6. It follows that B0(K;Z) = ker ε,
where ε:C0(K;Z)→ Z is the homomorphism defined such that

ε

(
6∑

k=1

rk〈Pk〉

)
=

6∑
k=1

rk

for all integers rk (k = 1, 2, . . . , 6). Now Z0(K;Z) = C0(K;Z) since the ho-
momorphism ∂0:C0(K;Z)→ C−1(K;Z) is the zero homomorphism mapping
C0(K;Z) to the zero group. It follows that

H0(K;Z) = C0(K;Z)/B0(K;Z) = C0(K;Z)/ ker ε ∼= Z.

(Here we are using the result that the image of a homomorphism is isomorphic
to the quotient of the domain of the homomorphism by the kernel of the
homomorphism.)

We have thus shown that

H2(K;Z) ∼= Z, H1(K;Z) = 0, H0(K;Z) ∼= Z.

One can show that Z1(K;Z) = B1(K;Z) by employing an alternative
approach to that used above. An element z of Z1(K;Z) is of the form z =
12∑
j=1

mjρj, where

m1 +m2 +m3 +m4 = 0, m1 −m5 +m8 −m9 = 0,

m2 +m5 −m6 −m10 = 0, m3 +m6 −m7 −m11 = 0,

m4 +m7 −m8 −m12 = 0 and m9 +m10 +m11 +m12 = 0.

The 1-cycle z belongs to the group B1(K;Z) if and only if there exists some
2-chain c2 such that z = ∂2c2. It follows that z ∈ B1(K;Z) if and only if
there exist integers n1, n2, . . . , n8 such that

m1 = n1 − n4, m2 = n2 − n1, m3 = n3 − n2, m4 = n4 − n3,

m5 = n1 − n5, m6 = n2 − n6, m7 = n3 − n7, m8 = n4 − n8,

m9 = n5 − n8, m10 = n6 − n5, m11 = n7 − n6, m12 = n8 − n7.

The integers n1, n2, . . . , n8 solving the above equations are not uniquely de-
termined, since, given one collection of integers n1, n2, . . . , n8 satisfying these
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equations, another solution can be obtained by adding some fixed integer to
each of n1, n2, . . . , n8. It follows from this that if there exists some collection
n1, n2, . . . , n8 of integers that solves the above equations, then there exists a
solution which satisfies the extra condition n1 = 0. We then find that

n1 = 0, n2 = m2, n3 = m2 +m3, n4 = −m1,

n5 = −m5, n6 = m2 −m6, n7 = m2 +m3 −m7, n8 = −m1 −m8.

On substituting n1, n2, . . . , n8 into the relevant equations, and making use of
the constraints on the values of m1,m2, . . . ,m12, we find that we do indeed
have a solution to the equations that express the integers mj in terms of
the integers ni. It follows that every 1-cycle of K is a 1-boundary. Thus
Z1(K;Z) = B1(K;Z), and therefore H1(K;Z) = 0.

Note that the results of many of the calculations of boundaries of chains
can be verified by consulting the diagram representing the vertices and edges
of the octahedron with their labels and orientations. For example, direct cal-
culation using the definition of the boundary homomorphism δ2:C2(K;Z)→
C1(K;Z) shows that

∂2σ1 = ∂2〈P1, P2, P3〉 = 〈P2P3〉 − 〈P1P3〉+ 〈P1P2〉 = ρ5 − ρ2 + ρ1.

Now if we follow round the edges of the triangle P1 P2 P3 represented by σ,
starting at P1 and proceeding to P2, then P3 then back to P1 we traverse the
edge ρ1 in the direction of the arrow, then the edge ρ5 in the direction of
the arrow, and finally the edge ρ2 in the reverse direction to the arrow. In
consequence, both ρ1 and ρ5 occur in the 1-boundary ∂2σ1 with coefficient
+1, whereas ρ2 occurs in this 1-boundary with coefficient −1.

Consider also the coefficient corresponding to the vertex P2 in the 0-

boundary ∂1c1, where c1 =
12∑
j=1

mjρj. The vertex P2 is an endpoint of four

edges. The arrows indicating the orientation on the edges ρ1 and ρ8 are
directed towards the vertex P2, whereas the arrows indicating the orientation
on the edges ρ5 and ρ9 are directed away from the vertex P2. In consequence,
the coefficient of 〈P2〉 in ∂1c1 is m1 −m5 +m8 −m9.

6.2 Another Homology Example

Let P1, P2, P3, P4, P5 and P6 be the vertices of a hexagon in the plane, listed
in cyclic order, and let K be simplicial complex consisting of the triangles
P1P2P3, P3P4P5 and P5P6P1, together with all the edges and vertices of these
triangles.
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ρ3
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ppppppppppppppppppppppppppppppppppppppppρ9

Then
C2(K;Z) = {n1τ1 + n2τ2 + n3τ3 : n1, n2, n3 ∈ Z},

where
τ1 = 〈P1P2P3〉, τ2 = 〈P3P4P5〉 and τ3 = 〈P5P6P1〉.

(Note τ1, τ2 and τ3 represent the three triangles of the simplicial complex
with the orientations that results from an anticyclic ordering of the vertices
in the diagram above.) Also

C1(K;Z) =

{
9∑
j=1

mjρj : mj ∈ Z for j = 1, 2, . . . , 9

}
,

where

ρ1 = 〈P6P1〉, ρ2 = 〈P1P2〉, ρ3 = 〈P2P3〉, ρ4 = 〈P3P4〉, ρ5 = 〈P4P5〉,

ρ6 = 〈P5P6〉, ρ7 = 〈P5P1〉, ρ8 = 〈P1P3〉 and ρ9 = 〈P3P5〉,

and

C0(K;Z) =

{
6∑

k=1

rk〈Pk〉 : rk ∈ Z for k = 1, 2, . . . , 6

}
.

(Note that the 1-chains ρ1, ρ2, . . . , ρ9 represent the 9 edges of the simplicial
complex with the orientations indicated by the arrows on the above diagram.)

We now calculate the images of the 2-chains τ1, τ2 and τ3 under the
boundary homomorphism ∂2:C2(K;Z)→ C1(K;Z). We find that

∂2τ1 = ρ3 − ρ8 + ρ2, ∂2τ2 = ρ5 − ρ9 + ρ4, ∂2τ3 = ρ1 − ρ7 + ρ6,
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Now

∂2(n1τ1 + n2τ2 + n3τ3)

= n3ρ1 + n1ρ2 + n1ρ3 + n2ρ4 + n2ρ5 + n3ρ6 − n3ρ7 − n1ρ8 − n2ρ9.

The simplicial complex K has no non-zero 2-cycles, and therefore Z2(K;Z) =
0. It follows that H2(K;Z) = 0.

Let

c1 =
9∑
j=1

mjρj.

Then

∂1c1 = (m1 −m2 +m7 −m8)〈P1〉+ (m2 −m3)〈P2〉
+ (m3 −m4 +m8 −m9)〈P3〉+ (m4 −m5)〈P4〉
+ (m5 −m6 +m9 −m7)〈P5〉+ (m6 −m1)〈P6〉

It follows that c1 is a 1-cycle of K if and only if

m2 = m3, m4 = m5, m6 = m1

and
m1 +m7 = m3 +m8 = m5 +m9.

Moreover c1 is a 1-boundary of K if and only if

m2 = m3 = −m8, m4 = m5 = −m9, m6 = m1 = −m7.

