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1 Rings and Modules

1.1 Rings and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication that satisfy the following properties:

e the ring is an Abelian group with respect to the operation of addition;

e the operation of multiplication on the ring is associative, and thus
x(yz) = (zy)z for all elements x, y and z of the ring.

e the operations of addition and multiplication satisfy the Distributive
Law, and thus z(y + 2) = zy + xz and (z + y)z = zz + yz for all
elements z, y and z of the ring.

Let R be aring. Then R is an Abelian group with respect to the operation
of addition, and therefore x + (y+ 2) = (r +y) + z and v +y = y + « for all
x,y € R. Also the ring R contains a unique zero element O characterized
by the property that x + 0z = z for all x € R. Moreover given any element
x of R, there exists a unique element —z of R for which x4 (—x) = 0g. This
element —z is the negative of the element x. An element x of a ring R is said
to be non-zero if x # Og.

The operation of subtraction in a ring R is defined such that z —y =
x + (—y) for all z,y € R, where —y is the unique element of R for which
y+ (—=y) =0

Let R be aring, and let Oz be the zero element of R. It is a straightforward
exercise to verify from the defining properties of rings that x0g = Og, Ogz =
Ogr, (—z)y = —(zy) and z(—y) = —(zy) for all elements = and y of R.

Definition A subset S of a ring R is said to be a subring of R if O € 5,
a+beS, —ae Sandabe S forall a,b € S, where 0z denotes the zero
element of the ring R.

Definition A ring R is said to be commutative if xy = yx for all x,y € R.

Not every ring is commutative: an example of a non-commutative ring is
provided by the ring of n x n matrices with real or complex coefficients when
n > 1.

Definition A ring R is said to be unital if it possesses a (necessarily unique)
non-zero multiplicative identity element 1g satisfying 1zz = x = x1p for all
r € R.



Definition A field consists of a set on which are defined operations of ad-
dition and multiplication that satisfy the following properties:

e the field is an Abelian group with respect to the operation of addition;

e the non-zero elements of the field constitute an Abelian group with
respect to the operation of multiplication;

e the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + 2) = 2y + xz and (x + y)z = xz + yz for all
elements x, y and z of the field.

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element 7! of R such that z2=! = 1z. Moreover a ring R is a
field if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

1.2 Left Modules

Definition Let R be a unital ring. A set M is said to be a left module over
the ring R (or left R-module) if

(i) given any x,y € M and r € R, there are well-defined elements = + y
and rx of M,

(ii) M is an Abelian group with respect to the operation + of addition,
(iii) the identities
r(x +y) =rz+ry, (r+s)x =rz + s,

(rs)xz = r(sz), lgr =2

are satisfied for all z,y € M and r,s € R, where 1z denotes the
multiplicative identity element of the ring R.

Let M be a left module over a unital ring R. Then M is an Abelian group
with respect to the operation of addition, and therefore 2+ (y+2) = (z+y)+2
and x+y = y+x for all z,y € M. Also the left module M contains a unique
zero element 0y, characterized by the property that z+0,, = x for all x € M.
Moreover given any element x of M, there exists a unique element —x of M
for which  + (—x) = 0ps. This element —x is the negative of the element .
An element x of a left module M is said to be non-zero if x # 0.

The operation of subtraction in a left module M is defined such that
x—y=ux+ (—y) for all z,y € M, where —y is the unique element of M for
which y + (—y) = Oa.



Lemma 1.1 Let M be a left module over a unital ring R, and let and let
Or and 0y be the zero elements of R and M respectively. Then Ogx = 0y,
0y = 0y and (—r)x =1(—x) = —(rz) for allr € R and x € M.

Proof Let r € R and x € M. Then
re = (r+ 0r)x = rz + Ogz.

On subtracting rz from both sides of this equation, we find that Ogz = 0y,.
Similarly
re =r(x+0p) =rx+ 10,

and therefore 70, = 0p7. Also
(=r)z+rz = ((-r) +r)z =0z =0y

and
r(—z)+rz =r((—z) + ) = r0y = Oy,

and therefore (—r)x = r(—z) = —(rz), as required. |

1.3 Submodules and Quotient Modules

Definition Let R be a unital ring, and let M be a left R-module. A non-
empty subset L of M is said to be a submodule of M if x+y € L and rx € L
for all z,y € L and r € R.

Let M be a left module over a unital ring R, and let L be a submodule
of M. Then L contains at least one element x, and therefore contains the
zero element 0y, of M, because 0y, = Ogx. Thus every submodule of a left
module contains the zero element of that module. Also —x € L forall x € L,
because —x = (—1g)x, where 1 denotes the multiplicative identity element
of the unital ring R.

Example A subset L of a ring R is said to be a left ideal of R if Og € L,
—x € L,x+y € L and rex € L for all z,y € L and r € R. Any unital
ring R may be regarded as a left R-module, where multiplication on the left
by elements of R is defined in the obvious fashion using the multiplication
operation on the ring R itself. A subset of R is then a submodule of R (when
R is regarded as a left module over itself) if and only if this subset is a left
ideal of R.



Given any submodule L of the left R-module M, we denote by M/L the
set of cosets of L in M. These cosets are the subsets of M that are of the
form L + x for some x € M, where

L+z={l+xz:1€L}.

Let « and y be elements of M. If y € L + x then y = [, + x for some [, € L.
But then x = (—1,) + y, and therefore x € L +y. Moreover

l+y=Il+l,+r€ L+
and
l+z=1+(-l)+yeL+y
for all [ € L. Thus if y € L +x then L +y = L + x. It follows that
L+x=L+yifand only if x —y € L.

Let z,2',y,y’ € M and r € R. Suppose that L +x = L + 2/ and
L+y=L+y. Then 2’ —xz € L and 3y —y € L. But then

(z+y) @ +y)=@-2)+y—-y) €L,

because the operation of addition on M is both commutative and associative,
and
re —rx' =r(x—2') €L,

and therefore L + (x +y) = L+ (' +¢') and L +rz = L+ ra’. It follows
that there is a well-defined operation of addition on the set M /L of cosets of
L in M, where
(L+z)+(L+y) =L+ (z+y)

for all z,y € M. This addition operation on M/L is associative and commu-
tative. Also L+(L+x) = (L+0y)+(L+2) = L+x and (L+(—x))+(L+x) =
L+ ((—z)+x) =L+0y =L for all z € M. It follows that the set M/L
of cosets of L in M is an Abelian group with respect to the operation of
addition of cosets. We define (L + x) = L + rz for all » € R. Then

r(L4+2)+(L+y) = r(L+@x+y)=L+rx+y)
= L+ (re+ry)=(L+rz)+ (L+ry)
= r(L+x)+r(L+vy),
(r+s)(L+x) = L+ (r+s)z=L+ (rz+ sx)
= (L+rz)+ (L + sz)
= r(L+x)+s(L+w),
(rs)(L+x) = L+ (rs)r=L+r(sz)=r(L+ sz)
= r(s(L+2)),



and
Ir(L+2z)=L+1gx=L+=x

for all ;s € R and z,y € M. It follows that the set M /L of left cosets of L
in M is itself a left module over the unital ring R.

Definition Let M be a left module over a unital ring R, and let L be a
submodule of M. The corresponding quotient module M/L is the left R-
module M /L whose elements are the cosets of L in M, with operations of
addition of cosets and left multiplication of cosets by elements of the ring R
defined such that

(L+z)+(L+y)=L+xz+y and r(L+z)=L+rz

for all z,y € M and r € R.

1.4 Homomorphisms of Left Modules

Definition Let M and N be left modules over some unital ring R. A
function p: M — N is said to be a homomorphism of left R-modules if
o +vy) = o) + ¢(y) and p(rz) = rp(z) for all z,y € M and r € R. A
homomorphism of R-modules is said to be an isomorphism if it is invertible.

Let M and N be left modules over a unital ring R. A homomorphism
pw: M — N from M to N is said to be a monomorphism if it is injective. A
homomorphism p: M — N from M to N is said to be a epimorphism if it
is surjective. A homomorphism ¢: M — N from M to N is said to be an
isomorphism if it is bijective. A homomorphism p: M — M from M to itself
is referred to as an endomorphism of M. An isomorphism ¢: M — M from
M to itself is referred to as an automorphism of M.

Let ¢o: M — N be an isomorphism from M to N. Then the function ¢
has a well-defined inverse o= *: N — M. Let u,v € N, and let z = o !(u)
and y = ¢~ '(v). Then p(z) = u and ¢(y) = v, and therefore

plx+y)=p(@)+ely) =ut+v and ¢(rz)=re()=ru
It follows that
e utv) =9 (u)+¢ '(v) and o (ru) =re (u).

Thus the inverse p~1: N — M of any left R-module isomorphism ¢: M — N
is itself a left R-module isomorphism.



Lemma 1.2 Let M and N be left modules over a unital ring R, and let
©: M — N be a left R-module homomorphism from M to N. Then ¢(0y) =
On, where 0y; and Oy denote the zero elements of the left modules M and N
respectively. Moreover p(—x) = —p(z) for all x € M.

Proof Let z € M. Then

o(x) = (@ + 0n) = (x) + ¢(0n).

On subtracting ¢(x) from both sides of this identity, we find that Oy =
©(0y). It follows that

o(r) + o(—x) = p(x + (—2)) = ¢(0ar) = O,

and therefore p(—z) = —¢(x), as required. |}

Definition Let M and N be left modules over some unital ring R, and let
p:M — N be a left R-module homomorphism. The kernel ker¢ of the
homomorphism ¢ is defined so that

kero ={zx € M : p(x) =0y},
where Op denotes the zero element of the module V.

The kernel ker ¢ of a left R-module homomorphism ¢: M — N is itself a
left R-module. Indeed let =,y € ker ¢ and r € R. Then

o(x+y) =)+ ¢y) =0 +0x =0y

and
o(rr) =rp(z) =r0y = O,
and therefore x + y € ker ¢ and rz € ker ¢.

The image or range ¢(M) of a left R-module homomorphism ¢: M — N
is defined such that

p(N) = A{p(z): 2 € M}.

The image of any left R-module homomorphism is itself a left R-module.

Proposition 1.3 Let M and N be left modules over a unital ring R, let
p:M — N be a left R-module homomorphism from M and N, and let L
be a submodule of M. Suppose that L C keryp. Then p: M — N induces
a homomorphism @: M/L — N defined on the quotient module M /L, where
(L +z) = ¢(x) for all x € M. This induced homomorphism is injective if
and only if L = ker ¢.



Proof Let x,2’ € M. Then L + x = L + 2’ if and only if 2/ — x € L. Also
o' —x) = p(a') — p(x), and therefore p(z) = p(2’) if and only if 2/ — x €
ker p. But L C ker ¢. It follows that if L+x = L+2' then ¢(x) = ¢(2'), and
therefore there exists a well-defined function @: M /L — N characterized by
the property that p(L + z) = ¢(x) for all z € M. The function from M/L
to N characterized by this property is uniquely determined. Moreover the
function @ is injective if and only if L + x = L + 2’ whenever p(z) = ¢(2').
It follows that @: M /L — N is injective if and only if L = ker ¢.
Let z,y € M. Then

P(L+z)+(L+y) = P(L+z+y)=p@+y) =p@)+e(y)
= p(L+x)+3(L+y).

Also

P(r(L+ 1) =3(L +rz) = p(rz) =re(r)
for all r € R. It follows that ©: M/L — N is a homomorphism of left
R-modules with the required properties. |}

The following corollary follows immediately on applying Proposition 1.3.

Corollary 1.4 Let M and N be left modules over a unital ring R, and let
©: M — N be a left R-module homomorphism from M and N. Then o(M) =
M/ ker .

1.5 Direct Sums of Left Modules

Definition Let M, M,, ..., M} be left modules over a unital ring R. The
direct sum M@ My®- - - M, of the modules M, Mo, ..., M, is defined to be
the set of ordered k-tuples (z1, s, ..., %), where z; € M, for i = 1,2,... k.
This direct sum is itself a left R-module, where

(x1, 29, .. xk) + (Y1, Y2, - k) = (T1+ v, 22+ Yoy oo Tk + Yi),
r(xy, Ty ..., xk) = (ray,rme, ..., TTL)

for all z;,y; € M; and r € R.

Definition Let R be a unital ring, and let n be a positive integer. We define
the left R-module R" to be the direct sum of n copies of the ring R. The ele-
ments of this left R-module R™ are thus represented as n-tuples (ry,rs, ..., )
whose components are elements of the ring R.



Definition Let M be a left module over some unital ring R. Given any
subset X of M, the submodule of M generated by the set X is defined to be
the intersection of all submodules of M that contain the set X. It is therefore
the smallest submodule of M that contains the set X. A left R-module M is
said to be finitely-generated if it is generated by some finite subset of itself.

Lemma 1.5 Let M be a left module over some unital ring R. Then the
submodule of M generated by some finite subset {1, xs,...,xx} of M consists
of all elements of M that are of the form

X1 + ToZo + -+ + Ty
for some ri,r9, ..., 1 € R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M. Moreover it is contained in every submodule of M that
contains the set {z1,xs,...,zr}. The result follows. |}



2 Free Modules

2.1 Linear Independence

Let M be a left module over a unital ring R, and let by, bs, . . ., by be elements
of M. A linear combination of the elements by, bo, ..., b, with coefficients
ri,7To,...,T is an element of M that is represented by means of an expression
of the form

lel + T’ng + -+ ’f‘kbk,

where 71,75, ..., 1, are elements of the ring R.

Definition Let M be a left module over a unital ring R. The elements of a
subset X of M are said to be linearly dependent if there exist distinct elements
bi,ba, ..., by of X (where b; # b; for i # j) and elements 71,79, ..., 74 of the
ring R, not all zero, such that

r1by 4 120y + - - - + by = Opy,
where 0;; denotes the zero element of the module M.

The elements of a subset X of M are said to be linearly independent over
the ring R if they are not linearly dependent over R. Thus the elements of
X are linearly independent over R, if and only if, given distinct elements
bi,bs, ..., b of X, and given elements 71,7y, ..., of R satisfying

lel +T’2b2 + - ‘I‘kak = 0,

it must necessarily follow that r; =0 for j =1,2,... k.

2.2 Free Generators

Let M be a left module over a unital ring R, and let X be a (finite or
infinite) subset of M. The set X generates M as a left R-module if and only
if, given any non-zero element m of M, there exist by, bo,..., by € X and
r1,72,...,7x € R such that

m = 11by + 1r3by + - - + 1iby

(see Lemma 1.5). In particular, a left module M over a unital ring R is
generated by a finite set {by,bs,...,b;} if and only if any element of M can
be represented as a linear combination of by, b, . .., by, with coefficients in the
ring R.

A left module over a unital ring is freely generated by the empty set if
and only if it is the zero module.



Definition Let M be a left module over a unital ring R, and let X be a
subset of M. The left module M is said to be freely generated by the set X
if the following conditions are satisfied:

(i) the elements of X are linearly independent over the ring R;

(ii) the module M is generated by the subset X.

Definition Let M be a left module over a unital ring R. Elements
bl;b27"'7bk

of M are said to constitute a free basis of M if these elements are distinct,
and if the left R-module M is freely generated by the set {by,bs, ..., by}

Example Let K be a field, let V' be a finite-dimensional vector space over
K, and let by,bs,...,b, be a basis of V over the field K. Then V is a
left K-module, and moreover V is freely generated by the set B, where
B ={by,ba,...,bn}.

Example The additive group Z3 whose elements are ordered triples of inte-
gers is a left module over the ring Z of integers. The triples (1,0,0), (0,1,0)
and (0,0, 1) constitute a free basis of Z* over the coefficient ring Z.

Definition A module M over a unital ring R is said to be free if there exists
a free basis for M over R.

Lemma 2.1 Let M be a left module over an unital ring R. Elements
bl;b27"'7bk

of M constitute a free basis of that left module if and only if, given any
element m of M, there exist uniquely determined elements ry,79,...,7% of
the ring R such that

m = riby + rabe + - - - + 70y

Proof First suppose that by, bs,...,b; is a list of elements of M with the
property that, given any element m of M, there exist uniquely determined
elements rq,79,...,7, of R such that

m:rlbl+r2b2+---—i—rkbk.