We see from this that not every 1-cycle of K is a 1-boundary of K. Indeed

Z1(K;Z) = {n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz : n1, n2, n3, n ∈ Z},
where z = ρ7 + ρ8 + ρ9. Let θ:Z1(K;Z)→ Z be the homomorphism defined
such that

θ (n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz) = n

for all n1, n2, n3, n ∈ Z. Now

n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz ∈ B1(K;Z) if and only if n = 0.

It follows that B1(K;Z) = ker θ. Therefore the homomorphism θ induces
an isomorphism from H1(K;Z) to Z, where H1(K;Z) = Z1(K;Z)/B1(K;Z).
Indeed H1(K;Z) = {n[z] : n ∈ Z}, where z = ρ7 + ρ8 + ρ9 and [z] denotes
the homology class of the 1-cycle z.

It is a straightforward exercise to verify that

B0(K;Z) =

{
6∑

k=1

rk〈Pk〉 : rk ∈ Z for k = 1, 2, . . . , 6 and
6∑

k=1

rk = 0

}
.

It follows from this that H0(K;Z) ∼= Z.
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7 The Homology Groups of Filled Polygons

7.1 The Homology of a Simple Polygonal Chain

Definition We define a simple polygonal chain v0 v1, . . . ,vn of length n to
be a collection consisting of n + 1 vertices and n edges, where the vertices
may be ordered in a finite sequence v0,v1, . . . ,vn satisfying the following
conditions:—

(i) the vertices v0,v1, . . . ,vn of the polygonal chain are distinct;

(ii) the edges of the polygonal chain are

v0 v1, v1 v2, . . . , vn−1 vn;

(iii) two distinct edges of the polygon intersect if and only if they have an
endpoint in common, in which case their intersection consists only of
that common endpoint.
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Lemma 7.1 Let v0 v1, . . . ,vn be a simple polygonal chain of length n, let
K be the one-dimensional simplicial complex consisting of the vertices vi for
i = 0, 1, 2, . . . , n and the edges vi−1 vi for i = 1, 2, . . . , n, and let R be a unital
ring. Then H0(K;R) ∼= R, and Hq(K;R) = 0 when q > 0.

Proof The definitions of the groups Zq(K;R) and Bq(K;R) of q-cycles and
q-boundaries ensure that Zq(K;R) = 0 and Bq(K;R) = 0 when q > 1. It
follows that Hq(K;R) = 0 when q > 1.

Let c be a 1-chain of the simplicial complex K with coefficients in the
ring R. Then there exist uniquely-determined elements r1, r2, . . . , rn of the

coefficient ring R such that c =
n∑
i=1

ri〈vi−1 vi〉. Then

∂1c =
n∑
i=1

ri∂1(〈vi−1 vi〉) =
n∑
i=1

ri(〈vi〉 − 〈vi−1〉)

= −r1〈v0〉+
n−1∑
i=1

(ri − ri+1)〈vi〉+ rn〈vn〉.
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Thus if ∂1c = 0 then r1 = rn = 0R, where 0R denotes the zero element of the
coefficient ring R, and ri−1 = ri for i = 1, 2, . . . , n. It follows that if ∂1c = 0
then ri = 0R for i = 1, 2, . . . , n, and therefore c = 0. Thus Z1(K;R) = 0. It
follows that H1(K;R) = 0.

Let z be a 0-chain of the simplicial complex K with coefficients in the
ring R. Then there exist elements s0, s1, . . . , sn of the coefficient ring R such

that z =
n∑
i=0

si〈vi〉. Let c =
n∑
i=1

ri〈vi−1 vi〉, where r1, r2, . . . , rn ∈ R. The

calculation in the previous paragraph ensures that z = ∂1c if and only if
s0 = −r1, si = ri − ri+1 for i = 1, 2, . . . , n − 1 and sn = rn. It then follows

that if z = ∂1c then
n∑
i=0

si = 0R. Conversely if
n∑
i=0

si = 0R, then r1, r2, . . . , rn

can be determined such that ri = −
i−1∑
j=0

sj for i = 1, 2, . . . , n. Then −r1 = s0,

ri− ri+1 = si for 1, 2, . . . , n−1 and rn = sn, and therefore z = ∂1c. It follows

that z ∈ B0(K;R) if and only if
n∑
i=0

si = 0R.

Now Z0(K;R) = C0(K;R), and thereforeH0(K;R) ∼= C0(K;R)/B0(K;R).
Let ε:C0(K;R)→ R be the R-module homomorphism defined such that

ε

(
n∑
i=0

si〈vi〉

)
=

n∑
i=0

si.

Then ker ε = B0(K;R). It follows that

H0(K;R) = C0(K;R)/B0(K;R) = C0(K;R)/ ker ε ∼= R,

as required.

7.2 The Homology of a Simple Polygon

Definition We define a simple polygon with n sides of length n to be a
collection consisting of n vertices v1 v2, . . . ,vn and n edges, where n ≤ 3
and where the vertices may be ordered in a finite sequence v1,v2, . . . ,vn
satisfying the following conditions:—

(i) the vertices v1,v2, . . . ,vn of the polygon are distinct;

(ii) the edges of the polygon are

v1 v2, v2 v3, . . . , vn−1 vn and vn v1;
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(iii) two distinct edges of the polygon intersect if and only if they have an
endpoint in common, in which case their intersection consists only of
that common endpoint.
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Lemma 7.2 Let K be the one-dimensional simplicial complex consisting of
the vertices and edges of a simple polygon with n sides, where n ≥ 3, and let
R be a unital ring. Then H0(K;R) ∼= R, H1(K;R) ∼= R and Hq(K;R) = 0
when q > 0.

Proof We order the vertices of the simple polygon in the sequence v1,v2, . . . ,vn
so that the edges of the polygon, in order round the polygon, are

v1 v2, v2 v3, . . . , vn−1 vn and vn v1.

The definitions of the groups Zq(K;R) and Bq(K;R) of q-cycles and q-
boundaries ensure that Zq(K;R) = 0 and Bq(K;R) = 0 when q > 1. It
follows that Hq(K;R) = 0 when q > 1.

Let c be a 1-chain of the simplicial complex K with coefficients in the
ring R. Then there exist uniquely determined elements r1, r2, . . . , rn of the
coefficient ring R such that

c = r1〈vn v1〉+
n∑
i=2

ri〈vi−1 vi〉.

Then

∂1c = r1∂1(〈vn v1〉) +
n∑
i=2

ri∂1(〈vi−1 vi〉)

= r1(〈v1〉 − 〈vn〉) +
n∑
i=2

ri(〈vi〉 − 〈vi−1〉)

=
n−1∑
i=1

(ri − ri+1)〈vi〉+ (rn − r1)〈vn〉.
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Thus if ∂1c = 0 then ri = ri+1 for i = 1, 2, . . . , n− 1 and rn = r1. It follows
that ∂1c = 0 if and only if

r1 = r2 = · · · = rn,

and therefore
Z1(K;R) = {rγ : r ∈ R},

where

γ =
n∑
i=2

〈vi−1 vi〉+ 〈vnv1〉.

Now B1(K;R) = 0 because a one-dimensional simplicial complex cannot
have any non-zero 1-boundaries. It follows that H1(K;R) = Z1(K;R) ∼= R.

Let z be a 0-chain of the simplicial complex K with coefficients in the
ring R. Then there exist elements s1, s2, . . . , sn of the coefficient ring R such

that z =
n∑
i=1

si〈vi〉. Let

c = r1〈vn v1〉+
n∑
i=2

ri〈vi−1 vi〉,

where r1, r2, . . . , rn ∈ R. The calculation in the previous paragraph ensures
that z = ∂1c if and only if si = ri−ri+1 for i = 1, 2, . . . , n−1 and sn = rn−r1.
It then follows that if z = ∂1c then

n∑
i=1

si = 0R. Conversely if
n∑
i=1

si = 0R,

then r1, r2, . . . , rn can be determined such that r1 = 0R and ri = −
i−1∑
j=1

sj for

i = 2, 3, . . . , n. Then ri − ri+1 = si for i = 1, 2, . . . , n− 1 and

rn − r1 = −
n−1∑
j=1

sj = sn,

and therefore z = ∂1c. It follows that z ∈ B0(K;R) if and only if
n∑
i=1

si = 0R.

Now Z0(K;R) = C0(K;R), and thereforeH0(K;R) ∼= C0(K;R)/B0(K;R).
Let ε:C0(K;R)→ R be the R-module homomorphism defined such that

ε

(
n∑
i=1

si〈vi〉

)
=

n∑
i=1

si.

Then ker ε = B0(K;R). It follows that

H0(K;R) = C0(K;R)/B0(K;R) = C0(K;R)/ ker ε ∼= R,

as required.
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7.3 The Two-Dimensional Homology Group of a Sim-
plicial Complex triangulating a Region of the Plane

Proposition 7.3 Let K be a 2-dimensional simplicial complex whose poly-
hedron |K| is a closed bounded region of the plane, and let R be a unital ring.
Then Z2(K;R) = 0, and thus H2(K;R) = 0.

Proof Let c be a non-zero 2-chain of K with coefficients in the ring R. Then
c is expressible in the form

c =
m∑
i=1

ri〈v(i)
0 v

(i)
1 v

(i)
2 〉

so as to satisfy the following conditions: the coefficient ri is a non-zero ele-
ment of the coefficient ring R for i = 1, 2, . . . ,m; the vertices v

(i)
0 , v

(i)
1 and

v
(i)
2 are distinct and span a 2-simplex (or triangle) τi of K for i = 1, 2, . . . ,m;

the 2-simplices τ1, τ2, . . . , τm determined in this fashion are distinct.
Let ρ1, ρ2, . . . , ρn denote the edges of the triangles τ1, τ2, . . . , τm, where

ρ1, ρ2, . . . , ρn are distinct, and let w
(j)
0 and w

(j)
1 be the endpoints of the

edge ρj for j = 1, 2, . . . , n. Then there exist uniquely-determined elements
s1, s2, . . . , sn of the coefficient ring R such that

∂2c =
n∑
j=1

sj〈w(j)
0 w

(j)
1 〉.

The coefficients s1, s2, . . . , sn of ∂2c in this expression need not all be non-
zero, but we shall show that at least one of these coefficients is non-zero.

Now the fact that the triangles of K are all contained in the plane en-
sures that no edge of K can form part of the boundary of more than two
of the triangles τ1, τ2, . . . , τm. Moreover the union of these triangles is a
closed bounded set in the plane and therefore has a non-empty boundary
that incorporates at least three of the edges ρ1, ρ2, . . . , ρn. Suppose that ρj
is contained in the boundary of τ1 ∪ τ2 ∪ · · · ∪ τm. Then this edge is an edge
of exactly one of the triangles τ1, τ2, . . . , τm. Suppose that ρj is an edge of
τi. Then sj = ±ri, and therefore sj 6= 0. We have thus shown that if c is a
non-zero 2-chain of K with coefficients in R then ∂2c is a non-zero 1-chain of
K. Therefore Z2(K;R) = 0, and thus H2(K;R) = 0, as required.

7.4 Attaching Triangles to Two-Dimensional Simpli-
cial Complexes

Lemma 7.4 Let K be a 2-dimensional simplicial complex, and let R be a
unital ring. Let τ be a triangle of K, and let L be the subcomplex of K con-
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sisting of all the other triangles of K, together with their edges and vertices.
Suppose that τ ∩ |L| consists of the union of two edges of the triangle τ .
Then the homomorphism i∗:Hq(L;R) → Hq(K;R) of homology groups in-
duced by the inclusion map i:L ↪→ K is an isomorphism for all non-negative
integers q.

Proof Let the vertices of the triangle τ be u, v and w, where u v and u w
are the two edges of τ that belong to the subcomplex L.

If q > 2 then Hq(L;R) = 0 and Hq(K;R) = 0, because the simplicial
complexes K and L are of dimension at most 2, and thus there is nothing to
prove.

We show first that Z2(K;R) = Z2(L;R). Given any 2-cycle z2 of K
with coefficients in R, there exists a 2-chain ĉ2 of L with coefficients in R
and a uniquely-determined element of R such that z2 = ĉ2 + r〈u v w〉. Now
∂2z2 = 0. It follows that

r〈v w〉 = r∂2(〈〈u v w〉) + r〈u w〉 − r〈u v〉 = −∂2ĉ2 + r〈u w〉 − r〈u v〉.

Moreover ∂2ĉ2 ∈ C1(L;R) and 〈u v〉, 〈u w〉 ∈ C1(L;R), and therefore

r〈v w〉 ∈ C1(L;R).

But v w is not an edge of L. It follows that r = 0, and thus z2 ∈ Z2(L;R).
Thus Z2(K;R) = Z2(L;R). Now B2(L;R) = 0 and B2(K;R) = 0, and
therefore H2(L;R) = Z2(L;R) and H2(K;R) = Z2(K;R). It follows that
i∗:H2(L;R)→ H2(K;R) is an isomorphism.

We now show that the homomorphism i∗:H1(L;R)→ H1(K;R) is injec-
tive. Let ẑ be a 1-cycle of L with coefficients in R, and let [ẑ]L denote the
homology class of ẑ in H1(L;R). Suppose that i∗([ẑ]L) = 0. Then ẑL is a
1-boundary of the larger simplicial complex K, and thus there exists some 2-
chain c2 of K with coefficients in R such that ẑ = ∂2c2. Moreover there then
exists some element r of R and a 2-chain ĉ2 of L such that c2 = ĉ2+r〈u v w〉.
But then

ẑ = ∂2c2 = ∂2ĉ2 + r〈u v〉+ r〈v w〉 − r〈u w〉,

Now ∂2ĉ2 ∈ C1(L;R) and 〈u v〉, 〈u w〉 ∈ C1(L;R), and therefore

r〈v w〉 ∈ C1(L;R).

But v w is not an edge of L, and therefore r〈v w〉 cannot be a 1-chain of L
unless r = 0. Therefore c2 = ĉ2. But then ẑ = ∂2ĉ2, where ĉ2 ∈ C2(L;R),
and therefore ẑ ∈ B1(L;R) and thus [ẑ]L = 0 in H1(L;R). We conclude from
this that the homomorphism i∗:H1(L;R)→ H1(K;R) is injective.

60



We now show that the homomorphism i∗:H1(L;R)→ H1(K;R) is surjec-
tive. Let z be a 1-cycle of K with coefficients in the ring R. Then there exist
a 1-chain c1 of L with coefficients in R and a uniquely-determined element r
of the coefficient ring R such that

z = c1 + r〈v w〉.

But then z = ẑ + r∂2(〈u v w〉) where

ẑ = c1 − r〈u v〉+ r〈u w〉.

Then c1 ∈ C1(L;R) and 〈u v〉, 〈u w〉 ∈ C1(L;R), and therefore ẑ ∈ C1(L;R).
Also

∂1ẑ = ∂1z − r∂1(∂2(〈u v w〉)) = 0.