Then the elements by, by, ..., b, generate M. Also the uniqueness of the
coefficients 71,7, ..., 7, ensures that the zero element 0, of M cannot be
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expressed as a linear combination of by, by, . . ., by unless the coeffients involved
are all zero. Therefore these elements are linearly independent and thus
constitute a free basis of the left module M.

Conversely suppose that by, bs, ..., by is a free basis of M. Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
r1,79,...,7, and Sp, So, . .., S, be elements of the coefficient ring R satisfying

T1b1+7“2b2+"'+7’kbk:Slb1+82b2+"‘+8kbk.

Then
(7’1 — Sl)bl + (TQ — Sg)bg + -+ (Tk — Sk)bk = OM

But then r; —s; = 0 and thus r; = s; for j = 1,2,...,n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M, as required. |}

Lemma 2.2 Let M be a left module over a unital ring that is freely generated
by elements by, bo, ..., b, of M. Then there is an isomorphism from R" to
M that sends each element (ri,7o,...,1,) of R to

Faby -+ 7aby 4+ b,
Proof Let the homomorphism ¢: R™ — M be defined such that
O(r1,72y .oy 1y) = 1101 + 13bo + - + by

for all ry,rs,...,7, € R. Lemma 2.1 then ensures that ¢: R* — M is both
surjective and injective. This homomorphism is thus an isomorphism from
R™ — M, as required. |}

2.3 The Free Module on a Given Set

Definition Let X be a set, let R be a unital ring with zero element Or and
multiplicative identity element 1. We say that a function o: X — R from
X to R is finitely-supported if

{r € X :0(x) #0g}

is a finite subset of X.

11



Let X be a set, let R be a unital ring with zero element 0z and multi-
plicative identity element 1, and let R™X) denote the set of finitely-supported
functions from X to the ring R. For each o € R, let

X, ={zx € X :0(x) # O0g}.

If o and 7 are finitely-supported functions from X to R, then so is 047, where
(0 +7)(x) =0(x)+ 7(x) for all x € X. Indeed X,,, C X, U X,, and thus
if both X, and X, are finite subsets of X then so is X,,,. Also X,, C X,
for all » € R, and therefore ro: X — R is a finitely-supported function
for all » € R. Thus there are well-defined operations of addition and scalar
multiplication defined on RX) defined such that (¢+7)(z) = o(z)+7(x) and
(ro)(z) = ro(x) for all 0,7 € R¥) r € R and # € X. These operations give
R™) the structure of a left module over the unital ring R. Each element 2 of
the set X determines a corresponding finitely-supported function 9,: X — R,

where
6.(2") = L %f =2
Op if 2/ # x.

Proposition 2.3 Let X be a set, let R be a unital ring with zero element
0r and multiplicative identity element 1, and let R be the left R-module
whose elements are finitely-supported functions from X to R, with operations
of addition and scalar multiplication defined such that

(c+71)(x)=0(x)+7(x) and (ro)(z)=ro(x)

for allo,7 € R r € R and x € X. Then the left R-module RX) is freely
generated by (8, : © € X), where §,: X — R is defined for each x € X so
that 6,(x) = 1g and §,(z") = Og for all 2’ € X satisfing ' # x.

Proof First we note that each of the functions 9,: X — R is a finitely-
supported function from X to R and is thus an element of R, Let 0 € R&),
and let X, = {z € X : o(z) # Og}. Then X, is a finite subset of X. Let
T1,Ta,...,T, be a list of distinct elements of X that includes all elements of
Xy, and let r; = o(z;) for j =1,2,... k. Then

Thus the elements (6, : z € X) generate R,
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We must show that the generators (J, : © € X) are linearly independent
over the coefficient ring R. Suppose that

k
j=1
where x1, o, ..., x) are distinct elements of X and ry,ry, ..., 7, are elements

of the coefficient ring R. Then

k k
OR = (Z Tjd'q) (LCZ) = eréxj (LZ'Z) =T;
j=1 j=1

for i =1,2,...,k, because 6,,(7;) = 1g and d,,(v;) = Og when j # 4. Thus
02130y, - - -, 0z, are linearly independent whenever x1, s, ...,z are distinct.
It follows that RX) is freely generated by (4, : x € X), as required. ||

Definition Let X be a set, and let R be a unital ring with zero element
Or and multiplicative identity element 1. The free left R-module on the
set X is defined to be the module RX) whose elements are represented as
finitely-supported functions from X to R, with operations of addition and
scalar multiplication defined such that

(c+7)(x)=0c(x)+7(x) and (ro)(z)=ro(z)

for all 0,7 € R™), r € R and = € X. The natural embedding 1x: X — R
of the set X in the R-module R™X) is the injective function that sends each
element = of X to the corresponding finitely-supported function d,: X — R
defined so that 0,(x) = 1z and 0,(2’) = Og for all 2/ € X satisfying 2’ # z.

Proposition 2.4 Let X be a set, let R be a unital ring, let RX) denote
the free left R-module on set X, and let tx: X — RY) denote the natural
embedding that maps the set X into the free left R-module RX). Let N be
a left R-module, and let f: X — N be a function from X to N. Then there
exists a uniquely-determined R-module homomorphism o: RX) — N such
that f = pouvy.

Proof Let Or and 1 denote the zero element and multiplicative identity
element respectively of the unital ring R. We represent the elements of RX)
as finitely-supported functions from X to R, as in the statement and proof
of Proposition 2.3. Then tx(z) = §, for all x € X, where d,(z) = 1g and
0. (2") = Op for all 2’ € X satisfying ' # =.
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For each element o of R let X, = {x € X : o(x) # Or}. We define a
function p: R¥X) — N so that ¢ maps the zero element of R to the zero
element of N and

re€X,

for all non-zero elements o of R&). Moreover

for all supersets Z of X,.

Let o and 7 be elements of R, and let r be an element of the coefficient
ring R. Then X,, is a subset of X, and X,, X, and X, , are all subsets of
X, UX,. It follows that

plo+r) = Y (ox)+ (7)) f(x)

= Y o@f@)+ Y. t@)f(x)
= (o) + () o

and

o(ro) = Z ro(z) =re(o).

zGXa

It follows that ¢: R®) — N is a homomorphism of R-modules.
Now

plix(r)) = ¢(02) = f(2)0:(x) = f(x)

for all € X. It follows that ¢ o tx = f. Moreover if 1: R*) — N is a
R-module homomorphism that satisfies ¥ o 1y = f, then ¢(d,) = f(x) for
all z € X. Let o be an element of RX). Then there exist distinct elements

k

x1,%, ..., o, of X and elements ry,ry, ..., 7 of R such that o = 70z,
j=1

(see Proposition 2.3). Moreover r; = o(x;) for j =1,2,..., k. But then

(o) = <Z m%) =D _1(8,) = X rif(w;) = wlo)

for all o: R, and therefore v = ¢. Thus ¢: RX) — N is the unique
R-module homomorphism satisfying ¢ o tx = f, as required. |

14



Corollary 2.5 Let R be a unital ring, and let M be a left R-module that
is freely generated by X, where X C M. Let RX) be the free left R-module
on the set X, and let 1x: X — RYX) be the natural embedding that maps
the set X into the free left R-module RY). Then there exists a uniquely-
determined R-module isomorphism v: RX) — M such that v(1x(x)) = for
allz € X.

Proof Let e: X — M be the inclusion function from X to M defined such
that e(z) = z for all z € X. It follows from Proposition 2.4 that there exists
a uniquely-determined R-module homomorphism v: RX) — M such that
e=vouix. Now z € v(RX) for all z € X, because x = e(x) = v(tx(x)).
Moreover the module M is generated by the subset X of M. It follows that
the homomorphism v: RX) — M is surjective.

Let 0 € kerv. Then there is some finite list xq,xs,..., 2, of distinct
elements of X that includes all elements of X at which the finitely-supported
function ¢ has a non-zero value. Then

Oy = v(o)=v (Z a(a:)&C) =) o(@(d) =Y o)

r€Xs ze€Xs zeXs

= Z o(x;)z;.

Jj=1

But the elements x1, o, ..., x; are linearly independent over R, because M
is freely generated by X. It follows that o(z;) = Og for j = 1,2,... K,
and therefore ¢ is the zero element of the R-module R™). Thus proves that
v: RX) — M is injective.

We have now shown that the homomorphism v: RX) — M is both sur-
jective and injective. It follows that this homomorphism is an isomorphism,
as required. Jj

Proposition 2.4 establishes the universal property satisfied by the free
module R¥) on a given set X: given any left R-module N, and given any
function f: X — N, there exists a unique homomorphism ¢: R¥) — N of
left R-modules that satisfies ¢ o tx = f, where 1x: X — R™) denotes the
natural embedding mapping the set X into the free module R,

Corollary 2.6 Let M be a free left module over a unital ring R, and let X
be a subset of M that freely generates M. Then, given any left R-module N,
and given any function f: X — N from X to N, there exists a unique left
R-module homomorphism p: M — N such that p|X = f.
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Proof Let RX) be the free module on the set X, and let ty: X — R be
the natural embedding from X to R®). The inclusion function i: X — M
then induces an isomorphism v: RX) — M with the property that voiyx = i.
Also the function f: X — N induces a homomorphism ¢: RX) — N with the
property that ¢ o tx = f (Proposition 2.4). Let ¢: M — N be defined such
that ¢ = ¢ or~t. Then 1) = pov, and therefore poi = povorx = Yory = f.
Now let ¢': M — N be a homomorphism that satisfies ¢’ 0oi = f. Then

Yovoixy =9 oi=f=1oux.

But ¢: RX) — N is the unique homomorphism from R™X) to N satisfying
Y oux = f (Proposition 2.4). It follows that ¢’ o v = 9, and therefore
¢ = ¢. Thus the homomorphism ¢: M — N is uniquely determined by the
requirement that | X = f. |}

Let R be a unital ring with zero element Oz and multiplicative identity
element 1z, let X be a set, let RX) be the free left module over R on the
set X, and let tx: X — R™) be the natural embedding mapping the set X
into the left R-module R™X). Let us denote ¢ty (z)by(z) for all z € X. Thus
if the elements of the free module R™) are represented as finitely-supported
functions from X to R, then the element (x) of R®) corresponding to an
element z of X is represented by the function d,: X — R that takes the
value 15 at  and takes the value Op throughout X \ {z}. Then R is freely
generated by ((z) : # € X). It follows that, given any element o of R™X),
there exist elements x1, o, ..., 2, of X and rq,79,..., 7, of R such that

g = 7“1(1}1) +T2(ZL‘2) + .- +rk(:vk)

Moreover if
ri(@1) + ra(@2) + -+ rze) = Opcx,

and if z1,z9,..., 25 are distinct, then r; = 0p for j = 1,2,...,k (see
Lemma 2.1).

2.4 The Free Module on a Finite Set

Let X be a finite set with n elements, let R be a unital ring with zero element
0x and multiplicative identity element 1g, let RX) be the free R-module over
the ring R on the set X, and let tx: X — R™) be the natural embedding
mapping the set X into the R-module R™). Let 1, 2, ..., z, be a listing of
the elements of X, where every element of X occurs exactly once in the list,
and let (r;) = tx(x;) for j = 1,2,...,n. Then R is freely generated by
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(z1), (22), ..., (x,). It follows that, given any element o of R™X) there exist
uniquely determined elements 7,73, ...,r, of R such that

o=ri(x1) +ro(ze) + - 4+ rp(zy).

(see Lemma 2.1). Tt follows that the free left R-module R*) on the set X is
isomorphic to the direct sum R™ of n copies of the coefficient ring R.

Example Let K be a field, let V be a finite-dimensional vector space over
K, and let by, b, ..., b, be abasis of V. Then V is a free left K-module that
is freely generated by the basis. Then, given any vector space W over K,
and given any function f: B — W, there is a unique linear transformation
©:V — W from V to B that extends f. Moreover

@ (i Ujbj> = Em:vjf(bj)

j=1 j=1
for all vy, vq,...,v,, € K. This linear transformation is a homomorphism of
left modules over the field K.
If the vector space W is finite-dimensional, and if ¢, ca, ..., ¢, is a basis

for W over K, then there exist elements 7;; of K for i = 1,2,...,n and
7 =1,2,...,m such that

f(b) =T 00+ Tajer + -+ Thjcn
for y =1,2,...,m. Then
j=1 i=1

where
m
wi =Y Tijv
j=1

for i = 1,2,...,n. The elements T;; of the coefficient field K are thus the
elements of the n X m matrix over the field K that represents the linear
transformation ¢ with respect to the basis by, bs, ..., b, of V and the basis
C1,Coy...,Cp of W.

Let R be an integral domain, and let M be a free left module over M that
is freely generated by some finite subset of M. Then it can be shown that
the number of elements in any free basis of M is finite and is independent of
the choice of free basis. The rank of the free R-module M is defined to be
the number of elements in a free basis of M.

17



Example Abelian groups are left modules over the ring Z of integers. Let
M be a free Abelian group (i.e., a free left Z-module) that is freely generated
by a subset of M with exactly n elements. Then M =2 Z". Let p be a positive
integer, and let pM = {pm : m € M}. Then pM is a submodule of M, and
the quotient module M /pM is isomorphic to (Z/pZ)". This quotient module
is a finite Abelian group with p" elements. Now the number of elements in
the quotient group M/pM does not depend in any way on a choice of a free
basis for M. It follows that every free basis of M has n elements. This shows
that any finitely-generated free Abelian group is isomorphic to Z" for exactly
one value of n. This non-negative integer n is the rank of the free Abelian
group M.

Lemma 2.7 Let R be an integral domain, let M be a free left R-module of
rank m, let N be a free left R-module of rank n, and let o: M — N be an
R-module homomorphism from M to N. Let by,bs, ..., b, be a free basis of

M, and let ci,ca,...,c, be a free basis of N. Then there exists an n X m
matrix

Ty Thg - Tim

Ty Tap -+ Top

Tn,l Tn72 e Tn,m

with coefficients T; ; in the coefficient ring R, so that

j=1 i=1
for all ri,r9,... 7, € R, where
n
p(b;) = Tijoi
i=1
forg=1,2,....m, and
S; — Zﬂ’jrj
j=1

fori=1,2,... n.

Proof The module N is generated by the free basis ¢y, co, . . ., ¢,. Therefore
there exists elements T;; of R for i = 1,2,...,n and j = 1,2,...,m such
that

p(b) =Y T
=1

18



m

> rielb) =YY T

i=1 j=1

ijj)

m
Jj=1

A

Then

The result follows.
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3 Simplicial Complexes

3.1 (Geometrical Independence

Definition Points vy, vy,...,v, in some Euclidean space R” are said to be
affinely independent (or geometrically independent) if the only solution of the
linear system

q
2 siv; = 0,
3=0
q
25 = 0
3=0
is the trivial solution sy = 51 = --- = 5, = 0.

Lemma 3.1 Let vo,vy,...,v, be points of Euclidean space R¥ of dimen-
sion k. Then the points vo,vi,...,Vv, are affinely independent if and only if
the displacement vectors vi—vg, Vo —Vy, ..., V,—Vq are linearly independent.

Proof Suppose that the points vo,vy,...,v, are affinely independent. Let

51,82, ...,5, be real numbers which satisfy the equation
q
Z sij(v; —vp) =0.
j=1

q q q
Then ) s;v; =0and > s; =0, where so = — ) s;, and therefore
~ - :

J j=0 j=1
s =81 =---=5,=0.
It follows that the displacement vectors vi — vo, vy — vg,..., vy — Vo are

linearly independent.
Conversely, suppose that these displacement vectors are linearly inde-

pendent. Let sg, s1,52,...,5, be real numbers which satisfy the equations
q q q

Y s;vi=0and > s; =0. Then sg = — > s;, and therefore

3=0 j=0 j=1

q q q
0= E SjV; = S0Vo + E S;V; = E Sj(Vj — VU)-
j=0 j=1

Jj=1

It follows from the linear independence of the displacement vectors v; — vy
for j =1,2,...,q that



q
But then sy = 0 also, because s = — > s;. It follows that the points
j=1
Vo, V1, ..., V, are affinely independent, as required. |}

It follows from Lemma 3.1 that any set of affinely independent points
in R* has at most k + 1 elements. Moreover if a set consists of affinely
independent points in R*, then so does every subset of that set.

3.2 Simplices
Definition A g-simplez in R* is defined to be a set of the form

q q
{thvjzogtjglforj:0,1,...,qand th:1},
=0 j=0

where v, vy, . .., v, are affinely independent points of R¥. The points v, vy, ..., v,
are referred to as the vertices of the simplex. The non-negative integer ¢ is
referred to as the dimension of the simplex.

Example A 0-simplex in a Euclidean space R* is a single point of that space.

Example A 1-simplex in a Euclidean space R of dimension at least one is
a line segment in that space. Indeed let A be a 1-simplex in R* with vertices
v and w. Then

A= {sv+itw:0<s<1, 0<t<lands+t=1}
{I—=t)v+tw:0<t <1},

and thus ) is a line segment in R* with endpoints v and w.

Example A 2-simplex in a Euclidean space R* of dimension at least two is
a triangle in that space. Indeed let 7 be a 2-simplex in R¥ with vertices u, v
and w. Then

T={ru+sv+tw:0<rst<landr+s+t=1}.

Let x € 7. Then there exist r,s,t € [0, 1] such that x = ru+ sv +tw and
r+s+t=1 If r=1 then x = u. Suppose that » < 1. Then

X:ru+(1—r)<(1—p)v+pw>
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t
where p = T Moreover 0 < r < 1 and 0 < p < 1. Moreover the above

formula determines a point of the 2-simplex 7 for each pair of real numbers
r and p satisfying 0 <r <1 and 0 < p < 1. Thus

T = {ru—l—(l—?")((l—p)V-HUW) 0<p,r< 1-}-

Now the point (1 — p)v + pw traverses the line segment vw from v to w
as p increases from 0 to 1. It follows that 7 is the set of points that lie on
line segments with one endpoint at u and the other at some point of the line
segment v w. This set of points is thus a triangle with vertices u, v and w.

Example A 3-simplex in a Euclidean space R* of dimension at least three
is a tetrahedron on that space. Indeed let x be a point of a 3-simplex ¢ in
R? with vertices a, b, ¢ and d. Then there exist non-negative real numbers
s, t, w and v such that

x=sa+tb+uc+uvd,

and s+t+u-+v = 1. These real numbers s, t, u and v all have values between
0 and 1, and moreover 0 <t <1 -5, 0<u<l—sand 0 <v<1-—s.
Suppose that x # a. Then 0 < s <1 and x =sa+ (1 — s)y, where

t U v
= b d.
1-s +1—sc+1—s

Moreover y is a point of the triangle b cd, because

y

0< <1l 0< <1l 0<

1—s 1—s 1—s

and
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It follows that the point x lies on a line segment with one endpoint at the
vertex a of the 3-simplex and the other at some point y of the triangle b cd.
Thus the 3-simplex o has the form of a tetrahedron (i.e., it has the form of
a pyramid on a triangular base b cd with apex a).

A simplex of dimension ¢ in R* determines a subset of R¥ that is a
translate of a g-dimensional vector subspace of R*. Indeed let the points
V0, V1, .., V, be the vertices of a g-dimensional simplex ¢ in R*. Then these
points are affinely independent. It follows from Lemma 3.1 that the displace-
ment vectors vi — v, Vs — Vo,...,V, — Vg are linearly independent. These
vectors therefore span a k-dimensional vector subspace V of R¥. Now, given
any point x of o, there exist real numbers ty,%;,...,%, such that 0 <¢; <1

q q
forj:071,...,q7thzlandxzztjvj‘ Then
Jj=0 j=0

q q q
X = (Z%’) Vot Y (v = Vo) = vo+ ) t;(v; — Vo).
§=0 j=1 j=1
It follows that
q q
a:{V0+th(vj—vo):Ogtjglforjzl,Q,...7qand thfl},
j=1 j=1

and therefore ¢ C vg + V. Moreover the g-dimensional vector subspace V'
of R* is the unique g-dimensional vector subspace of R¥ that contains the
displacement vectors between each pair of points belonging to the simplex o.

3.3 Barycentric Coordinates

Let o be a g-simplex in R* with vertices v, vy,...,v,. If x is a point of &
then there exist real numbers #y,t;,...,%, such that

q q
d tivi=x, Y t;=land0<t;<lforj=0,1,...,q.
=0

§=0
q q
Moreover ty,ti,...,t, are uniquely determined: if )  s;v; = > t;v; and
j=0 j=0

q q q q

Y.sj= > t;=1,then Y (t;—s;)v; =0and ) (t; —s;) = 0, and therefore
=0 i=0 =0 i=0

tj —s; =0for j =0,1,...,¢q, because the points vo,vy,..., v, are affinely

independent.
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Lemma 3.2 Let g be a non-negative integer, let o be a q-simpler in R™,
and let T be a g-simplex in R™, where m > q and n > q. Then o and T are
homeomorphic.

Proof Let vy, vy,...,v, be the vertices of o, and let wo, wy,..., w, be the
vertices of 7. The required homeomorphism h: o — 7 is given by

q q
h (Z tj"j) = thWj
j=0 j=0

q
for all ¢o,t1, ..., ¢, satisfying 0 <t; <1for j=0,1,...,qand > t; =1. |}
=0

A homeomorphism between two g-simplices defined as in the above proof
is referred to as a simplicial homeomorphism.

It follows from Lemma 3.2 that every ¢-simplex is homeomorphic to the
standard q-simplexr in R9T! whose vertices are the points

(1,0,0,...,0), (0,1,0,...,0),..., (0,0,0,...,1).

This standard g¢-simplex is the subset of R4*! consisting of those points
(to, t1,...,t;) of R¥ which satisfy 0 < ¢; < 1 for j = 0,1,...,q and

q
Yot =1
j=0

Example Consider the triangle o in R? with vertices at (1,2), (3,3) and
(4,5). Let to, t; and t5 be the barycentric coordinates of a point (z,y) of this
triangle. Then %, t1, t5 are non-negative real numbers, and ty + t; + ¢, = 1.
Moreover

(l’,y) = (1 - tl — tg)(l, 2) + tl(?), 3) + t2(4, 5),

and thus
$:1+2t1+3t2 and y:2+t1+3t2

It follows that

ti=x—y+1 and tgzé(x—l—%l):%y—%x—l,

and therefore
tozl—tl—tQZ%y—gaf—{—l.

In order to verify these formulae it suffices to note that (to,t1,t2) = (1,0,0)
when (z,y) = (1,2), (to, t1,t2) = (0,1,0) when (z,y) = (3,3) and (to, t1,t2) =
(0,0,1) when (z,y) = (4,5).
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Let the map h:o — R3 from o to R? be defined such that
hiz,y) = (%y—%x—i—l, x—y+1, %y—%x—l).

Then the components of this map h are the barycentric coordinate functions
on the triangle o. It follows that h maps this triangle homeomorphically onto
the triangle in R? with vertices (1,0,0), (0,1,0) and (0,0, 1).

3.4 Simplicial Complexes in Euclidean Spaces

Definition Let ¢ and 7 be simplices in R¥. We say that 7 is a face of o if
the set of vertices of 7 is a subset of the set of vertices of o. A face of o is
said to be a proper face if it is not equal to o itself. An r-dimensional face
of o is referred to as an r-face of o. A 1-dimensional face of ¢ is referred to
as an edge of o.

Note that any simplex is a face of itself. Also the vertices and edges of
any simplex are by definition faces of the simplex.

Definition The interior of a simplex ¢ is defined to be the set consisting of
all points of o that do not belong to any proper face of o.

Definition A finite collection K of simplices in R is said to be a simplicial
complez if the following two conditions are satisfied:—

e if 0 is a simplex belonging to K then every face of ¢ also belongs to K,

e if o, and o, are simplices belonging to K then either oy N oy = () or
else o1 N o9 is a common face of both oy and o5.

The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of all
the simplices of K is a compact subset | K| of R referred to as the polyhedron
of K. (The polyhedron is compact since it is both closed and bounded in
RE.)

Example Let K, consist of some n-simplex o together with all of its faces.
Then K, is a simplicial complex of dimension n, and |K,| = o.

Lemma 3.3 Let K be a simplicial complex, and let X be a topological space.

A function f:|K| — X is continuous on the polyhedron |K| of K if and only
iof the restriction of f to each simplex of K is continuous on that simplex.
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Proof If a topological space can be expressed as a finite union of closed
subsets, then a function is continuous on the whole space if and only if its
restriction to each of the closed subsets is continuous on that closed set. The
required result is a direct application of this general principle. |}

We shall denote by Vert K the set of vertices of a simplicial complex K
(i.e., the set consisting of all vertices of all simplices belonging to K). A
collection of vertices of K is said to span a simplex of K if these vertices are
the vertices of some simplex belonging to K.

Definition Let K be a simplicial complex in R*. A subcomplexr of K is a
collection L of simplices belonging to K with the following property:—

e if 0 is a simplex belonging to L then every face of o also belongs to L.

Note that every subcomplex of a simplicial complex K is itself a simplicial
complex.

3.5 Triangulations

Definition A triangulation (K, h) of a topological space X consists of a sim-
plicial complex K in some Euclidean space, together with a homeomorphism
h:|K| — X mapping the polyhedron |K| of K onto X.

The polyhedron of a simplicial complex is a compact Hausdorff space.
Thus if a topological space admits a triangulation then it must itself be a
compact Hausdorff space.

Lemma 3.4 Let X be a Hausdorff topological space, let K be a simplicial
complex, and let h: | K| — X be a bijection mapping |K| onto X . Suppose that
the restriction of h to each simplex of K is continuous on that simplex. Then
the map h:|K| — X is a homeomorphism, and thus (K, h) is a triangulation
of X.

Proof Each simplex of K is a closed subset of |K|, and the number of sim-
plices of K is finite. It follows from Lemma 3.3 that h: || — X is continuous.
Also the polyhedron |K| of K is a compact topological space. But every con-
tinuous bijection from a compact topological space to a Hausdorff space is a
homeomorphism. Thus (K, h) is a triangulation of X. |
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3.6 Simplicial Maps

Definition A simplicial map p: K — L between simplicial complexes K
and L is a function ¢: Vert K — Vert L from the vertex set of K to that of
L such that ¢(vy),¢(v1),...,p(v,) span a simplex belonging to L whenever
Vo, V1,...,V, span a simplex of K.

Note that a simplicial map ¢: K — L between simplicial complexes K
and L can be regarded as a function from K to L: this function sends a
simplex o of K with vertices vy, vy, ..., Vv, to the simplex (o) of L spanned
by the vertices ¢(vo), ¢(v1), ..., o(v,).

A simplicial map ¢: K — L also induces in a natural fashion a continuous
map @: |K| — |L| between the polyhedra of K and L, where

@ (Z th1> = thso(vj)

whenever 0 <t¢; <1 for j=0,1,...,q, itj =1, and vo, vy,..., Vv, span a
=0

simplex of K. The continuity of this mapjfollows immediately from a straight-
forward application of Lemma 3.3. Note that the interior of a simplex o of
K is mapped into the interior of the simplex ¢(o) of L.

There are thus three equivalent ways of describing a simplicial map: as
a function between the vertex sets of two simplicial complexes, as a function
from one simplicial complex to another, and as a continuous map between
the polyhedra of two simplicial complexes. In what follows, we shall describe
a simplicial map using the representation that is most appropriate in the
given context.
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4 The Chain Groups of a Simplicial Complex

4.1 Basic Properties of Permutations of a Finite Set

A permutation of a set T is a bijection mapping T onto itself. The set of
all permutations of some set T is a group with respect to the operation of
composition of permutations. A transposition is a permutation of a set T
which interchanges two elements of 7', leaving the remaining elements of the
set fixed. If T' is finite, and has more than one element, then any permu-
tation of T' can be expressed as a product of transpositions. In particular
any permutation of the set {0,1,...,¢} can be expressed as a product of
transpositions (j — 1, ) that interchange j — 1 and j for some j.

Associated to any permutation 7 of a finite set T" is a number €., known as
the parity or signature of the permutation, which can take on the values +1.
If m can be expressed as the product of an even number of transpositions,
then €, = +1; if © can be expressed as the product of an odd number of
transpositions then e, = —1. The function m + €, is a homomorphism
from the group of permutations of a finite set T to the multiplicative group
{+1, -1} (i-e., €xp = €r€, for all permutations 7 and p of the set T). Note in
particular that the parity of any transposition is —1.

4.2 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer g, let W, i de-
note the set of all ordered (¢+1)-tuples of vertices of K that span simplices of
K. An element of W, k is thus an ordered (¢+1)-tuple (vo, vy, ..., Vv,), where
Vo, V1,..., Vs span a simplex of K. The vertices in the list v, vy,...,v, are
not required to be distinct.

Let R be a unital ring. We refer to this ring in the following discussion
as the coefficient ring. We denote by A,(K; R) the free left R-module on
the set W, i, and we denote by ¢,: W, x — A, (K; R) the natural embedding
that maps the set W, i bijectively onto a free basis of A (K; R). Then, given
any element 6 of A (K; R), there exist uniquely-determined elements r,, of
the coefficient ring R for all w € W, i such that

0= Z Tw(;wa

wqu,K

where §,, = ¢4(w) for all w € W, k.
We now give a formal definition of the gth chain group of a simplicial
complex K with coefficients in a unital ring R.
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Definition Let K be a simplicial complex, let ¢ be a non-negative integer,
and let R be a unital ring. Let W, x denote the set of ordered (g + 1)-tuples
of vertices of K that span simplices of K, let A,(K; R) denote the free left
R-module on the set W, k., let t,: Wy x — A (K;R) denote the natural
embedding that maps the set W, x bijectively onto the corresponding free
basis of A (K R), and let 6, = ¢,(w) for all w € W, k. Let P, be the
vertices v, vy, ..., Vv, are not all distinct, let @), x be the subset of A (K R)
consisting of elements of the form
5(v.,r(o),vﬁ(1) ..... V) €7T6(V0,V1 ..... vq)

where vg,vy,...,v, are vertices of K that span some simplex of K and 7
is a permutation of {0,1,...,q} with parity €,, and let AS(K; R) denote
the submodule of A,(K; R) generated by P, x U Qg k. The gth chain group
Cy(K; R) with coefficients in the unital ring R is then defined to be the
quotient module A, (K; R)/A)K; R).

We now discuss in more detail the essential features of this definition of
the chain groups of a simplicial complex. We have defined the chain group
Cy(K; R) to be the quotient module A, (K;R)/AYK;R). It follows that
cach element of Cy(K; R) can be represented in the form A)(K; R) 4 6 for
some 6§ € Ay (K;R). Moreover elements 6 and ¢ satisfy A)(K;R) + 60 =
AS(K; R)+ 60 if and only if § — 0’ € AS(K; R). Now the algebraic operations
on A (K; R)/AY(K; R) are defined so that

(AYK;R)+60) 4+ (ANK;R)+60) = A)K;R) + 60+ ¢

and

r(ANK;R) 4 6) = A)K; R) + 10

for all 6,60 € AYK;R) and r € R. It follows that there is a well-defined
quotient homomorphism p,: A, (K; R) — Cy(K; R), where

pal8) = AY(K:R) +6

for all @ € A,(K; R). This quotient homomorphism is surjective, and ker p, =
A)(K;R).

We now establish some notation for representing elements of the gth chain
group.

Given vertices vo, vi, ..., v, of K that span some simplex of K, we denote
by

(Vo, V1, -5 Vg),
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the element of C,(K; R) defined so that

<V07 Vi,... 7V!1> = Pq (6(V07V17---7Vq))

where p,;: Ay(K;R) — C,(K;R) is the quotient homomorphism discussed
above.

A list consisting of (¢ + 1) vertices of K that span some simplex of K
determines an element w of the set W, x, which in turn determines a corre-
sponding generator d,, of A,(K; R). We denote by (w) the image of §,, under
the quotient homomorphism p,: A, (K; R) — C,(K; R), so that (w) = p,(0,)
for all w € Wy i. If

w = (Vo,V1,...,Vg),
where vy, vy, ..., Vv, are vertices of K that span some simplex of K, then
(w) = (v, Vi,..., V).

Let ¢ be an element of C,(K; R). Then ¢ = p,(6) for some element 6 of
A,(K; R). This element § may be represented (uniquely) as a linear combi-
nation of elements of the free basis (0,, : w € W, x). Therefore there exist
elements r,, of the coefficient ring R for all w € W, x such that

0= > rubu.

wEWq,K

But then

c=p0) = ) rulw)

wEWq,K

Thus any element of C,(K; R) can be represented as a linear combination of
generator elements (vg, vy, ..., V,), where each of these generator elements
corresponds to some ordered list consisting of g + 1 vertices of K that span
some simplex of K. However these generator elements are not linearly inde-
pendent. The following lemma establishes the basic identities used in per-
forming calculations with linear combinations of these generator elements.