It follows that ẑ ∈ Z1(L;R). Also z − ẑ ∈ B1(K;R), and therefore [z]K =
[ẑ]K , where [z]K and [ẑ]K denote the homology classes of z and ẑ respectively
in H1(K;R). Now [ẑ]K = i∗([ẑ]L), where [ẑ]L denotes the homology class of
ẑ in H1(L;R). It follows that [z]K ∈ i∗(H1(L;R)). We have thus proved that
the homomorphism i∗:H1(L;R) → H1(K;R) is surjective. This homomor-
phism was earlier shown to be injective. Therefore it is an isomorphism.

It remains to prove that i∗:H0(L;R) → H0(K;R) is an isomorphism.
Now every vertex of K is a vertex of L. It follows that C0(K;R) = C0(L;R).
Let c1 be a 1-chain of K with coefficients in R. Then the exists a 1-chain ĉ1
of L with coefficients in R and an element r of R such that c1 = ĉ1 + r〈v w〉.
Let

c̃1 = ĉ1 + r〈u w〉 − r〈u v〉.

Then c̃1 ∈ C1(L;R) and

∂1c̃1 = ∂1ĉ1 + r〈w〉 − r〈v〉 = ∂1c1.

It follows that ∂c1 ∈ B1(L;R). We conclude that B0(K;R) = B0(L;R).
Now H0(L;R) = C0(L;R)/B0(L;R), because Z0(L;R) = C0(L;R), and sim-
ilarly H0(K;R) = C0(K;R)/B0(K;R). It follows that the homomorphism
i∗:H0(L;R)→ H0(K;R) is an isomorphism. This completes the proof.

Lemma 7.5 Let K be a 2-dimensional simplicial complex, and let R be a
unital ring. Let τ be a triangle of K, and let L be the subcomplex of K con-
sisting of all the other triangles of K, together with their edges and vertices.
Suppose that τ ∩ |L| consists of a single edge of the triangle τ . Then the
homomorphism i∗:Hq(L;R)→ Hq(K;R) of homology groups induced by the
inclusion map i:L ↪→ K is an isomorphism for all non-negative integers q.
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Proof Let the vertices of the triangle τ be u, v and w, where u and w are
the endpoints of the edge of τ that belongs to the subcomplex L. Then the
vertex v does not belong to L.

If q > 2 then Hq(L;R) = 0 and Hq(K;R) = 0, because the simplicial
complexes K and L are of dimension at most 2, and thus there is nothing to
prove.

We show first that Z2(K;R) = Z2(L;R). Given any 2-cycle z2 of K
with coefficients in R, there exists a 2-chain ĉ2 of L with coefficients in R
and a uniquely-determined element of R such that z2 = ĉ2 + r〈u v w〉. Now
∂2z2 = 0. It follows that

r〈u v〉+ r〈v w〉 = r∂2(〈〈u v w〉) + r〈u w〉 = −∂2ĉ2 + r〈u w〉.

Moreover ∂2ĉ2 ∈ C1(L;R) and 〈u w〉 ∈ C1(L;R), and therefore

r〈u v〉+ r〈v w〉 ∈ C1(L;R).

But u v and v w are not edges of L. It follows that r = 0, and thus z2 ∈
Z2(L;R). Thus Z2(K;R) = Z2(L;R). Now B2(L;R) = 0 and B2(K;R) = 0,
and therefore H2(L;R) = Z2(L;R) and H2(K;R) = Z2(K;R). It follows
that i∗:H2(L;R)→ H2(K;R) is an isomorphism.

Next we show that the homomorphism i∗:H1(L;R)→ H1(K;R) is injec-
tive. Let ẑ be a 1-cycle of L with coefficients in R, and let [ẑ]L denote the
homology class of ẑ in H1(L;R). Suppose that i∗([ẑ]L) = 0. Then ẑL is a
1-boundary of the larger simplicial complex K, and thus there exists some 2-
chain c2 of K with coefficients in R such that ẑ = ∂2c2. Moreover there then
exists some element r of R and a 2-chain ĉ2 of L such that c2 = ĉ2+r〈u v w〉.
But then

ẑ = ∂2c2 = ∂2ĉ2 + r〈u v〉+ r〈v w〉 − r〈u w〉,
Now ∂2ĉ2 ∈ C1(L;R) and 〈u w〉 ∈ C1(L;R), and therefore

r〈u v〉+ r〈v w〉 ∈ C1(L;R).

But u v and v w are not edges of L, and therefore r〈u v〉 + r〈v w〉 cannot
be a 1-chain of L unless r = 0. Therefore c2 = ĉ2. But then ẑ = ∂2ĉ2, where
ĉ2 ∈ C2(L;R), and therefore ẑ ∈ B1(L;R) and thus [ẑ]L = 0 in H1(L;R).
We conclude from this that the homomorphism i∗:H1(L;R) → H1(K;R) is
injective.

We now show that the homomorphism i∗:H1(L;R)→ H1(K;R) is surjec-
tive. Let z be a 1-cycle of K with coefficients in the ring R. Then there exist
a 1-chain c1 of L with coefficients in R and uniquely-determined elements r1
and r2 of the coefficient ring R such that

z = c1 + r1〈u v〉+ r2〈v w〉.
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Then
0 = ∂1z = ∂1c1 − r1〈u〉+ r2〈w〉+ (r1 − r2)〈v〉.

Now ∂1c1 ∈ C0(L;R) and 〈u〉, 〈w〉 ∈ C0(L : R). It follows that (r1−r2)〈v〉 ∈
C0(L;R). But v is not itself a vertex of L. It follows that (r1 − r2)〈v〉 = 0,
and therefore r1 = r2. Let r = r1 = r2. Then z = ẑ + r∂2(〈u v w〉) where
ẑ = c1 + r〈u w〉. Now ẑ ∈ C1(L;R) and

∂1ẑ = ∂1z − r∂1(∂2(〈u v w〉)) = 0.

It follows that ẑ ∈ Z1(L;R). Also z − ẑ ∈ B1(K;R), and therefore [z]K =
[ẑ]K , where [z]K and [ẑ]K denote the homology classes of z and ẑ respectively
in H1(K;R). Now [ẑ]K = i∗([ẑ]L), where [ẑ]L denotes the homology class of
ẑ in H1(L;R). It follows that [z]K ∈ i∗(H1(L;R)). We have thus proved that
the homomorphism i∗:H1(L;R) → H1(K;R) is surjective. This homomor-
phism was earlier shown to be injective. Therefore it is an isomorphism.

It remains to prove that i∗:H0(L;R) → H0(K;R) is an isomorphism.
First we prove that this homomorphism is injective. Now Z0(L;R) = C0(L;R)
and Z0(K;R) = C0(K;R). Let ẑ0 be a 0-chain of L with coefficients in R,
and let [ẑ0]L and [ẑ0]K denote the homology classes of ẑ0 in H0(L;R) and
H0(K;R) respectively. Then i∗([ẑ0]L) = [ẑ0]K .

Suppose that i∗([ẑ0]L) = 0. Then [ẑ0]K = 0, and therefore ẑ0 ∈ B0(K;R).
Then there exists a 1-chain c1 of K such that ẑ0 = ∂1c1. Moreover there exist
a 1-chain ĉ1 of L and elements r1 and r2 of R such that

c1 = ĉ1 + r1〈u v〉+ r2〈v w〉.

Then
ẑ0 = ∂1c1 = ∂1ĉ1 − r1〈u〉 − (r2 − r1)〈v〉+ r2〈w〉.