Lemma 4.1 Let K be a simplicial complez, let R be a unital ring, let vg, vy, . ..

be vertices of K that span a simplex of K. Then the following identities are
satisfied within the R-module Cy(K; R):—

(1) (vo,vi,...,vy) =0if vo,vi,..., v, are not all distinct;
(i1) (Vr(0), Va(1)s - - - Va(q)) = €x(V0, V1, ..., Vq) for any permutation 7 of the
set {0,1,...,q}.
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Proof If the vertices vo,vi,...,v, are not all distinct then dvyv,,...v,) be-
longs to the kernel A°(K’; R) of the quotient homomorphism p,: A, (K; R) —
A,(K; R), and therefore

<V0a Vi,... 7Vq> = pq(é(voﬂl,m,vq)) =0.

This proves (i).

Now suppose that the vertices v, vy,..., v, of K span a simplex of K but
are not necessarily distinct. Let 7 be a permutation of the set {0,1,...,q}.
Then

(Vr(0), Va(1)s - - - » Va(q)) — €x{(V0, V1, .., Vyg)

= pq(5(vﬁ(0),v,r(l),.“,vﬂ(q))) - 671'pq<5(v0,v1,...,vq)))

Pq (5(vﬁ(0),vﬂ(1),..A,v,r(q)) - 67r(5(v0,v1,...,vq))>
= 0’

because the element

5(%(0) Va(L)s V() EW(S(Vo,Vu---,Vq)

of A (K;R) is one of the generators of the kernel AS(K ; R) of the quo-
tient homomorphism p,: A (K; R) — C,(K; R) specified in the definition of
AY(K; R). This proves (ii). [

4.3 Homomorphisms defined on Chain Groups

Lemma 4.2 Let K be a simplicial complex, let R be a unital ring, and let
N be a left module over R with zero element Oy. Let W, i denote the set
consisting of all (q+ 1)-tuples of vertices of K that span simplices of K, and
let f: Wy x — N be a function from W, ik to N. Suppose that this function f
has the following properties:—

o f(vo,Vvi,...,vy) =0y unless vo,vy,...,v, are all distinct;

o f(vo,V1,...,v,) changes sign on interchanging any two adjacent ver-
tices vj_1 and v;.

Then there ezists a unique R-module homomorphism p: Cy(K; R) — N char-
acterized by the property that

©((vo, V1,...,Vy)) = f(Vo, V1,..., V)

whenever vy, vi,..., Vv, span a simplex of K.
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Proof Let t;: W, x — A,(K; R) denote the natural embedding of the set W,
into the free left R-module A (K; R), and let d,, = ¢4(w) for all w € W, k.
Then (0, : w € W, ) is a free basis of Ay(K). The function f: W, x — N
then induces a homomorphism ¢: A,(K; R) — N for which f = ¢ o (see
Proposition 2.4). Then () = f(w) for all w € W, k.

Let p,: A (K; R) — C,(K; R) denote the quotient homomorphism from
A¢(K; R) to Co(K; R) whose kernel is the submodule AY(K; R) of A (K; R)
generated by the set P, x U Q, k, where P, k is the subset of A (K; R) con-
sisting of those basis elements d(v, v, .....v,) for which the vertices vy, vi,...,v,
are not all distinct, and @), i is the subset of A,(K; R) consisting of elements
of the form

where vo,vy,...,v, are vertices of K that span some simplex of K and
7 is a permutation of {0,1,...,¢} with parity €,. The requirement that
f(vo,v1,...,v,) = Oy unless vo, vy,...,v, are all distinct ensures that

¢(5(v0,v1 ..... vq)) = 0N

unless vo,vi,..., v, are all distinct. It follows that P, x C kere. Also the
requirement that f(vo,vy,...,v,) changes sign on interchanging any two
adjacent vertices v;_; and v; ensures that

d}((s(v,r(o),vﬁ(l) ..... vﬁ(q>)) = f(vﬂ’(O)a Va), .- 7V7T(q)> - wa(Vo, Vi,... 7Vq)
- Ewl/}((;(vo,vl ..... vq))

for all (vo,vy,...,v,) € W,k and for all permutations = of {0,1,...,q}. It
follows from that

5(%(0):%(1) ,,,,, V() eﬂ(s(vowl ~~~~~ vg) € ker 1)

for all (vo, vi,...,v,) € W, k and for all permutations 7 of {0,1, ..., ¢}, and
thus Q4 x C ker.

We have now shown that P, x C % and Q,x C 1. Now the kernel
AJ)(K; R) of the quotient homomorphism pg: Ay(K; R) — Co(K; R) is gen-
erated by P, x U Qq k. It follows that A(K; R) C ker1).

Now Cy(K;R) = Ay(K; R)/AYK; R). Therefore the R-module homo-
morphism ¢: A (K; R) — N induces a well-defined R-module homomor-
phism ¢: C,(K; R) — N characterized by the property that ¢(p,(6)) = ¥(0)
for all 8 € C,(K; R). Then

‘P(<V07 Vi, .- qu>) = Sp(pq(cs(w),w ..... Vq))) = w(é(VO,w ,,,,, Vq))
= f(vo,Vi,...,Vy)

whenever v, vy, ..., v, span a simplex of K, as required. |
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4.4 Free Bases for Chain Groups

The chain groups C,(K; R) have been defined as quotients of free left R-
modules. We shall show that they are themselves free left R-modules, and
that each chain group C,(K; R) has a free basis whose elements are in one-to-
one correspondence with the g-simplices of the simplicial complex K. How-
ever, in order to construct such a free basis, it is necessary to choose an
ordering of the vertices of each g-simplex of K.

Lemma 4.3 Let K be a simplicial complex, let q¢ be a non-negative integer,
let R be a unital ring, let W, i denote the set consisting of all (q+1)-tuples of
vertices of K that span simplices of K, let A,(K; R) be the free left R-module
on the set Wy i, and let 1;: Wy x — Ay(K; R) denote the natural embedding
of Wy i into Ay(K; R). For each g-simplex o of K let v§,v{,... ,ve be a
listing of the vertices of o in some chosen order. Then there is a well-defined

homomorphism
A Cy(KG R) — AY(K; R)

characterized by the property that

/\q((vg,v‘l’,...,vg>) =14V, V], ...,V

for all q-simplices o of K.

Proof Let W5 denote the subset of W, i consisting of those (¢4 1)-tuples
(ug,uy, ..., u,) of vertices of K for which ug, uy, ..., u, are distinct and span
some simplex of K, and let W(ﬁ; denote the complement of Wg}s{t in W, k.
An element (ug, uy, ..., u,) of W, x belongs of W% if and only if some vertex
of K occurs more than once in the list ug, uy, ..., u,.

Let (ug,uy,...,u,) € W;if(t. Then the vertices ug, uy, . . ., u, span some g-
simplex o of K. All vertices of o occur exactly once in the list v§,v{,..., vy
that is determined by the chosen ordering of the vertices of o. It follows
that there exists some permutation 7 of the set {0,1,...,¢q} such that u; =
VI for 7 =0,1,...,q. The simplex ¢ and the permutation 7 are uniquely
determined by the (¢ + 1)-tuple (ug,uy,...,u,). It follows that there is a
well-defined function f: W, x — A,(K; R) characterized by the following two

properties:

e f(up,uy,...,u,) is the zero element of A, (K; R) for all (up,uy,...,u,) €
Wk
° f(vf(o)7 Vi) ,Vg(q)) = €,4(V§, VY], ..., vg) for all g-simplices o of K

and for all permutations 7 of the set {0,1,...,q}.
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Now f(ug,uy,...,u,) is the zero element of A,(K; R) unless the vertices
up, uy,...,u, are distinct. Suppose that ug,uy,...,u, are distinct, and
therefore span a ¢-simplex ¢ of K. Then there exists some permutaion 7
of the set {0,1,...,¢} such that u; = vy for j =10,1,...,q. Let 7 be a
permutation of {0,1,...,¢}. Then

f(Ur0), Un(r)s - - -5 Un(g)) = f(Vg(ﬂ(o))a Vi) - - 7VZ(7r(q)))
= Eronlg(V(, VY, ... ,vg)
= exbrlg(VQ, VT, ..., V])
67'l’f(uO; Uy, ... 7uq)

It now follows from Lemma 4.2 that the function f: W, x — A, (K; R) in-
duces a well-defined homomorphism \,: C,(K; R) — A, (K; R) with the prop-
erty that

A ((ug, g, ... uy)) = f(ug,uy, ..., u,)

for all (up,uy,...,uy) € W, k. Then
A((vG, v, va)) = f(vg, v, ve) = 1g(vg, v, .. ve)
for all g-simplices o of K, as required. |}

Proposition 4.4 Let K be a simplicial complex, let ¢ be a non-negative
integer, let R be a unital ring, and let Cy(K; R) be the qth chain group of
K with coefficients in R. For each q-simplex o of K let vi,v{,..., vy be a

listing of the vertices of o in some chosen order, and let v, = (v§,v{,...,v7)
for each q-simplex o of K. Then Cy(K; R) is freely generated by the set

{510 € K and dimo = ¢},

and thus the qth chain group C,(K;R) of K with coeffficients in the unital
ring R is a free left R-module. on the g-simplices of K. Thus, given any
element ¢ of Cy(K; R), there ezist uniquely-determined elements r, of the
coefficient ring R such that

c= Z ToYe-

ceK
dim o=¢g
Proof Let Simp,(K') denote the set of g-simplices of K, let W, x denote the
set consisting of all (¢g+1)-tuples of vertices of K that span simplices of K, let
A,(K; R) be the free left R-module on the set W, k., let ¢,: W, k = A (K; R)
denote the natural embedding of W, x into A,(K; R), and let 6, = ¢4(w) for
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all w € W, k. It then follows from Lemma 4.3 that there is a well-defined
homomorphism

A Cy(KG R) = Ay(KG R)
characterized by the property that

Ag({ve, VT ve)) = (V3 VT, Ve ) = Ovgve . ve)

for all g-simplices o of K. Let I'j(K; R) be the submodule of A, (K;R)
generated by

The elements of this generating set are independent, because (0, : w € W, k)
is a free basis of A,(K; R). It follows that the submodule I';(K; R) is a free
left R-module, and that

{5(vg,vg ..... ve) 10 € Simpq K}

is a free basis of I',(K; R).
Now
A ((uo,uy, ..., uy)) € T'y(K; R)

for all up,uy,...,u, € W, g, and therefore A\,(C,(K; R)) C I';(K; R). But
,,,,, ve) € Ag(Cy (K5 R)) for all g-simplices o of K, and therefore I'y (K R) C
A (Cy(K; R)). We conclude therefore that A\ (Cy(K; R)) = (K R).

Let p,;: A (K; R) — C,(K; R) denote the quotient homomorphism from
A,(K; R) — Cy(K; R). Then

<110, ug, ... 7u(J> = pr<5(U0,u1 ----- Uq))
for all (up,uy,...,u,) € W, k. Now

Pa(A(75)) = pa(Aq({ve, VT, ... 7V3>)) = pq(a(vg,V‘f ,,,,, vg)) = (vg, V], .. 7V3> =Y
for all o € Simp, K. The properties of C,(K; R) stated in Lemma 4.1 ensure
that every element C,(K; R) can be expressed as a linear combination of
elements of the set {7, : ¢ € Simp, K'}. It follows that p,(\,(c)) = c for
all c € Cy(K; R). Therefore the homomorphism A,: Cy(K; R) — A (K; R) is
injective. Now we have shown that \,(C,(K; R)) = I',(K; R). An injective
homorphism maps its domain isomorphically into its image. We conclude
therefore that the homomorphism A, maps the gth chain group C,(K;R)
isomorphically onto the free left R-module I',(K; R). Therefore C,(K; R)
must itself be a free left R-module. Moreover (\;(7,) : 0 € Simp, K) is a
free basis of I'(K; R). It follows that (7, : 0 € Simp, K) is a free basis of
Cy(K; R), as required. |}
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4.5 Homomorphisms of Chain Groups induced by Sim-
plicial Maps

Proposition 4.5 Let K and L be simplical complexes, and let ¢: K — L
be a simplicial map, and let R be a unital ring. Then the simplicial map ¢
induces well-defined homomorphisms ¢,: Cy: Cy(K; R) — Cy(L; R) of chain
groups, where

@q((vo’ Vi, ... 7Vq>) = <90(V0)> gp(Vl), R SO(Vq)>

whenever vy, vi,..., Vv, span a simplex of K.

Proof Let W, x be the set consisting of all (¢ + 1)-tuples of vertices of K
that span simplices of K. If vo,vy,...,v, are vertices of K that span a
simplex of K then their images ¢(vo), ¢(v1),...,¢(v,) under the simplicial
map ¢ are vertices of L that span a simplex of L. It follows that there is a

well-defined function f: W, — Cy(L; R), where

f(v07vl> s vvq) = <90(V0)7 Qp(vl)a S @(Vq»

for all (vo, vy,...,v,) € W, k. Moreover

F(Va(©)s Va(1)s - - - Va(q) = €xf(Vo, V1,...,Vq)

for all (vo, vy, ...,v,) € W, k and for all permutations 7 of the set {0,1,2,...,¢}.
(Here €, denotes the parity of the permutation 7, defined such that e, = +1
when 7 is an even permutation, and ¢, = —1 when 7 is an odd per-
mutation.) Also if the list vo,vy,..., v, contains repeated vertices then
the list p(vo), ©(v1),...,p(v,) also contains repeated vertices, and there-
fore f(vo,v1,...,v,) is the zero element of Cy(L; R). It now follows from
Lemma 4.2 that there is a well-defined homomorphism ¢,: C,(K; R) — C,(L; R)
that satisfies

¢Q<V07V17 s ,Vq> = f(v07V17 s 7VQ) = <§0(V0)7§0(V1>7 s 790<V(I)>

(Vo, Vi, ...,V,) € W, g, as required. |}
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5 The Homology Groups of a Simplicial Com-
plex

5.1 Orientations on Simplices

Let V be a finite-dimensional real vector space. Then each ordered basis
of V' determines one of two possible orientations on this vector space. Let
e, ey, ...,e, and £, f,, ... f, be two ordered bases of a vector space V' of
dimension g. Then there exists a non-singular ¢ X ¢ matrix (Afc) such that
f, = qulAiej for k=1,2,...,q. If this matrix (Afc) has positive determinant
then ]the two bases determine the same orientation on the vector space V.
On the other hand, if the matrix (A7) has negative determinant then the two
bases determine the opposite orientation on the vector space V. In particular
if any two elements of an ordered basis ey, ey, ..., e, of the vector space V
are interchanged with one another, then this reverses the orientation of the
vector space.

Let 7 be a permutation of the set {1,..., ¢}, and let 1, es, ..., e, be an or-
dered basis of the vector space V', determining a particular orientation of this
vector space. If the permutation 7 is even then the basis e(1), €x(2), ..., €x(g)
of V' obtained on reordering the elements of the given basis by means of the
permutation 7w determines the same orientation on the vector space V' as the
original basis e, ey,...,e,. On the other hand, if the permutation 7 is odd
then the basis ex(1), €x(2), - . ., €x(q) determines the opposite orientation on V'
to that determined by the original basis.

Let o be a g-dimensional simplex in some Euclidean space R¥, where
k > ¢, and let V be the unique g-dimensional vector subspace of R¥ that
contains the displacement vectors between any two points of o.

Let vo,Vvy,..., v, an ordered list of the vertices of 0. Then these vertices
are affinely independent and determine an ordered basis ey, e, ..., e, of the
vector space V', where e; = v;—vq for j = 1,2,...,¢. This ordered basis then
determines an orientation on the vector space V. We see therefore that each
ordering of the vertices of the ¢-simplex o determines a corresponding orien-
tation on the g-dimensional vector space V' determined by the g-simplex o.

Proposition 5.1 Let o be a g-dimensional simplex in some FEuclidean space
R¥, where k > q, and let V be the unique g-dimensional vector subspace of
R* that contains the displacement vectors between any two points of o (so
that V' is parallel to the tangent space to o at each point in the interior of o).
Gen any ordered list vy, vi, ..., v, of the vertices of o, let the corresponding
orientation on the vector space V' be the orientation determined by the ordered
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basis e1,ey,...,e, of V, where e; = v; —vq for j = 1,2,...,q. Then any
even permutation of the order of the vertices in the ordered list vy, vy, ...,V
preserves the orientation on the vector space V', whereas any odd permutation
of the order of these vertices reverses the orientation on V.

Proof Let vy, vy,...,v, be the ordered list of vertices determining the ori-
entation on the vector space V. If the vertex v; is transposed with v, where
J > 0 and k£ > 0, then the corresponding basis elements e; and e;, in the
ordered basis e, eg,...,e, of V' are also transposed, and this reverses the
orientation on V' determined by that ordered basis.

If the vertices vo and vy are interchanged, then this has the effect of

replacing the ordered basis ey, ey, ..., e, corresponding to the ordered list
Vo, V1, ...,V by the ordered basis fi, 5, ..., f,, where
f1 = Vg — V] = —€;
and
fj:vj—vlzej—el fOI'j:2,3,...,q.

The non-singular ¢ X ¢ matrix that implements this change of basis is the
upper triangular matrix A, where

1 -1 -1 -1 1
0 1 0 0 0
0 0 1 0 0
A=1909 0 o0 1 0
0 0 0 0 - 1

The determinant of an upper triangular matrix is the product of the matrix
elements along the leading diagonal, and therefore det A = —1. It follows
that transposing the vertices vy and v; occurring in the first two positions
in the ordered list v, vy, ..., v, of vertices of o reverses the orientation on
the vector space V' determined by the ordering of the vertices of o.

It now follows from standard properties of permutations of finite sets
that interchanging any two of the vertices in any ordered list v, vy,..., v, of
the vertices of the ¢-simplex o reverses the orientation on the ¢-dimensional
real vector space V that is determined by the ordering of these vertices.
Indeed if the positions in the list are numbered from 0 to g then the vertex
in position 0 can be transposed with the vertex in position j, where 57 >
1, by first transposing the vertices in positions 1 and j, then transposing
the vertices in positions 0 and 1, and then again transposing the vertices
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in positions 1 and j. This involves three transpositions of vertices in the
list, and each of these transpositions reverses the orientation on the vector
space V. It follows that any even permutation of the ordering of the vertices
in the ordered list vy, vy,..., v, preserves the corresponding orientation on
the vector space V, whereas any odd permutation of the ordering of these
vertices reverses the orientation on this vector space, as required. |

We can regard the orientation on the vector space V' as an orientation of
the simplex o itself. Indeed this orientation may be viewed as an orientation
on the ¢-dimensional tangent space to the simplex ¢ at any interior point
of . In this fashion any ordering of the vertices of a simplex o determines
a corresponding orientation on that simplex. If the ordering of the vertices
is permuted by means of an even permutation then the orientation of the
simplex is preserved. But if the ordering of the vertices is permuted by
means of an odd permutation then the orientation of the simplex is reversed.

Example Let u, v and w be the vertices of a triangle in a Fuclidean space
R¥ of dimension at least two. Then this triangle determines a 2-dimensional
vector subspace V of R¥. This 2-dimensional subspace V is spanned by the
displacement vectors v — u and w — u, and is parallel to the tangent plane
to the triangle at any interior point of the triangle.

Now it follows from Proposition 5.1 that the orientation of the triangle
should be preserved under cyclic permutations of its vertices. Now the order-
ing u, v, w of these vertices determines an ordered basis by, by of the vector
space V', where by = v — u and by = w — u. The ordering v, w,u of the
vertices of the triangle corresponds to the orientation on the vector space V'
determined by the ordered basis w — v, u — v. Now w — v = by, — by and
u — v = —b;. Moreover the 2 x 2 matrix implementing the change of basis
from the ordered basis by, by to the ordered basis by — by, —b; is the matrix

-1 -1
10 )
and this matrix has determinant 1. Similarly the ordering w,u,v of the
vertices of the triangle determines a corresponding ordered basis u—w, v—w
of the vector space V. Moreover u—w = —by and v—w = b; — by, and the

2 x 2 matrix implementing the change of basis from the ordered basis by, by
to the ordered basis —bs, b; — by is the 2 X 2 matrix

(5 4)
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and this matrix also has determinant 1. It follows that an even permutation of
the ordering of the vertices of the triangle (resulting from a cyclic permutation
of those vertices) preserves the orientation on the vector space V' determined
by the ordering of the vertices.

On the other hand the 2 x2 matrices that implement the change of ordered
basis of the vector space V resulting from odd permutations of the order of
the vertices u, v and w are the matrices

(Vo) (0 3) e (A00)

and these three matrices all have determinant —1. It follows that any odd
permutation of the vertices (resulting from a transposition of two of those
vertices that fixes the remaining vertex) results in a reversal of the orientation
on the vector space V.

Thus even permutations of the ordering of the vertices of the triangle
preserve the orientation of the triangle determined by the ordering of its
vertices, whereas odd permutations of the ordering reverse the orientation
determined by the ordering.

Let K be a simplicial complex, and let o be a ¢g-simplex of K with vertices
Vo, V1,...,Ve. Then o, with the chosen ordering of its vertices, determines
a corresponding element (vo,vy,...,v,) of the chain group C,(K;Z). This
element is in fact determined by the orientation on the simplex o. If the
vertices vo, vy, ..., v, of the simplex are reordered by means of an even per-
mutation of the vertices in the list then both the orientation on the simplex
determined by the ordering of its vertices remains unchanged and the corre-
sponding element of C,(K;Z) determined by the ordered list of the vertices
of the simplex also remains unchanged. On the other hand, if the vertices
are reordered through an odd permutation of the vertices in the list then
both the orientation of the simplex determined by the ordering of its ver-
tices is reversed, and the corresponding element (vg, vy, ..., v,) of C,(K;Z)
determined by the ordered list of those vertices is replaced by the element

—<V0,V17 c. ,Vq>.

5.2 Boundary Homomorphisms

Let K be a simplicial complex, and let R be an integral domain. We introduce
below boundary homomorphisms 0,: Cy(K; R) — C,—1(K; R) between the
chain groups of K with coefficients in R.

In order to define and investigate the properties of this boundary homo-
morphism, we introduce a notation that is frequently used to indicate that
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some particular vertex is to be omitted from a ordered list of vertices of a
simplex. Let (vo,vi,...,v,) be the element of the chain group C,(K; R)

determined by some ordered list vo,vy,..., v, of vertices of K that span a
simplex of K. We denote by (vq,...,V;,...,V,) the element

<V0, ey Vi1, Vi, ... 7Vq>
of Cy1(K; R) obtained on omitting the vertex v; from the list vo, vy,...,v,

of vertices of K. Thus

<\A70,V1,V2,V3,...,Vq> = <V1,V2,V3,...,Vq>,

<V0,\A/1,V2,V3,...,Vq> = <V0,V2,V3,...,Vq>,

<V0,V1,\A72,V3,...,Vq> - <V0,V1,V3,...,Vq>,
<VO>V17V27~--7Vq—17‘A’q> = (VO,V1,V2>--~qu—1>'

We may employ analogous notation when omitting two or more vertices
from an ordered list of vertices. Thus if ;7 and k are integers between 0 and ¢,
where j < k, we denote by

<V0,...,\A/'j,...,\A’k,...Vq>

the element (vo,...,Vj_1,Vji1,.., Vi_1, Vit1, - .., Vy) of Cyo(K; R) deter-
mined by the ordered list of vertices that results on omitting both vertices
v; and vy from the list v, vy,..., v,.

If the vertices vg,vy,...,v, are distinct then they are the vertices of
a g-simplex o of K, and this simplex is represented by the corresponding
generators (vy, vy, ..., V,) of the chain group C,(K;Z). Moreover there are
exactly two such generators in C,(K; Z) corresponding to the simplex o, and
these two generators represent the two possible orientations on the simplex.
The elements £(vy,...,Vj,...,v,) of the chain group C,_1(K;Z) obtained
by omitting the vertex v; from the list of vertices then represent the unique
(¢ —1)-dimensional face of the simplex o that does not contain the vertex v;.

Proposition 5.2 Let K be a simplicial complex, and let R be a unital ring.
Then there exist well-defined homomorphisms

0y Cy(K; R) — Cy1 (K R)

for all integers q characterized by the requirement that

q

0y(Vo, vis- V) = D (1) (Vo, .o ¥y, V).

J=0
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whenever the vertices vo,vi,...,v, of K span a simplex of K.

Proof If ¢ <0, or if ¢ > dim K, then at least one of the R-modules C,(K; R)
and C,_1(K; R) is the zero module: in those case we define 0,: C,(K; R) —
Cy—1(K; R) to be the zero homomorphism.

Suppose then that 0 < ¢ < dim K. We prove the existence of the required
homomorphism 9, by means of Lemma 4.2.

Given vertices vg, vy, ..., V, spanning a simplex of K, let

q

VoV vg) = (=1 (Vo ¥y, vy).

=0
Let ¢ be an integer between 1 and ¢. If 0 < j <7 — 1 then
<V0,...,\Afj,...,Vz‘_l,Vi7...,Vq>

changes sign (i.e., it is replaced by the negative of itself) when the vertices
v;_1 and v; are transposed. Similarly if i < 7 < g then

<V0,...,V1‘,1,VZ',...,Vj,...,Vq>
changes sign when the vertices v,_; and v; are transposed. Also
(Vo, ooy Vi1, .., Vg) and  (Vo, ..., Vi, ..., V)

are transposed when the vertices v;_; and v; are transposed. It follows that
the (¢ — 1)-chain f(vo,vy,...,v,) changes sign when the vertices v,_; and
v; are transposed for some integer i satisfying 1 < i < q.

Next suppose that v; = vy, for some ¢ and £ satisfying ¢ < k. Then

F(vo,vi, .o, vy) = (=1 v,y Vi V) + (=D (vo, o V),

since the remaining terms in the expression defining f(vo, v1,...,Vv,) contain
both v; and v and are therefore equal to the zero element of C,_1(K;R)
when v; = v;. Also

(Voy ooy Vi ooy V) = (=D vy, ¥y, V).

Indeed this identity is immediate when & = ¢+ 1. Suppose that &k > ¢+1. Let
w = v; = v;. Then the vertex w occurs in the ordered list vo,..., Vg, ..., V,
before v;; but is omitted after vi_;, whereas the vertex w occurs in the
ordered list vo, ..., v;,..., v, after v;_; but is omitted before v;;;. Thus, in
order to convert the first ordered list to the second by successively transposing
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vertices, it suffices to transpose the vertex w occurring before v, in the first
list successively with the vertices v;i1,Vii9,...,vi_1, shuffling it along the
list until it occurs after viy_;. This process requires k — ¢ — 1 successive
transpositions and is thus results in a permutation of the vertices in the list
which is of parity (—1)%=*~1. It follows that

(=" (Vo oo Vi V) = (1) vy o Vi V)
and thus
f(vo,vi,...,vy) =0
whenever v; = v, where 0 < ¢ < k£ < ¢q. We conclude therefore that
f(vo,vi1,...,v,) = 0 unless the vertices vy, vy, ..., v, are all distinct.
It now follows directly from Lemma 4.2 that there is a well-defined homo-
morphism 9,: Cy(K; R) — C,_1(K; R), characterized by the property that

q

0y (Vo, Vi, vg)) = > (=1 (vo, ..., V5, vy)

=0
whenever vo, vy, ..., v, span a simplex of K. |}

Let K be a simplicial complex, and let R be an integral domain. The
R-module homomorphism 0,: Cy,(K;R) — C,_1(K; R) between the chain

groups of K in dimensions ¢ and ¢ — 1 is referred to as the boundary homo-
morphism between these chain groups.

Example Let K be a simplicial complex consisting of a triangle with vertices
a, b and c, together with all the vertices and edges of this triangle, and let
R be an integral domain. Then

Cy(K;R) ={r(a,b,c) : r € R}.
Now
82<7” (a,b,c>> =rdy((a,b,c)),

because 0y: C3(K; R) — C2(K; R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
0>2({(a, b, c)). Moreover

82(<avbvc>) = <b,C> - <a7 C> + <av b>,

and

S
0
o
I
a
|
®
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Therefore
) (32(<a,b,c>)) = (c) — (b) — (c) + (a) + (b) — (a) = 0.
It follows that 0y(02(z)) = 0 for all z € Cy(K; R).

Example Let K be a simplicial complex consisting of a tetrahedron with
vertices a, b, ¢ and d, together with all the vertices, edges and triangular
faces of this tetrahedron, and let R be an integral domain. Then

C3(K; R) ={r(a,b,c,d) : r € R}.
Now

5)3<r <a,b,c,d>) —rdy((a,b,c,d)),

because 03: C3(K; R) — Cy(K;R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
J3({a, b, c,d)). Moreover

83<<a,b,c,d>> — (b,c,d) — (a,c,d) + (a,b,d) — (a,b,c),

and
d((b,c,d)) = (c,d)—(b,d) + (b,c),
d((a,c,d)) = (c,d)—(a,d)+(a,c),
d:((a,b,d)) = (b,d)—(a,d)+ (a,b),
& ((a,b,c)) = (b,c)—(a,c)+(a,b).
Therefore
82<83(<a,b,c,d>)) = Oy((b,c,d)) — ds((a, c,d)) + Ds({a, b, d))
— 0y({a, b, c))
= (c,d) — (b,d) + (b, c)
—{c,d) + (a,d) — (a,c)
+(b,d) — (a,d) + (a,b)

= 0.

It follows that 0(05(x)) = 0 for all z € C3(K;R). Also the boundary
homomorphism 0y: Co(K; R) — C1(K; R) is determined by the values of

O ((b,c,d)), 0h((a,c,d)), 0&h((a,b,d)) and 0((a,b,c)).
It follows from the calculation in the preceding example that 0y (02(z)) = 0
for all z € Cy(K; R).
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Lemma 5.3 Let K be a simplicial complezx, let R be an integral domain, and,
for each integer q, let 0,: Cy(K; R) — Cy—1(K; R) be the boundary homomor-
phism between the chain groups Cy(K; R) and Cy_1(K; R). Then 0,-100, =0
for all integers q.

Proof The result is trivial if ¢ < 2, since in this case J,_1 = 0. Suppose
that ¢ > 2. Let vg,vy,..., v, be vertices spanning a simplex of K. Then

q

Dg10y ((Vo, V1, ..., V) = Z(—njaq_l(<v0,...,vj,...,vq>)

= (—1)j+k<V0,...,\A/k,...,{/j,...,Vq>

= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism 0,_; 0 9, is determined by its values on the elements
of any free basis of C,(K;R). |

5.3 The Homology Groups of a Simplicial Complex

Let K be a simplicial complex, and let R be an integral domain, and, for each
non-negative integer ¢, let C,(K; R) denote the R-module whose elements are
g-chains of K with coefficients in the coefficient ring R. A ¢-chain z is said
to be a ¢g-cycle if 9,2 = 0. A g-chain b is said to be a g-boundary if b = 0,41¢
for some (q+ 1)-chain ¢’. The R-module consisting of the g-cycles of K with
coefficients in the integral domain R is denoted by Z,(K;R), and the R-
module consisisting of the g-boundaries of K with coefficients in R is denoted
by B,(K;R). Thus Z,(K; R) is the kernel of the boundary homomorphism
0y Cy(K;R) — Cy1(K; R), and B,(K;R) is the image of the boundary
homomorphism 0y 41: Cyiq(K; R) — Cy(K; R). However 9, 0 0y41 = 0 (see
Lemma 5.3). It follows that B,(K; R) C Z,(K; R). But these R-modules are
submodules of the R-module C,(K; R). We can therefore form the quotient
module H,(K; R), where H,(K;R) = Z,(K;R)/B,(K; R). The R-module
H,(K; R) is referred to as the qth homology group of the simplicial complex K
with coefficients in the integral domain R. Note that H,(K;R) =0if ¢ <0
or ¢ > dim K (since Z,(K; R) =0 and B,(K; R) = 0 in these cases).
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The element [z] € H,(K; R) of the homology group H,(K; R) determined
by an element z of Z,(K; R) is referred to as the homology class of the g¢-
cycle z. Note that [z1422] = [21]+][22] for all 21, 20 € Z,(K; R), and [21] = [22]
if and only if 21 — 25 = Jy41c¢ for some (¢ + 1)-chain ¢ with coefficients in the
coefficient ring R.