But then
(r2 − r1)〈v〉 = −ẑ0 + ∂1ĉ1 − r1〈u〉+ r2〈w〉.

and therefore (r2 − r1)〈v〉 ∈ C0(L;R). But the vertex v does not belong to
the subcomplex L. It follows that r1 = r2. But then

ẑ0 = ∂1ĉ1 + r1〈w〉 − r1〈u〉 = ∂1 (ĉ1 + r1〈u w〉) ,

and therefore ẑ0 ∈ B0(L;R). It follows that [ẑ0]L = 0. We conclude that
i∗:H0(L;R)→ H0(K;R) is injective.

Now let z0 be a 0-chain of K with coefficients in R, and let [z0]K denote
the homology class of z0 in H0(K;R). Then there exists a 0-chain ẑ0 of L
with coefficients in R and an element r of R such that z = ẑ0 + r〈v〉. Let
z̃0 = ẑ0 + r〈u〉. Then z̃0 ∈ C0(L;R), and z = z̃ + r ∂1(〈u v〉). It follows

63



that [z]K = [z̃0]K = i∗([z̃0]L). This shows that i∗:H0(L;R) → H0(K;R)
is surjective. We have already shown that this homomorphism is injective.
It follows that the homomorphism is an isomorphism. This completes the
proof.

7.5 Homology of a Planar Region bounded by a Simple
Polygon

The next proposition enables us to prove results about 2-dimensional simpli-
cial complexes triangulating regions of the plane bounded by simple polygons
by induction on the number of triangles in the complex.

Proposition 7.6 Let K be a 2-dimensional simplicial complex with more
than one triangle whose polyhedron |K| is a closed bounded region of the
plane bounded by a simple polygon. Then there exists a triangle τ of K and
a subcomplex L of K such that the following conditions are satisfied:

(i) the simplicial complex K consists of the simplices of the subcomplex L,
the triangle τ , and the edges and vertices of τ ;

(ii) The polyhedron |L| of the subcomplex L is bounded by a simple polygon;

(iii) the intersection τ ∩ |L| of τ with the polyhedron of L is either a single
edge of τ or else is the union of two edges of τ .

Proof We say that a vertex v of K is an boundary vertex of K if it belongs to
the bounding polygon of |K|, and we say that an edge v w ofK is an boundary
edge of K if it is contained in the bounding polygon of |K|. Vertices of K
that are not boundary vertices are said to be interior vertices, and edges
of K that are not boundary edges are said to be interior edges of K. The
requirement that the boundary of |K| is a simple polygon ensures that each
boundary vertex of K is an endpoint of exactly two boundary edges of K.
Also every interior edge of K is an edge of exactly two triangles of K, and
every boundary edge of K is an edge of exactly one triangle of K. No more
than two edges of any triangle of K can be boundary edges of K, because
the simplicial complex K contains more than one triangle.

First consider the special case where two edges of some triangle τ of K
are boundary edges of K. Let the vertex v of τ be the common endpoint of
the two boundary edges, and let u and w be the other two vertices of τ . Also
let L be the subcomplex of K consisting of all triangles of K other than the
triangle τ , together with all the edges and vertices of these triangles. Then
the polyhedron |L| of the subcomplex L is bounded by the simple polygon
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obtained from the bounding polygon of |K| by replacing the two edges u v
and v w of this polygon by the single edge u w, thereby excluding the trian-
gle τ from the interior of the resulting polygon. Moreover τ ∩ |L| coincides
with the edge u w of the triangle τ . The conclusions of the proposition are
therefore true in this special case.
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Next we consider the special case when at least one triangle τ of K
contains both an boundary edge of K and an internal vertex of K. Let
u denote the vertex of τ that is an internal vertex of K, and let v and w
denote the vertices of τ that are endpoints of an boundary edge of K. Let
L be the subcomplex of K that is the union of the triangles of K other
than τ , together with all the vertices and edges of those triangles. Then
the polyhedron |L| of the subcomplex L is bounded by the simple polygon
obtained from the bounding polygon of |K| by replacing the edge v w of
this bounding polygon by the two edges v u and u w, thereby excluding the
triangle τ from the interior of the resulting polygon. Moreover τ ∩ |L| in this
case coincides with the union of the two edges v u and u w of the triangle τ .
The conclusions of the proposition are therefore true in this special case also.
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We complete the proof by showing that, for all simplicial complexes K
satisfying the conditions of the proposition, one or other of the special cases

65



already considered is applicable to the simplicial complex K. For this pur-
pose, we consider separately the case when no internal edge of K has end-
points that are both boundary vertices of K and the remaining case when at
least one internal edge of K has endpoints that are both boundary points of
K.

Thus suppose that no internal edge of K has endpoints that are both
boundary vertices of K. The endpoints v and w of some boundary edge of
K are vertices of a triangle τ of K. Let u be the third vertex of this triangle.
The three edges of the triangle τ cannot all be boundary edges of K, because
the simplicial complex K contains more than one triangle. Therefore at least
one of the edges of τ must be an internal edge of K. In the case under
consideration the endpoints of this internal edge cannot both be boundary
vertices of K. It follows that the vertex u must be an internal vertex of
K, and thus the simplicial complex K contains a triangle τ that has both a
boundary edge v w of K and an internal vertex u of K. It then follows from
a case previously considered that the conclusions of the proposition are true
in the case under consideration.

It only remains to prove that the conclusions of the proposition are true
in the case when at least one internal edge of K has endpoints that are
both boundary vertices of K. In this case there exists a positive integer m
which is the smallest positive integer for which there exists a finite sequence
v0,v1, . . . ,vm consisting of m+1 boundary vertices of K, where the the edge
vi−1 vi is a boundary edge of K for i = 1, 2, . . . ,m and the edge v0 vm is an
interior edge of K. There then exists a unique triangle τ of K whose vertices
include both v0 and v1. Let u be the third vertex of the triangle τ .
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The criterion that determines the value of m ensures that there cannot
exist any integer i satisfying 3 ≤ i ≤ m for which v1 and vi are the endpoints
of an interior edge of K. It follows that the vertex u of the triangle τ cannot
coincide with vi for any integer i satisfying 3 ≤ i ≤ m. Also the vertex u of

66



the triangle τ cannot coincide with either of the vertices v0 or v1. Thus if
u = vi for some integer i satisfing 0 ≤ i ≤ m then i = 2 and thus u = v2.
But then the vertices of the triangle τ are v0, v1 and v2, and therefore two
of the edges of the triangle τ are boundary edges of K. A case previously
considered therefore ensures that the conclusions of the proposition are true
in the case when u = v2.

Now the interior of the triangle τ lies inside the simple polygon whose
vertices are v0,v1, . . . ,vm and whose edges are the edges vi−1 vi for i =
1, 2, . . . ,m together with the edge vm v0, whereas all boundary vertices of
K apart from v0,v1, . . . ,vm lie outside this simple polygon. It follows that
the vertex u cannot coincide with any boundary vertex of K other than the
vertex v2. Thus if u 6= v2 then u must be an interior vertex of K. But
then the simplicial complex K has a triangle τ with both an boundary edge
and an interior vertex, and a case previously considered establishes that the
conclusions of the proposition are true in this case also. We have therefore
established that the conclusions of the proposition are true in all possible
cases, as required.

Theorem 7.7 Let K be a 2-dimensional simplicial complex whose polyhe-
dron |K| is a closed bounded region of the plane bounded by a simple poly-
gon, and let R be a unital ring. Then H0(K;R) ∼= R, H1(K;R) = 0 and
H2(K;R) = 0.