An important special case of the above definitions is that in which the
coefficient ring R is the ring Z of integers. The resultant Abelian groups
Cy(K;Z), Zy(K;Z), By(K;Z) and H,(K;Z) defined as described above are
often denoted simply by C,(K), Z,(K), B,(K) and H,(K) respectively. Thus
if a group of ¢-dimensional chains, cycles, boundaries or homology classes is
specified, but the ring of coefficients is not specified, then the coefficient ring
is by default taken to be the ring of integers.

Remark It can be shown that the homology groups of a simplicial complex
are topological invariants of the polyhedron of that complex. This fact is
far from obvious, and a lot of basic theory must be developed in order to
establish the tools to prove this result.
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6 Homology Calculations

6.1 The Homology Groups of an Octahedron

Let K be the simplicial complex consisting of the triangular faces, edges and
vertices of an octahedron in R? with vertices P;, P,, Py, Py, Ps and Ps, where

P, =(0,0,1), Py=(1,0,0), P;=(0,1,0),

P4:(_17070)7 P5:(07_170)7 P6:(0707_1)

This octahedron consists of the four triangular faces P, P, P3, Py P3P, PP, P;
and P, PsP, of the pyramid whose base is the square P, P3P, Ps and whose
apex is Pp, together with the four triangular faces Py P, P3, PsP3Py, PsPyPs
and PsP5P, of the pyramid whose base is P, P3P, P5 and whose apex is Fg.

A typical 2-chain ¢y of K is a linear combination, with integer coeffi-
cients, of eight oriented 2-simplices that represent the triangular faces of the
octahedron. Thus we can write

8
Co = Zni0i7
i=1
where n; € Z fort=1,2,...,8 and
o1 =(P, P, Ps), 09=(P,PsPy), o03=(P,Py,D5),

04 = <P17P5,P2>, 05 = <P67P37P2>7 O = <P6,P4,P3>,
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0'7:<P6;P5;P4>7 08:<P67P27P5>~

(The orientation on each of these triangles has been chosen such that the
vertices of the triangle are listed in anticlockwise order when viewed from a
point close to the centre of triangle that lies outside the octahedron.)
Similarly a typical 1-chain ¢; of K is a linear combination, with integer
coefficients, of twelve 1-simplices that represent the edges of the octahedron.

Thus we can write
12
G = E m;p;g,
=1

where m; € Z for j =1,2,...,12 and
p1= (P, Pa), pa={(P1,Ps), p3s=(P,Py), ps=(P,PF5),

ps = (P, Ps), pe=(Ps,Py), pr= (P, D5), ps= (D5 P),
P9:<P2>P6>, P10:<P3,P6>, 011:<P4,P6>, /)12:<P5,P6>,
A typical O-chain ¢y takes the form

Co = Zrk<Pk>,

k=1

where r, € Z for k =1,2,...,6.
We now calculate the boundary of a 2-chain. It follows from the definition
of the boundary homomorphism 0, that

0y01 = Oo(P1, Py, P3) = (P P3) — (P Ps) + (P P2) = ps — p2 + p1.

Similarly
0209 = 02(Py1, P3, Py) = ps — p3 + po,
003 = 02(Py1, Py, Ps) = pr — pa + ps,
Ohoy = Oo(Py, Ps, Po) = ps — p1 + pa,
Os05 = 09(Fs, P3, Po) = —p5 + pg — pro,
Os06 = 09(Fs, Py, P3) = —ps + p1o — pa1,
Ohor = 09(Fs, Ps, Py) = —pr + p11 — p12,
Osos = 09(Fs, Py, P5) = —ps + p12 — po.

Thus

8262 = 82 (n101 -+ No09 + N3o3 + N404 + N505 + NgO0g + n7o7 + ngo'g)
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= n10201 + No0209 + N300 + Ny0r04
+ n50205 + ngOa0¢ + N70207 + Ngdaoy
= (n1 —na)p1 + (n2 —n1)py + (n3 — n2)ps + (N4 — n3)pa
+ (n1 — ns)ps + (n2 — ng)ps + (n3 — n7)pr + (ng — ng)ps
+ (n5 — ng)py + (16 — 15)p10 + (N7 — n6) p11 + (N8 — n7) P12

It follows that dsco = 0 if and only if
Ny =MNg =N3 =Ny =Ny = Ng = Ny = Ng.

Therefore

8
Zo(K;Z) =ker Oy = {nu :n € Z}, where = ZU’"

i=1

Now C3(K;7Z) = 0, and thus By(K;7Z) = 0 (where 0 here denotes the zero
group), since the complex K has no 3-simplices. Therefore

Hy(K:7) = Zo(K;7) 2 7.

Next we calculate the boundary of a 1-chain. It follows from the definition
of the boundary homomorphism 0; that

12
8101 = 81 (ijp])
j=1

= mi((Py) — (P)) + ma((Ps) — (P1))

+ m3((Py) — (1)) + ma((FP5) — (P1))
+ms((P3) — (P2)) + me({Pa) — (F3))
+m7((Ps) — (1)) + ms((FP2) — (P5))
+my((Fe) — (P2)) +mio((Fs) — (F3))

+ mu((Fs) — (P) + maa((Fs) — (F5))

= —(mq +mg +mg+my)(Pr) + (my —ms + mg — mg)(Fs)
+ (mg + ms — meg — ma)(P3) + (m3 + mg — my — my)(Py)
+ (myg +my — mg — maz)(Ps) + (mg + mig + may + maa)(Fs)

It follows that the 1-chain ¢; is a 1-cycle if and only if
m1+m2—|—m3+m4:0, ml—m5+mg—m9:0,

my + ms —mg —mig =0, m3z+meg—my—mq =0,
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my+my—mg—mpp =0 and mg+ myg+ myi + m2 = 0.

On examining the structure of these equations, we see that, when ¢; is a 1-
cycle, it is possible to eliminate five of the integer quantities m;, expressing
them in terms of the remaining quantities. For example, we can eliminate
my, Mg, M7, Mmg and mq9, expressing these quantities in terms of my, mso, ms,
ms, Mg Mmyo and mq; by means of the equations

my = —MmMp — Mg — M3,

meg = Mg — My + Mms,

my = Mg+ M3 — M — My + Mk,
mg = —mj+ Mg+ Mms,

mi2 = —Mg — Mip — Mi1

It follows that
Zy(K; Z) = {maz1 + mazo + mgzs + mszs + Mg2g + Migz10 + Mi1211},
where

21 = p1— ps— pg = —0a0y,

2y = p2— pa+ps+ pr = 002+ 03),

Z3 = p3— pa+ pr = 0r03,

zs = ps+ pe+ pr+ ps = Oo(01 + 02 + 03+ 04),
29 = ps+pg— pr2 = —0a0s,

Zio = —p6— p7+ p1o — p12 = a(og + 07),

211 = P11 — P71 — P12 = 6207'

From these equations, we see that the generators zy, 2o, 23, 25, 29, 210 and
211 of the group Z1(K;Z) of 1-cycles all belong to the group By (K;Z) of 1-
boundaries. It follows that Z,(K;Z) = By(K;Z), and therefore H,(K;7Z) =
0.

In order to determine Hy(K';Z) it suffices to note that the 0-chains

() = (P1), (Bs) —(P), (Py)—(P), (B)—(P) and (F)— ()

are O-boundaries. Indeed
(P2) —(P1) = 0ip1, (Ps) — (P1) = Oipa,  (Pa) — (Pr) = Oips,

(P5) = (P1) = 01ps and  (Fs) — (P1) = 01(p1 + py).
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Therefore .

> Py - (Z rk> (P) € By(K;7Z)

k=1
for all integers 7y, 79, 73, T4, 75 and rg. It follows that By(K;Z) = kere,
where e: Cy(K;Z) — Z is the homomorphism defined such that

€ (Z’i”k<Pk>> = Z’f’k

for all integers ry (k= 1,2,...,6). Now Zy(K;Z) = Co(K;Z) since the ho-
momorphism 0y: Co(K;Z) — C_1(K;Z) is the zero homomorphism mapping
Co(K;Z) to the zero group. It follows that

Ho(K;Z) = Co(I; Z)/ Bo(K; Z) = Co(K; Z)/ ker & = Z.

(Here we are using the result that the image of a homomorphism is isomorphic
to the quotient of the domain of the homomorphism by the kernel of the
homomorphism.)

We have thus shown that

One can show that Z;(K;Z) = By(K;Z) by employing an alternative
approach to that used above. An element z of Z;(K;Z) is of the form z =

12
> m;pj, where
i=1
m1+m2—|—m3+m420, ml—m5+mg—m9:0,

mo +ms —meg —mig =0, mg+me—my—mq =0,
My +my—mg —mpp =0 and mg -+ mqg+ my + ma = 0.

The 1-cycle z belongs to the group B;(K;Z) if and only if there exists some
2-chain ¢y such that z = Oyco. It follows that z € By(K;Z) if and only if
there exist integers nq,ns, ..., ng such that

mp =mny —Nyg, M2="MNg—"N1, M3=mnN3—"N2, My ="y — N3,

ms ="N1 — N5, Me="N2 —Ng, M7="N3—N7, Mg =T"4—Ng,
mg =N —Ng, Mg ="Ng — N5, Mi11 =Ny —Ng, iz =T"Ng — N7y.

The integers nq,no, ..., ng solving the above equations are not uniquely de-
termined, since, given one collection of integers nq, ns, ..., ng satisfying these
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equations, another solution can be obtained by adding some fixed integer to
each of nq,nq, ..., ng. It follows from this that if there exists some collection
ni,ne,...,ng of integers that solves the above equations, then there exists a
solution which satisfies the extra condition n; = 0. We then find that

ny =0, na=my, mnNz=mp+mg, ng=-—m,

ng = —Ms, Ng = Mg — Mg, N7 =Mg+M3— Mz, Ng=—M3 —Msg.

On substituting ny, ne, . .., ng into the relevant equations, and making use of
the constraints on the values of mq, ma, ..., mqo, we find that we do indeed
have a solution to the equations that express the integers m; in terms of
the integers n;. It follows that every 1-cycle of K is a 1-boundary. Thus
Z\(K;Z) = By(K;Z), and therefore H,(K;Z) = 0.

Note that the results of many of the calculations of boundaries of chains
can be verified by consulting the diagram representing the vertices and edges
of the octahedron with their labels and orientations. For example, direct cal-
culation using the definition of the boundary homomorphism dy: Co(K;Z) —
C1(K;Z) shows that

Os01 = O (P, Py, P3) = (PoPs) — (P1Ps) + (P1P) = ps — pa+ p1.

Now if we follow round the edges of the triangle P, P, P represented by o,
starting at P, and proceeding to P, then P; then back to P, we traverse the
edge p; in the direction of the arrow, then the edge ps in the direction of
the arrow, and finally the edge ps in the reverse direction to the arrow. In
consequence, both p; and ps occur in the 1-boundary 0,0, with coefficient
+1, whereas py occurs in this 1-boundary with coefficient —1.

Consider also the coefficient corresponding to the vertex P, in the 0-
12

boundary 0c;, where ¢ = ) m;p;. The vertex P, is an endpoint of four
j=1

edges. The arrows indicating the orientation on the edges p; and pg are

directed towards the vertex P,, whereas the arrows indicating the orientation

on the edges p5; and pg are directed away from the vertex P,. In consequence,

the coefficient of (P,) in 0i¢; is my — ms + mg — mo.

6.2 Another Homology Example

Let P, Py, P53, Py, Ps and Py be the vertices of a hexagon in the plane, listed
in cyclic order, and let K be simplicial complex consisting of the triangles
PP, P;, P3P, P5 and Ps Py Py, together with all the edges and vertices of these
triangles.
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Then
CQ(K, Z) = {anl + NoTy + N3y : Ny, No, N3 € Z},

where

T1:<P1P2P3>, 7'2:<P3P4P5> and 7'3:<P5P6P1>.

(Note 71, 7o and 73 represent the three triangles of the simplicial complex
with the orientations that results from an anticyclic ordering of the vertices
in the diagram above.) Also

9
C{(K;Z) = {ijpj Sm; 6Zforj=1,2,...,9},

j=1

where

pr=(PsP1), p2= (PP, p3=(PaPs), ps= (P3P, ps=(PP5),

pe = (PsFs), pr=(PsP1), ps=(PP) and pg= (P3Fs),
and
6
Co(K;Z) = {Zrk(Pk) 1 € Z for k= 1,2,...,6}.
k=1

(Note that the 1-chains p1, pa, ..., po represent the 9 edges of the simplicial

complex with the orientations indicated by the arrows on the above diagram.)
We now calculate the images of the 2-chains 77, 75 and 73 under the

boundary homomorphism 0y: Co(K;Z) — C(K;Z). We find that

OoT1 = p3 — ps + p2, OoTo = ps — pg + pa, OaT3 = p1 — p7 + pe,
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Now
82<7’L17'1 + NoTo + n37'3)
= ngp1 + NP2 +N1p3 + Nops + Nops + N3pe — N3P7 — NP8 — N2 pPgy.

The simplicial complex K has no non-zero 2-cycles, and therefore Z,(K;Z) =
0. It follows that Ho(K;Z) = 0.

Let
9
C1 = Z m;p;.
j=1
Then
8101 = (m1 — My + my — mg)(P1> + (mg — m3)<P2>
+ (m3 — My + Mg — mg)<P3> + (m4 — TTL5)<P4>
+ (m5 — Mg + mg — m7)(P5) + (m(; — m1)<P6>
It follows that ¢; is a 1-cycle of K if and only if
Mg = M3, Ny =Ms5, Mg="T
and
mi + my = mg + mg = M5 + My.
Moreover ¢; is a 1-boundary of K if and only if
Mg = M3 = —Mg, My ="M= —MMyg, Mg =171 = —M7.
We see from this that not every 1-cycle of K is a 1-boundary of K. Indeed
Zl(K; Z) = {n1827'1 + nQaQTQ + 7’L3827'3 +nz:ng,ng, N3, N € Z},

where z = p7 + ps + po. Let 0: Z1(K;7Z) — Z be the homomorphism defined
such that
0 (n18271 + Tl2827'2 -+ n3827'3 + nz) =N
for all ny,ng,ng,n € Z. Now
n10aT1 + no0aTy + N30ty + nz € By(K;Z) if and only if n = 0.
It follows that By(K;Z) = kerf. Therefore the homomorphism 6 induces
an isomorphism from Hy(K;Z) to Z, where H,(K;Z) = Z1(K;Z)/ B, (K, Z).
Indeed Hy(K;Z) = {n[z] : n € Z}, where z = p7; + ps + pg and [z] denotes
the homology class of the 1-cycle z.
It is a straightforward exercise to verify that

6

6
By(K:Z) = {me ry €EZ for k=1,2,...,6 and Zrk:O}.
k=1

k=1
It follows from this that Hy(K;Z) = Z.
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7 The Homology Groups of Filled Polygons

7.1 The Homology of a Simple Polygonal Chain

Definition We define a simple polygonal chain vyvy, ..., v, of length n to
be a collection consisting of n + 1 vertices and n edges, where the vertices
may be ordered in a finite sequence vq, vy, ..., Vv, satisfying the following
conditions:—

(i) the vertices vg, vy,..., v, of the polygonal chain are distinct;
(ii) the edges of the polygonal chain are
VoVi, ViVo, ..., Vp_1Vp;
(iii) two distinct edges of the polygon intersect if and only if they have an

endpoint in common, in which case their intersection consists only of
that common endpoint.
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Lemma 7.1 Let vovy,...,v, be a simple polygonal chain of length n, let

K be the one-dimensional simplicial complex consisting of the vertices v; for
1=20,1,2,...,n and the edges v;_1v; fori =1,2,...,n, and let R be a unital
ring. Then Ho(K;R) = R, and Hy(K;R) =0 when ¢ > 0.
Proof The definitions of the groups Z,(K; R) and B,(K; R) of g-cycles and
g-boundaries ensure that Z,(K;R) = 0 and B,(K;R) = 0 when ¢ > 1. It
follows that H,(K; R) = 0 when ¢ > 1.

Let ¢ be a 1-chain of the simplicial complex K with coefficients in the
ring R. Then there exist uniquely-determined elements ri,rs, ..., 7, of the

coefficient ring R such that ¢ = )" r;(v;_1 v;). Then
i=1

Oic = Zm(?l(WH vi)) = Z’f’z’((Vz'> —(vi_1))



Thus if ;¢ = 0 then r; = r,, = 0r, where O denotes the zero element of the
coefficient ring R, and r;_; = r; for i = 1,2, ..., n. It follows that if d;c =0
then r; = Og for i = 1,2,...,n, and therefore ¢ = 0. Thus Z;(K; R) = 0. It
follows that H,(K; R) = 0.

Let z be a 0O-chain of the simplicial complex K with coefficients in the
ring R. Then there exist elements sq, s1, ..., s, of the coefficient ring R such

n n

that z = > s;(v;). Let ¢ = > ri(v,_1vy), where r1,79,...,7, € R. The
i=0 i=1

calculation in the previous paragraph ensures that z = 0;c if and only if

Sog = —T1, 8 =T — nH fori=1,2,...,n—1 and Sn, = ry. It then follows

that if 2 = 0;c¢ then Z s; = Og. Conversely if Z s; = Og, then ri,ry, ..., 7,
=0 =0

can be determined such that r; = — Z sjfori=1,2,...,n. Then —r = s,
3=0
r;—riv1 = S; for 1,2,. -1 and T = Sp, and therefore z = 0;c. It follows

that z € By(K; R) if and only if Z s; = Og.

Now Zy(K; R) = Co(K; R), and therefore Hy(K; R) = Cy(K; R)/Bo(K; R).
Let e: Cy(K; R) — R be the R-module homomorphism defined such that

3 (Z Si<vi>) = Z S;-
=0 i=0
Then kere = By(K; R). It follows that
Ho(K; R) = Co(K; R)/By(K; R) = Co(K; R)/ kere = R,

as required. |}

7.2 The Homology of a Simple Polygon

Definition We define a simple polygon with n sides of length n to be a
collection consisting of n vertices vy vs,...,v, and n edges, where n < 3
and where the vertices may be ordered in a finite sequence vi,vs,..., v,
satisfying the following conditions:—

(i) the vertices vyi,va, ..., v, of the polygon are distinct;

(ii) the edges of the polygon are

ViVa, VoV3,..., V,_1V, and v, vy;
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(iii) two distinct edges of the polygon intersect if and only if they have an
endpoint in common, in which case their intersection consists only of
that common endpoint.

V3

Vi Vo

Lemma 7.2 Let K be the one-dimensional simplicial complex consisting of
the vertices and edges of a simple polygon with n sides, where n > 3, and let
R be a unital ring. Then Ho(K;R) = R, Hi(K;R) = R and H,(K;R) =0
when q > 0.

Proof We order the vertices of the simple polygon in the sequence vy, vy, ..., v,
so that the edges of the polygon, in order round the polygon, are

ViVa, VoV3,..., V, 1V, and v, vy.

The definitions of the groups Z,(K; R) and B,(K; R) of ¢-cycles and ¢-
boundaries ensure that Z,(K;R) = 0 and B,(K;R) = 0 when ¢ > 1. It
follows that H,(K; R) = 0 when ¢ > 1.

Let ¢ be a 1-chain of the simplicial complex K with coefficients in the
ring R. Then there exist uniquely determined elements ry,rs, ..., 7, of the
coefficient ring R such that

c=r1(v, V1) + Zﬁ'(vi—l Vi)

=2

Then

n

oic = 7“181(<VnV1>)+Z7‘¢31(<Vz‘—1Vz‘>)

= 7’1(<V1> - <Vn>) + ZT}(<V1> <V171>)
- i<rl - Ti+1)<vi> =+ (Tn - 7"1)<Vn>.



Thus if ;¢ = 0 then r; = r;yq fori=1,2,...,n—1 and r,, = ry. It follows
that 0;c = 0 if and only if

L ="T2="'"=Tnp,
and therefore
Z\(K;R) ={ry:r € R},

where .
Y= Z<Vi,1 Vi> + <VnV1>.
=2

Now B;(K;R) = 0 because a one-dimensional simplicial complex cannot
have any non-zero 1-boundaries. It follows that H,(K; R) = Z,(K; R) = R.
Let z be a O-chain of the simplicial complex K with coefficients in the
ring R. Then there exist elements sq, s9, ..., s, of the coefficient ring R such
that z = > s;(v;). Let
i=1

c=r1{v, V1) + Z i (Vi1 Vi),

i=2
where ry,79,...,7, € R. The calculation in the previous paragraph ensures
that z = dycifand only if s; = r;—r;y fori =1,2,... ,n—1and s, =r,—r;.
n n
It then follows that if z = Jic then > s; = 0g. Conversely if > s; = Og,
i=1 i=1
i—1
then rq,79,...,7, can be determined such that r; = 0g and r, = — ) s; for
j=1
1=2,3,...,n. Thenr; —r;;1 =s; fori=1,2,...,n—1and

n—1
Tn—le—E Sj = Sn,
j=1

and therefore z = 0;c. It follows that z € By(K; R) if and only if > s; = Og.
—1

Now Zy(K; R) = Cy(K; R), and therefore Hy(K; R) = Co(K; R)/By(K; R).
Let e: Cy(K; R) — R be the R-module homomorphism defined such that

€ (Z si(vi>) = Zsi.
i=1 i=1
Then kere = By(K; R). It follows that
Ho(K; R) = Co(K; R)/Bo(K; R) = Co(K; R)/ kere = R,

as required. |}
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7.3 The Two-Dimensional Homology Group of a Sim-
plicial Complex triangulating a Region of the Plane

Proposition 7.3 Let K be a 2-dimensional simplicial complex whose poly-
hedron | K| is a closed bounded region of the plane, and let R be a unital ring.

Then Zy(K; R) =0, and thus Hy(K; R) = 0.

Proof Let ¢ be a non-zero 2-chain of K with coefficients in the ring R. Then
¢ is expressible in the form

c= Z Ti <V((]Z) ng) Vé”)
i=1

so as to satisfy the following conditions: the coefficient r; is a non-zero ele-

ment of the coefficient ring R for i = 1,2,...,m; the vertices v(()i), vi“ and
Vg) are distinct and span a 2-simplex (or triangle) 7; of K for i =1,2,...,m;
the 2-simplices 71, 79, ..., T, determined in this fashion are distinct.

Let pi1,pa,...,p, denote the edges of the triangles 7,7, ..., 7,, where
P1, P2, -+, pn are distinct, and let W((]j) and ng) be the endpoints of the
edge p; for j = 1,2,...,n. Then there exist uniquely-determined elements
S1,89,...,s, of the coefficient ring R such that

n
826 = Z Sj <W(()J) W§])>
j=1
The coefficients sq, sg, ..., s, of Oyc in this expression need not all be non-

zero, but we shall show that at least one of these coefficients is non-zero.

Now the fact that the triangles of K are all contained in the plane en-
sures that no edge of K can form part of the boundary of more than two
of the triangles 71, 7s,..., 7. Moreover the union of these triangles is a
closed bounded set in the plane and therefore has a non-empty boundary
that incorporates at least three of the edges p1, p2, ..., pn. Suppose that p;
is contained in the boundary of 7y U, U ---UT,. Then this edge is an edge
of exactly one of the triangles 7,7, ..., 7,. Suppose that p; is an edge of
7;. Then s; = £r;, and therefore s; # 0. We have thus shown that if c is a
non-zero 2-chain of K with coefficients in R then Oyc is a non-zero 1-chain of
K. Therefore Zy(K; R) = 0, and thus Hy(K; R) = 0, as required. ||

7.4 Attaching Triangles to Two-Dimensional Simpli-
cial Complexes

Lemma 7.4 Let K be a 2-dimensional simplicial complex, and let R be a
unital ring. Let T be a triangle of K, and let L be the subcomplex of K con-
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sisting of all the other triangles of K, together with their edges and vertices.
Suppose that T N |L| consists of the union of two edges of the triangle T.
Then the homomorphism i.: H,(L; R) — H,(K; R) of homology groups in-
duced by the inclusion map i1: L — K is an isomorphism for all non-negative
mntegers q.

Proof Let the vertices of the triangle 7 be u, v and w, where uv and uw
are the two edges of 7 that belong to the subcomplex L.

If ¢ > 2 then Hy(L;R) = 0 and H,(K;R) = 0, because the simplicial
complexes K and L are of dimension at most 2, and thus there is nothing to
prove.

We show first that Zy(K; R) = Zy(L; R). Given any 2-cycle zo of K
with coefficients in R, there exists a 2-chain ¢, of L with coefficients in R
and a uniquely-determined element of R such that zo = ¢ + r{uvw). Now
0229 = 0. It follows that

r(vw) =rd({({uvw)) + r{uw) —r{uv) = —déy + r{uw) —r{uv).
Moreover 0y¢o € C1(L; R) and (uv), (uw) € C1(L; R), and therefore
r(vw) € Ci(L; R).

But vw is not an edge of L. It follows that » = 0, and thus 2o € Z5(L; R).
Thus Zy(K;R) = Zy(L;R). Now By(L;R) = 0 and Bs(K;R) = 0, and
therefore Ho(L; R) = Zo(L; R) and Hy(K; R) = Zo(K; R). It follows that
iv: Hy(L; R) — Ho(K; R) is an isomorphism.

We now show that the homomorphism i,: Hy(L; R) — H,(K; R) is injec-
tive. Let Z be a 1-cycle of L with coefficients in R, and let [Z]; denote the
homology class of 2 in H;(L; R). Suppose that i.([2]) = 0. Then % is a
1-boundary of the larger simplicial complex K, and thus there exists some 2-
chain ¢y of K with coefficients in R such that Z = 0ycy. Moreover there then
exists some element r of R and a 2-chain ¢, of L such that co = éo+r{uvw).
But then

2= 0qcg = Oalo +1r(uv) + r(vw) — r{u w),

Now Oyéy € C1(L; R) and (u v), (u w) € Cy(L; R), and therefore
r(vw) € C1(L; R).

But vw is not an edge of L, and therefore r(v w) cannot be a 1-chain of L
unless r = 0. Therefore ¢y = é. But then 2 = 0yéy, where ¢ € Cy(L; R),
and therefore zZ € By (L; R) and thus [Z];, = 0 in H;(L; R). We conclude from
this that the homomorphism i,: Hy(L; R) — H,(K; R) is injective.
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We now show that the homomorphism i,: H,(L; R) — H;(K; R) is surjec-
tive. Let z be a 1-cycle of K with coefficients in the ring R. Then there exist
a 1-chain c¢; of L with coefficients in R and a uniquely-determined element r
of the coefficient ring R such that

z=c1+r(vw).
But then z = Z 4+ r0y({(uv w)) where
Z=c —r(uv)+r{uw).

Then ¢; € C1(L; R) and (uv),(uw) € Ci(L; R), and therefore z € C,(L; R).
Also
012 =01z —rd(0((uvw))) =0.

It follows that 2 € Z;(L; R). Also z — 2 € By(K; R), and therefore [z|x =
[Z] i, where [z] and [Z]x denote the homology classes of z and Z respectively
in H1(K; R). Now [2]x = i.([2]1), where [Z]; denotes the homology class of
Zin Hy(L; R). It follows that [z]|x € i.(H1(L; R)). We have thus proved that
the homomorphism i.: H(L; R) — H,(K; R) is surjective. This homomor-
phism was earlier shown to be injective. Therefore it is an isomorphism.

It remains to prove that i.: Ho(L; R) — Ho(K; R) is an isomorphism.
Now every vertex of K is a vertex of L. It follows that Cy(K; R) = Co(L; R).
Let ¢; be a 1-chain of K with coefficients in R. Then the exists a 1-chain ¢
of L with coefficients in R and an element 7 of R such that ¢; = ¢ + (v w).
Let

¢ =¢ +r{uw) —r{uv).

Then ¢ € Cy(L; R) and
8151 == 8161 + T‘<W> — T'<V> == 8101.

It follows that dc; € Bi(L; R). We conclude that By(K;R) = Bo(L; R).
Now Hy(L; R) = Co(L; R)/By(L; R), because Zy(L; R) = Co(L; R), and sim-
ilarly Ho(K; R) = Co(K; R)/Bo(K; R). It follows that the homomorphism
iv: Ho(L; R) — Hy(K; R) is an isomorphism. This completes the proof. |}

Lemma 7.5 Let K be a 2-dimensional simplicial complex, and let R be a
unital ring. Let T be a triangle of K, and let L be the subcomplex of K con-
sisting of all the other triangles of K, together with their edges and vertices.
Suppose that T N |L| consists of a single edge of the triangle T. Then the
homomorphism i.: H,(L; R) — H,(K; R) of homology groups induced by the
inclusion map i: L — K 1s an isomorphism for all non-negative integers q.
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Proof Let the vertices of the triangle 7 be u, v and w, where u and w are
the endpoints of the edge of 7 that belongs to the subcomplex L. Then the
vertex v does not belong to L.

If ¢ > 2 then Hy(L;R) = 0 and H,(K;R) = 0, because the simplicial
complexes K and L are of dimension at most 2, and thus there is nothing to
prove.

We show first that Zy(K; R) = Zy(L; R). Given any 2-cycle zp of K
with coefficients in R, there exists a 2-chain ¢, of L with coefficients in R
and a uniquely-determined element of R such that zo = é;, + r{uvw). Now
Os29 = 0. It follows that

riuv) +r(vw) =roe(((uvw)) +r(uw) = —0séy + r{uw).
Moreover 0yé9 € C1(L; R) and (uw) € C1(L; R), and therefore
r(uv) +r(vw) € C1(L; R).

But uv and vw are not edges of L. It follows that » = 0, and thus 2z, €
Zy(L; R). Thus Zy(K; R) = Zy(L; R). Now By(L; R) = 0 and By(K; R) =0,
and therefore Hyo(L; R) = Z5(L; R) and Hy(K; R) = Zy(K; R). It follows
that i.: Hy(L; R) — Ho(K; R) is an isomorphism.

Next we show that the homomorphism i,: H,(L; R) — H;(K; R) is injec-
tive. Let 2 be a 1-cycle of L with coefficients in R, and let [Z], denote the
homology class of Z in H;(L; R). Suppose that i.([2]) = 0. Then % is a
1-boundary of the larger simplicial complex K, and thus there exists some 2-
chain ¢y of K with coefficients in R such that 2 = 0ycy. Moreover there then
exists some element r of R and a 2-chain é; of L such that o = éo+r(uvw).
But then

2= 090cp = Oalo +r(uv) +r{(vw) — r{u w),

Now 0s¢9 € C1(L; R) and (u w) € C1(L; R), and therefore
r(uv) +r(vw) € C1(L; R).

But uv and vw are not edges of L, and therefore r(uv) + r(vw) cannot
be a 1-chain of L unless r = 0. Therefore ¢y = ¢5. But then Z = 0y¢5, where
¢o € Co(L; R), and therefore 2 € By(L; R) and thus [2];, = 0 in Hi(L; R).
We conclude from this that the homomorphism i,: H,(L; R) — H;(K; R) is
injective.

We now show that the homomorphism i,: Hy(L; R) — H,(K; R) is surjec-
tive. Let z be a 1-cycle of K with coefficients in the ring R. Then there exist
a 1-chain ¢; of L with coefficients in R and uniquely-determined elements 7,
and ro of the coefficient ring R such that

z=c +ri{uv) +ry(vw).
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Then
0=012z= 011 — 7"1<11> + 7"2<W> + (7"1 - 7"2)<V>-

Now 01¢1 € Cy(L; R) and (u), (w) € Co(L : R). It follows that (r; —rs)(v) €
Co(L; R). But v is not itself a vertex of L. It follows that (r; —r5)(v) =0,
and therefore r1 = ry. Let 7 = r; = ry. Then 2z = 2 + r02((uv w)) where
Z=c +r{uw). Now 2 € Cy(L; R) and

012 =01z —rd(0a((uvw))) =0.