Proof We prove the result by induction on the number of triangles in K.
First consider the case when K consists of a single triangle with vertices

u, v and w. Then

Z0(K;R) = C0(K;R)

B0(K;R) = {r1〈u〉+ r2〈v〉+ r3〈w〉 ∈ C0(K;R) : r1 + r2 + r3 = 0R}.
B1(K;R) = Z1(K;R) = {r (〈v w〉 − 〈u w〉+ 〈u v〉) : r ∈ R},
B2(K;R) = Z2(K;R) = 0.

Let ε:C0(K;R)→ R be the homomorphism of R-modules defined such that

ε(r1〈u〉+ r2〈v〉+ r3〈w〉) = r1 + r2 + r3

for all r1, r2, r3 ∈ R. Then the homomorphism ε is surjective, and ker ε =
B0(K;R). It follows that

H0(K;R) = C0(K;R)/B0(K;R) = C0(K;R)/ ker ε ∼= R.

Also H1(K;R) = 0, because B1(K;R) = Z1(K;R), H2(K;R) = 0, because
B2(K;R) = Z2(K;R) = 0, and Hq(K;R) = 0 for all q > 2 because the
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simplicial complex K is two-dimensional. This proves the result in the case
when the simplicial complex K consists of a single triangle together with all
its vertices and edges.

Suppose therefore as our induction hypothesis that the simplicial com-
plex K satisfying the conditions of the proposition has more than one tri-
angle, and that the result holds for all simplicial complexes that satisfy the
conditions of the proposition and that have fewer triangles than the simplicial
complex K. It follows from Proposition 7.6 that there exists a triangle τ of K
and a subcomplex L of K such that the following conditions are satisfied:

(i) the simplicial complex K consists of the simplices of the subcomplex
L, the triangle τ , and the edges and vertices of τ ;

(ii) The polyhedron |L| of the subcomplex L is bounded by a simple poly-
gon;

(iii) the intersection τ ∩ |L| of τ with the polyhedron of L is either a single
edge of τ or else is the union of two edges of τ .

It then follows from the induction hypothesis that H1(L;R) = 0. Now
if τ ∩ |L| is the union of two edges of τ then Lemma 7.4 ensures that
i∗:Hq(L;R)→ Hq(K;R) is an isomorphism for all non-negative integers q in
this case. Otherwise τ ∩ |L| is a single edge of τ and Lemma 7.5 ensures that
i∗:Hq(L;R) → Hq(K;R) is an isomorphism for all non-negative integers q
in this case also. The result therefore follows by induction on the number of
triangles in the simplicial complex K.
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8 General Theorems concerning the Homol-

ogy of Simplical Complexes

8.1 The Homology of Cone-Shaped Simplicial Com-
plexes

Proposition 8.1 Let K be a simplicial complex, and let R be an unital ring.
Suppose that there exists a vertex w of K with the following property:

• if vertices v0,v1, . . . ,vq span a simplex of K then so do
w,v0,v1, . . . ,vq.

Then H0(K;R) ∼= R, and Hq(K;R) is the zero module for all q > 0.

Proof Using Lemma 4.2, we see that there is a well-defined R-module homo-
morphism Dq:Cq(K;R)→ Cq+1(K;R) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(〈v〉)) = 〈v〉 − 〈w〉
for all vertices v of K. It follows that

s∑
k=1

rk〈vk〉 −

(
s∑

k=1

rk

)
〈w〉 =

s∑
k=1

rk(〈vk〉 − 〈w〉) ∈ B0(K;R)

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K. It follows
that

z − ε(z)〈w〉 ∈ B0(K;R)

for all z ∈ C0(K;R), where ε:C0(K;R)→ R is the R-module homomorphism
from C0(K;R) to R defined such that

ε

(
s∑

k=1

rk〈vk〉

)
=

s∑
k=1

rk

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K. It follows
that ker ε ⊂ B0(K;R). But

ε(∂1(〈u,v〉)) = ε(〈v〉 − 〈u〉) = 0

for all edges u v of K, and therefore B0(K;R) ⊂ ker ε. We conclude therefore
that B0(K;R) = ker ε.
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Now Z0(K;R) = C0(K;R) (because ∂0:C0(K;R)→ C−1(K;R) is defined
to be the zero homomorphism from C0(K;R) to the zero module C−1(K;R)),
and therefore

H0(K;R) = C0(K;R)/B0(K;R),

where B0(K;R) = ker ε. It follows that the R-module homomorphism
ε:C0(K;R) → R induces a well-defined isomorphism from H0(K;R) to the

coefficient ring R that sends the homology class of
s∑

k=1

rk〈vk〉 to
s∑

k=1

rk for all

r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K (see Corollary 1.4).
Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))

whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K;R). In particular z = ∂q+1(Dq(z)) for all z ∈ Zq(K;R), and
hence Zq(K;R) = Bq(K;R). It follows that Hq(K;R) is the zero group for
all q > 0, as required.

Remark Let K be a simplicial complex. Suppose that there exists a ver-
tex w of K with the property described in the statement of Proposition 8.1
so that, if vertices v0,v1, . . . ,vq of K span a simplex of K then so do
w,v0,v1, . . . ,vq. Let L be the subcomplex of K consisting of all simplices of
K that do not have v as a vertex, and let |L| be the polyhedron of L. Then
the polyhedron |K| is the union of all line segments with one endpoint at w
and the other endpoint in the polyhedron |L| of L. Thus the polyhedron |K|
K has the form of a cone with apex w whose base is the polyhedron |L| of
the subcomplex L.

Corollary 8.2 Let σ be a simplex, let Kσ be the simplicial complex consisting
of the simplex σ together with all of its faces, and let R be an unital ring.
Then H0(Kσ;R) ∼= R, and Hq(Kσ;R) is the zero module for all q > 0.

Proof The hypotheses of Proposition 8.1 are satisfied for the complexKσ.
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8.2 Simplicial Maps and Induced Homomorphisms

Let K and L be simplicial complexes, and let R be an unital ring. It follows
from Proposition 4.5 that any simplicial map ϕ:K → L between the simpli-
cial complexesK and L induces well-defined homomorphisms ϕq:Cq(K;R)→
Cq(L;R) of chain groups, where

ϕq(〈v0,v1, . . . ,vq〉) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

whenever v0,v1, . . . ,vq span a simplex of K.
Now ϕq−1 ◦ ∂q = ∂q ◦ ϕq for each integer q. Therefore

ϕq(Zq(K;R)) ⊂ Zq(L;R) and ϕq(Bq(K;R)) ⊂ Bq(L;R)

for all integers q. It follows that any simplicial map ϕ:K → L induces
well-defined homomorphisms

ϕ∗:Hq(K;R)→ Hq(L;R)

of homology groups, where ϕ∗([z]) = [ϕq(z)] for all q-cycles z ∈ Zq(K;R).
It is a trivial exercise to verify that if K, L and M are simplicial complexes
and if ϕ:K → L and ψ:L→M are simplicial maps then the induced homo-
morphisms of homology groups satisfy (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

8.3 Connectedness and H0(K;R)

Lemma 8.3 Let K be a simplicial complex. Then K can be partitioned
into pairwise disjoint subcomplexes K1, K2, . . . , Ks whose polyhedra are the
connected components of the polyhedron |K| of K.

Proof Let X1, X2, . . . , Xs be the connected components of the polyhedron
of K, and, for each j, let Kj be the collection of all simplices σ of K for
which σ ⊂ Xj. If a simplex belongs to Kj for all j then so do all its faces.
Therefore K1, K2, . . . , Ks are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components X1, X2, . . . , Xs of |K| are
pairwise disjoint. Moreover, if σ ∈ K then σ ⊂ Xj for some j, since σ is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then σ ∈ Kj. It follows that
K = K1 ∪K2 ∪ · · · ∪Ks and |K| = |K1| ∪ |K2| ∪ · · · ∪ |Ks|, as required.

Let R be an unital ring. The direct sum M1 ⊕ M2 ⊕ · · · ⊕ Mk of R-
modules M1,M2, . . . ,Mk is defined to be the R-module consisting of all k-
tuples (x1, x2, . . . , xk) with xi ∈Mi for i = 1, 2, . . . , k, where

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk)
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and
r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all elements (x1, x2, . . . , xk) and (y1, y2, . . . , yk) of M1 ⊕M2 ⊕ · · · ⊕Mk,
and for all r ∈ R.

Lemma 8.4 Let K be a simplicial complex, and let R be an unital ring.
Suppose that K = K1 ∪ K2 ∪ · · · ∪ Ks, where K1, K2, . . . Ks are pairwise
disjoint. Then

Hq(K;R) ∼= Hq(K1;R)⊕Hq(K2;R)⊕ · · · ⊕Hq(Ks;R)

for all integers q.

Proof We may restrict our attention to the case when 0 ≤ q ≤ dimK,
since Hq(K;R) = {0} if q < 0 or q > dimK. Now any q-chain c of K with
coefficients in the unital ring R can be expressed uniquely as a sum of the
form c = c1 + c2 + · · ·+ cs, where cj is a q-chain of Kj for j = 1, 2, . . . , s. It
follows that

Cq(K;R) ∼= Cq(K1;R)⊕ Cq(K2;R)⊕ · · · ⊕ Cq(Ks;R).

Now let z ∈ Zq(K;R). We can express z uniquely in the form z =
z1 + z2 + · · ·+ zs, where zj ∈ Cq(Kj;R) for j = 1, 2, . . . , s. Now

0 = ∂q(z) = ∂q(z1) + ∂q(z2) + · · ·+ ∂q(zs),

and ∂q(zj) is a (q−1)-chain of Kj for j = 1, 2, . . . , s. It follows that ∂q(zj) = 0
for j = 1, 2, . . . , s. Hence each zj is a q-cycle of Kj, and thus

Zq(K;R) ∼= Zq(K1;R)⊕ Zq(K2;R)⊕ · · · ⊕ Zq(Ks;R).

Now let b ∈ Bq(K;R). Then b = ∂q+1(c) for some c ∈ Cq+1(K;R).
Moreover c = c1 + c2 + · · · cs, where cj ∈ Cq+1(Kj;R) for j = 1, 2, . . . , s.
Thus b = b1 + b2 + · · · bs, where bj = ∂q+1cj for j = 1, 2, . . . , s. Moreover
bj ∈ Bq(Kj;R) for j = 1, 2, . . . , s. We deduce that

Bq(K;R) ∼= Bq(K1;R)⊕Bq(K2;R)⊕ · · · ⊕Bq(Ks;R).

It follows from these observations that there is a well-defined isomorphism

ν:Hq(K1;R)⊕Hq(K2;R)⊕ · · · ⊕Hq(Ks;R)→ Hq(K;R)

which maps ([z1], [z2], . . . , [zs]) to [z1 + z2 + · · · + zs], where [zj] denotes the
homology class of a q-cycle zj of Kj for j = 1, 2, . . . , s.
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Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
v0,v1, . . . ,vm of vertices of K with v0 = y and vm = z such that the line
segment with endpoints vj−1 and vj is an edge belonging to K for j =
1, 2, . . . ,m.

Lemma 8.5 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if |K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex v0 of K. It suffices to verify that
every vertex of K can be joined to v0 by an edge path.

Let K0 be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to v0

by an edge path. If σ is a simplex belonging to K0 then every vertex of σ can
be joined to v0 by an edge path, and therefore every face of σ belongs to K0.
Thus K0 is a subcomplex of K. Clearly the collection K1 of all simplices of K
which do not belong to K0 is also a subcomplex of K. Thus K = K0 ∪K1,
where K0 ∩ K1 = ∅, and hence |K| = |K0| ∪ |K1|, where |K0| ∩ |K1| = ∅.
But the polyhedra |K0| and |K1| of K0 and K1 are closed subsets of |K|. It
follows from the connectedness of |K| that either |K0| = ∅ or |K1| = ∅. But
v0 ∈ K0. Thus K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.

Theorem 8.6 Let K be a simplicial complex and let R be an unital ring.
Suppose that the polyhedron |K| of K is connected. Then H0(K;R) ∼= R.

Proof Let v1,v2, . . . ,vs be the vertices of the simplicial complex K. Every
0-chain of K with coefficients in R can be expressed uniquely as a formal
sum of the form

r1〈v1〉+ r2〈v2〉+ · · ·+ rs〈vs〉
for some r1, r2, . . . , rs ∈ R. It follows that there is a well-defined homomor-
phism ε:C0(K;R)→ R defined such that

ε (r1〈v1〉+ r2〈v2〉+ · · ·+ rs〈vs〉) = r1 + r2 + · · ·+ rs.

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K.
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Now ε(∂1(〈u,v〉)) = ε(〈v〉 − 〈u〉) = 0 whenever u and v are endpoints of
an edge of K. It follows that ε ◦ ∂1 = 0, and therefore B0(K;R) ⊂ ker ε.

Let w0,w1, . . . ,wm be vertices of K determining an edge path. Then
wj−1 wj is an edge of K for j = 1, 2, . . . ,m, and

〈wm〉 − 〈w0〉 =
m∑
j=1

(
〈wj〉 − 〈wj−1〉

)
= ∂1

(
m∑
j=1

〈wj−1,wj〉

)
∈ B0(K;R).

Now |K| is connected, and therefore any pair of vertices of K can be joined
by an edge path (Lemma 8.5). We deduce that 〈v〉 − 〈u〉 ∈ B0(K;R) for all
vertices u and v of K.

Choose a vertex u ∈ K. Then
s∑
j=1

rj〈vj〉 =
s∑
j=1

rj(〈vj〉 − 〈u〉) +

(
s∑
j=1

rj

)
〈u〉 ∈ B0(K;R) +

(
s∑
j=1

rj

)
〈u〉

for all r1, r2, . . . , rs ∈ R and for all vertices v1,v2, . . . ,vs of K, and therefore

z − ε(z)〈u〉 ∈ B0(K;R)

for all z ∈ C0(K;R). It follows that ker ε ⊂ B0(K;R). But we have already
shown that B0(K;R) ⊂ ker ε. It follows that ker ε = B0(K;R).

Now the homomorphism ε:C0(K;R) → R is surjective and its kernel
is B0(K;R). Moreover Z0(K;R) = C0(K;R) (because ∂0:C0(K;R) →
C−1(K;R) is defined to be the zero homomorphism from C0(K;R) to the
zero module C−1(K;R)), and therefore

H0(K;R) = Z0(K;R)/B0(K;R) = C0(K;R)/B0(K;R).

It follows that the homomorphism ε induces an isomorphism from H0(K;R)
to R (see Corollary 1.4), and therefore H0(K;R) ∼= R, as required.

On combining Theorem 8.6 with Lemmas 8.3 and 8.4 we obtain immedi-
ately the following result.

Corollary 8.7 Let K be a simplicial complex, and let R be an unital ring.
Then H0(K;R) ∼= Rs, where s is the number of connected components of |K|.

8.4 The Homology Groups of the Boundary of a Sim-
plex

Proposition 8.8 Let K be the simplicial complex consisting of all the proper
faces of an (n+ 1)-dimensional simplex σ, where n > 0. Then

H0(K;Z) ∼= Z, Hn(K;Z) ∼= Z, Hq(K;Z) = 0 when q 6= 0, n.
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Proof Let M be the simplicial complex consisting of the (n+1)-dimensional
simplex σ, together with all its faces. Then K is a subcomplex of M , and
Cq(K;Z) = Cq(M ;Z) when q ≤ n.

It follows from Proposition 8.1 that H0(M ;Z) ∼= Z and Hq(M ;Z) = 0
when q > 0. (Here 0 denotes the zero group.) Now Zq(K;Z) = Zq(M ;Z)
when q ≤ n, and Bq(K;Z) = Bq(M ;Z) when q < n. It follows that
Hq(K;Z) = Hq(M ;Z) when q < n. Thus H0(K;Z) ∼= Z and Hq(K;Z) = 0
when 0 < q < n. Also Hq(K;Z) = 0 when q > n, since the simplicial com-
plex K is of dimension n. Thus, to determine the homology of the complex K,
it only remains to find Hn(K;Z).

Let the (n+1)-dimensional simplex σ have vertices v0,v1, . . . ,vn+1. Then

Cn+1(M ;Z) = {n〈v0,v1, . . . ,vn+1〉 : n ∈ Z}.

and therefore Bn(M ;Z) = {nz : n ∈ Z}, where

z = ∂n+1 (〈v0,v1, . . . ,vn+1〉) .

Now Hn(M ;Z) = 0 (Proposition 8.1). It follows that Zn(M ;Z) = Bn(M ;Z).
But Zn(K;Z) = Zn(M ;Z), since Cn(K;Z) = Cn(M ;Z) and the definition of
the boundary homomorphism on Cn(K;Z) is consistent with the definition
of the boundary homomorphism on Cn(M ;Z). Also Bn(K;Z) = 0, because
the simplicial complex K is of dimension n, and therefore has no non-zero
n-boundaries. It follows that

Hn(K;Z) ∼= Zn(K;Z) = Zn(M ;Z) = Bn(M ;Z) ∼= Z.

Indeed Hn(K;Z) = {n[z] : n ∈ Z}, where [z] denotes the homology class of
the n-cycle z of K defined above.

Remark Note that the n-cycle z is an n-cycle of the simplicial complex K,
since it is a linear combination, with integer coefficients, of oriented n-
simplices of K. The n-cycle z is an n-boundary of the large simplicial com-
plex M . However it is not an n-boundary of K. Indeed the n-dimensional
simplicial complex K has no non-zero (n + 1)-chains, therefore has no non-
zero n-boundaries. Therefore z represents a non-zero homology class [z] of
Hn(K;Z). This homology class generates the homology group Hn(K;Z).

Remark The boundary of a 1-simplex consists of two points. Thus if K
is the simplicial complex representing the boundary of a 1-simplex then
H0(K;Z) ∼= Z⊕ Z (Corollary 8.7), and Hq(K;Z) = 0 when q > 0.
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8.5 The Reduced Homology of a Simplicial Complex

Lemma 8.9 Let K be a non-empty simplicial complex, and let R be a unital
ring with multiplicative identity element 1R. Let ε:C0(K;R) → R be the
homomorphism defined such that

ε(r1〈v1〉+ r2〈v2〉+ · · ·+ rk〈vk〉) = r1 + r2 + · · ·+ rk

for all vertices v1,v2, . . . ,vk of K and coefficients r1, r2, . . . , rk belonging to
the coefficient ring R. Let

H̃0(K;R) = ker ε/∂1(C1(K;R)).

Then H̃0(K;R) is a subgroup of H0(K;R), and

H0(K;R) ∼= H̃0(K;R)⊕R.

Moreover H̃0(K;R) is the kernel of the homomorphism ε∗:H0(K;R) → R
defined such that ε∗([〈v〉]) = 1R for all vertices v of K.

Proof The definition of the homomorphisms ε and ∂1 ensure that

ε(∂1(〈v0,v1〉)) = ε(〈v1〉 − 〈v0〉)) = 0

whenever v0 and v1 are the endpoints of an edge of K. It follows that
B0(K;R) ⊂ ker ε. Now Z0(K;R) = C0(K;R), and therefore H0(K;R) =
C0(K;R)/B0(K;R). It follows that the quotient of the subgroup ker ε of
C0(K;R) by the subgroup B0(K;R) is a well-defined subgroup H̃0(K;R) of
H0(K;R). Moreover the surjective homomorphism ε:C0(K;R)→ R induces
a well-defined homomorphism ε∗:H0(K;R)→ R, and H̃0(K;R) = ker ε∗.

Choose a vertex w of K. Then there is a well-defined homomorphism
µ∗:H0(K;R)→ H̃0(K;R)⊕R defined such that

µ∗(η) =
(
η − ε∗(η)[〈w〉], ε∗(η)

)
for all η ∈ H0(K;R). This homomorphism is an isomorphism whose inverse
sends (η, r) to η + r[〈w〉] for all η ∈ H̃0(K;R) and r ∈ R. The result
follows.

Definition Let K be a simplicial complex, let R be a unital ring with iden-
tity element 1R, and let ε∗:H0(K;R) → R be the homomorphism from
H0(K;R) to R characterized by the requirement that ε∗([〈v〉]) = 1R for
all vertices v of K. The reduced homology groups H̃q(K;R) of K are defined
such that

H̃q(K;R) =


ker ε∗ if q = 0;
Hq(K;R) if q > 0;
0 if q < 0.
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Lemma 8.10 Let K and L be simplicial complexes, let R be a unital ring,
and let ϕ:K → L be a simplicial map from K to L. Then the induced
homomorphism ϕ∗:H0(K;R) → H0(L;R) of homology groups in dimension
zero maps the reduced homology group H̃0(K;R) into the reduced homology
group H̃1(L;R) of L. Moreover

ker(ϕ∗:H0(K;R)→ H0(L;R)) ⊂ H̃0(K;R)

and
ϕ∗(H0(K;R)) ∩ H̃0(L;R) = ϕ∗(H̃0(K;R)).

Proof The relevant definitions ensure that

ε∗(ϕ∗([〈v〉])) = ε∗([〈ϕ(v)〉]) = 1R = ε∗([〈v〉]).

for all vertices v of K. The homology group H0(K;R) is generated by the
homology classes of the vertices of K. It follows that ε∗(ϕ∗(η)) = ε∗(η) for
all η ∈ H0(K;R). It follows that an element η of H0(K;R) belongs to the
reduced homology group H̃0(K;R) if and only if ϕ∗(η) belongs to the reduced
homology group H̃0(L;R). Therefore ϕ∗ maps the kernel of ε∗:H0(K;R)→
R into the kernel of ε∗:H0(L;R) → R, and thus ϕ∗(H̃0(K;R)) ⊂ H̃0(L;R).
Also the kernel of ϕ∗:H0(K;R)→ H0(L;R) must be contained in H̃0(K;R),
and

ϕ∗(H0(K;R)) ∩ H̃0(L;R) = ϕ∗(H̃0(K;R)),

as required.
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