It follows that 2 € Z;(L; R). Also z — 2 € By(K; R), and therefore [z|x =
[Z] i, where [z]x and [Z]x denote the homology classes of z and Z respectively
in H(K; R). Now [Z]x = i.([2]1), where [Z] denotes the homology class of
Zin Hi(L; R). It follows that [z]x € i.(H1(L; R)). We have thus proved that
the homomorphism 4,: H1(L; R) — Hy(K; R) is surjective. This homomor-
phism was earlier shown to be injective. Therefore it is an isomorphism.

It remains to prove that i.: Hy(L; R) — Ho(K; R) is an isomorphism.
First we prove that this homomorphism is injective. Now Zy(L; R) = Cy(L; R)
and Zy(K; R) = Co(K; R). Let Zy be a 0-chain of L with coefficients in R,
and let [Z], and [2o]x denote the homology classes of Zy in Hy(L; R) and
Hy(K; R) respectively. Then i.([20]1) = [20] k-

Suppose that i.([29]) = 0. Then [2y]x = 0, and therefore 2, € By(K; R).
Then there exists a 1-chain ¢; of K such that Zy = 0,¢;. Moreover there exist
a l-chain ¢; of L and elements r; and r9 of R such that

¢ =¢ +r(uv) +ro(vw).

Then
2o = 0101 = O01¢1 — ri{u) — (rg — m)(v) + ro(w).
But then
(ro —1m)(V) = =20 + 0161 — ri{u) + ro(w).
and therefore (ro — r1)(v) € Cy(L; R). But the vertex v does not belong to
the subcomplex L. It follows that r; = r. But then

20 = 8161 +T’1<W> - T1<u> = 81 (él +7’1<UW>),

and therefore 2y € By(L; R). It follows that [Z9], = 0. We conclude that
iv: Ho(L; R) — Ho(K; R) is injective.

Now let zp be a 0-chain of K with coefficients in R, and let [29]x denote
the homology class of zy in Hy(K; R). Then there exists a 0-chain 2, of L
with coefficients in R and an element r of R such that z = 2y + r(v). Let
Zo = 20 +r(u). Then 2z, € Co(L;R), and z = Z + rd1((uv)). It follows

63



that [z]x = [20]k = ([20]z). This shows that i,: Ho(L; R) — Ho(K; R)
is surjective. We have already shown that this homomorphism is injective.
It follows that the homomorphism is an isomorphism. This completes the

proof. |

7.5 Homology of a Planar Region bounded by a Simple
Polygon

The next proposition enables us to prove results about 2-dimensional simpli-
cial complexes triangulating regions of the plane bounded by simple polygons
by induction on the number of triangles in the complex.

Proposition 7.6 Let K be a 2-dimensional stmplicial complex with more
than one triangle whose polyhedron |K| is a closed bounded region of the
plane bounded by a simple polygon. Then there exists a triangle 7 of K and
a subcomplex L of K such that the following conditions are satisfied:

(i) the simplicial complex K consists of the simplices of the subcomplex L,
the triangle T, and the edges and vertices of T;

(ii) The polyhedron |L| of the subcomplex L is bounded by a simple polygon,

(iii) the intersection 7 N |L| of T with the polyhedron of L is either a single
edge of T or else is the union of two edges of T.

Proof We say that a vertex v of K is an boundary vertex of K if it belongs to
the bounding polygon of | K|, and we say that an edge v w of K is an boundary
edge of K if it is contained in the bounding polygon of |K|. Vertices of K
that are not boundary vertices are said to be interior vertices, and edges
of K that are not boundary edges are said to be interior edges of K. The
requirement that the boundary of |K| is a simple polygon ensures that each
boundary vertex of K is an endpoint of exactly two boundary edges of K.
Also every interior edge of K is an edge of exactly two triangles of K, and
every boundary edge of K is an edge of exactly one triangle of K. No more
than two edges of any triangle of K can be boundary edges of K, because
the simplicial complex K contains more than one triangle.

First consider the special case where two edges of some triangle 7 of K
are boundary edges of K. Let the vertex v of 7 be the common endpoint of
the two boundary edges, and let u and w be the other two vertices of 7. Also
let L be the subcomplex of K consisting of all triangles of K other than the
triangle 7, together with all the edges and vertices of these triangles. Then
the polyhedron |L| of the subcomplex L is bounded by the simple polygon
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obtained from the bounding polygon of |K| by replacing the two edges uv
and v w of this polygon by the single edge uw, thereby excluding the trian-
gle 7 from the interior of the resulting polygon. Moreover 7 N |L| coincides
with the edge uw of the triangle 7. The conclusions of the proposition are
therefore true in this special case.

Next we consider the special case when at least one triangle 7 of K
contains both an boundary edge of K and an internal vertex of K. Let
u denote the vertex of 7 that is an internal vertex of K, and let v and w
denote the vertices of 7 that are endpoints of an boundary edge of K. Let
L be the subcomplex of K that is the union of the triangles of K other
than 7, together with all the vertices and edges of those triangles. Then
the polyhedron |L| of the subcomplex L is bounded by the simple polygon
obtained from the bounding polygon of |K| by replacing the edge vw of
this bounding polygon by the two edges v u and uw, thereby excluding the
triangle 7 from the interior of the resulting polygon. Moreover 7N |L| in this
case coincides with the union of the two edges v u and uw of the triangle 7.
The conclusions of the proposition are therefore true in this special case also.

We complete the proof by showing that, for all simplicial complexes K
satisfying the conditions of the proposition, one or other of the special cases
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already considered is applicable to the simplicial complex K. For this pur-
pose, we consider separately the case when no internal edge of K has end-
points that are both boundary vertices of K and the remaining case when at
least one internal edge of K has endpoints that are both boundary points of
K.

Thus suppose that no internal edge of K has endpoints that are both
boundary vertices of K. The endpoints v and w of some boundary edge of
K are vertices of a triangle 7 of K. Let u be the third vertex of this triangle.
The three edges of the triangle 7 cannot all be boundary edges of K, because
the simplicial complex K contains more than one triangle. Therefore at least
one of the edges of 7 must be an internal edge of K. In the case under
consideration the endpoints of this internal edge cannot both be boundary
vertices of K. It follows that the vertex u must be an internal vertex of
K, and thus the simplicial complex K contains a triangle 7 that has both a
boundary edge v w of K and an internal vertex u of K. It then follows from
a case previously considered that the conclusions of the proposition are true
in the case under consideration.

It only remains to prove that the conclusions of the proposition are true
in the case when at least one internal edge of K has endpoints that are
both boundary vertices of K. In this case there exists a positive integer m
which is the smallest positive integer for which there exists a finite sequence
Vg, V1, - .., V,, consisting of m+ 1 boundary vertices of K, where the the edge
v;_1V; is a boundary edge of K for ¢ =1,2,...,m and the edge vy v,, is an
interior edge of K. There then exists a unique triangle 7 of K whose vertices
include both vy and vy. Let u be the third vertex of the triangle 7.

The criterion that determines the value of m ensures that there cannot
exist any integer ¢ satisfying 3 < ¢ < m for which v; and v; are the endpoints
of an interior edge of K. It follows that the vertex u of the triangle 7 cannot
coincide with v; for any integer i satisfying 3 < ¢ < m. Also the vertex u of
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the triangle 7 cannot coincide with either of the vertices vy or vi. Thus if
u = v; for some integer ¢ satisfing 0 < ¢ < m then ¢ = 2 and thus u = vs.
But then the vertices of the triangle 7 are vq, vi and v,, and therefore two
of the edges of the triangle 7 are boundary edges of K. A case previously
considered therefore ensures that the conclusions of the proposition are true
in the case when u = vs.

Now the interior of the triangle 7 lies inside the simple polygon whose

vertices are vg,Vvy,...,V,, and whose edges are the edges v;_;v; for i =
1,2,...,m together with the edge v,, vg, whereas all boundary vertices of
K apart from vq,vy,...,Vv,, lie outside this simple polygon. It follows that

the vertex u cannot coincide with any boundary vertex of K other than the
vertex vo. Thus if u # v, then u must be an interior vertex of K. But
then the simplicial complex K has a triangle 7 with both an boundary edge
and an interior vertex, and a case previously considered establishes that the
conclusions of the proposition are true in this case also. We have therefore
established that the conclusions of the proposition are true in all possible
cases, as required. |

Theorem 7.7 Let K be a 2-dimensional simplicial complex whose polyhe-
dron |K| is a closed bounded region of the plane bounded by a simple poly-
gon, and let R be a unital ring. Then Ho(K;R) = R, Hi(K;R) = 0 and
Hy(K;R)=0.

Proof We prove the result by induction on the number of triangles in K.
First consider the case when K consists of a single triangle with vertices
u, v and w. Then

Zo(K;R) = Co(K;R)

Bo(K;R) = {ri{u) +ro(v) +r3(w) € Co(K;R) : 11 + 19+ 7135 =0r}.
Bi(K;R) = Zi(K;R)={r({(vw) —(uw)+ (uv)) :r € R},
Bo(K;R) = Zy(K:R)=0.

Let e: Co(K; R) — R be the homomorphism of R-modules defined such that
e(ri(u) +r2(v) +r3(w)) =711+ 12+ 73

for all r1,7ry,73 € R. Then the homomorphism ¢ is surjective, and kere =
By(K; R). It follows that

Ho(K; R) = Co(K; R)/Bo(K; R) = Co(K; R)/ kere = R.

Also H,(K; R) = 0, because By(K;R) = Z1(K; R), Ho(K; R) = 0, because
By(K;R) = Zy(K;R) = 0, and H,(K;R) = 0 for all ¢ > 2 because the
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simplicial complex K is two-dimensional. This proves the result in the case
when the simplicial complex K consists of a single triangle together with all
its vertices and edges.

Suppose therefore as our induction hypothesis that the simplicial com-
plex K satisfying the conditions of the proposition has more than one tri-
angle, and that the result holds for all simplicial complexes that satisfy the
conditions of the proposition and that have fewer triangles than the simplicial
complex K. It follows from Proposition 7.6 that there exists a triangle 7 of K
and a subcomplex L of K such that the following conditions are satisfied:

(i) the simplicial complex K consists of the simplices of the subcomplex
L, the triangle 7, and the edges and vertices of 7;

(ii) The polyhedron |L| of the subcomplex L is bounded by a simple poly-
gon;

(iii) the intersection 7 N |L| of 7 with the polyhedron of L is either a single
edge of 7 or else is the union of two edges of 7.

It then follows from the induction hypothesis that H;(L; R) = 0. Now
if 7 N |L| is the union of two edges of 7 then Lemma 7.4 ensures that
i.: Hy(L; R) — H,(K; R) is an isomorphism for all non-negative integers ¢ in
this case. Otherwise 7N |L| is a single edge of 7 and Lemma 7.5 ensures that
i Hy(L; R) — H,(K;R) is an isomorphism for all non-negative integers ¢
in this case also. The result therefore follows by induction on the number of
triangles in the simplicial complex K. |}
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8 General Theorems concerning the Homol-
ogy of Simplical Complexes

8.1 The Homology of Cone-Shaped Simplicial Com-
plexes

Proposition 8.1 Let K be a simplicial complez, and let R be an unital ring.
Suppose that there exists a vertex w of K with the following property:

o if vertices vo,vi,...,V, span a simplex of K then so do
W, Vo, Vi, ..., Vg

Then Ho(K; R) = R, and H,(K; R) is the zero module for all ¢ > 0.

Proof Using Lemma 4.2, we see that there is a well-defined R-module homo-
morphism D,: Cy(K; R) — Cyq1(K; R) characterized by the property that

D,((vo,V1,..., V) = (W, Vo, V1,...,V,)

whenever vg, vy, ..., v, span a simplex of K. Now 0;(Dy((v))) = (v) — (w)
for all vertices v of K. It follows that

Z?"k Vk <Z7"k> ZT’k Vk )EBO(K R)

for all r,rs,...,7s € R and for all vertices vi,vy,..., vy of K. It follows
that
z —e(z)(w) € Bo(K; R)

for all z € Cy(K; R), where e: Cy(K; R) — R is the R-module homomorphism
from Cy(K; R) to R defined such that

g (iTk<Vk>> = zs:’r’k

for all r,79,...,7¢ € R and for all vertices vi,va,..., vy of K. It follows
that kere C By(K; R). But

(01 ((u, v))) = e((v) = (w)) =0

for all edges uv of K, and therefore By(K; R) C kere. We conclude therefore
that By(K; R) = kere.
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Now Zy(K; R) = Co(K; R) (because dy: Co(K; R) — C_1(K; R) is defined
to be the zero homomorphism from Cy(K; R) to the zero module C_(K; R)),
and therefore

Hy(K; R) = Co(K; R)/Bo(K; R),

where By(K;R) = kere. It follows that the R-module homomorphism
e:Cyo(K; R) — R induces a well-defined 1somorphlsm from HO(K R) to the

coefficient ring R that sends the homology class of Z ri(Vi) to Z 1y, for all

ri,To,...,7s € R and for all vertices vy, vs,..., vy of K (see Corollary 1.4).
Now let q > 0. Then

Oper(Dy((Vo, Vi, -, v))

= 3q+1(<w,vo,vl,...,vq>)
= (vo,V1,...,V, +Z W, vo, Ve, V)

= (Vo,Vi,...,Vg) — Dq—1<aq(<V0a Vi, ..oy Vg)))

whenever vy, vy,..., v, span a simplex of K. Thus
9g+1(Dg(c)) + Dg-1(04(c)) = ¢

for all c € Cy(K; R). In particular z = 0,41(Dy (z)) for all z € Z,(K; R), and
hence Z,(K; R) = B,(K; R). It follows that H,(K; R) is the zero group for
all ¢ > 0, as required. |}

Remark Let K be a simplicial complex. Suppose that there exists a ver-
tex w of K with the property described in the statement of Proposition 8.1
so that, if vertices vo,vi,..., v, of K span a simplex of K then so do
W, Vo, Vi,...,V, Let L be the subcomplex of K consisting of all simplices of
K that do not have v as a vertex, and let |L| be the polyhedron of L. Then
the polyhedron | K| is the union of all line segments with one endpoint at w
and the other endpoint in the polyhedron |L| of L. Thus the polyhedron | K|
K has the form of a cone with apex w whose base is the polyhedron |L| of
the subcomplex L.

Corollary 8.2 Let o be a simplex, let K, be the simplicial complex consisting
of the simplex o together with all of its faces, and let R be an unital ring.

Then Ho(Ky; R) = R, and H,(Ky; R) is the zero module for all ¢ > 0.

Proof The hypotheses of Proposition 8.1 are satisfied for the complex K,. |}
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8.2 Simplicial Maps and Induced Homomorphisms

Let K and L be simplicial complexes, and let R be an unital ring. It follows
from Proposition 4.5 that any simplicial map ¢: K — L between the simpli-
cial complexes K and L induces well-defined homomorphisms ¢,: C,(K; R) —
Cy(L; R) of chain groups, where

SOQ(<V07 Vi,... >Vq>) = <(10(V0)7 @(Vl)a ey SD(VQ»

whenever vy, vy,..., v, span a simplex of K.
Now ¢,_1 00, = 0, 0 @, for each integer ¢q. Therefore

0q(Z4(K; R)) C Zy(L; R) and  ¢g(By(K; R)) C By(L; R)

for all integers ¢q. It follows that any simplicial map ¢: K — L induces
well-defined homomorphisms

Pt Hq(K3 R) - Hq(L§ R)

of homology groups, where ¢.([2]) = [¢,(2)] for all g-cycles z € Z,(K; R).
It is a trivial exercise to verify that if K, L and M are simplicial complexes
and if ¢: K — L and ¢: L — M are simplicial maps then the induced homo-
morphisms of homology groups satisfy (1) o ). = 1, 0 ..

8.3 Connectedness and Hy(K; R)

Lemma 8.3 Let K be a simplicial complex. Then K can be partitioned
into pairwise disjoint subcomplexes Ki, Ko, ..., Ky whose polyhedra are the
connected components of the polyhedron |K| of K.

Proof Let X1, X5,..., X, be the connected components of the polyhedron
of K, and, for each j, let K; be the collection of all simplices o of K for
which o C Xj. If a simplex belongs to K for all j then so do all its faces.
Therefore K, K, ..., K, are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components Xy, Xs, ..., X of |K| are
pairwise disjoint. Moreover, if 0 € K then o C X for some j, since o is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then o € K. It follows that
K=K UKyU---UK;and |K| = |K;|U|Ks|U---U|K|, as required. ]

Let R be an unital ring. The direct sum My & My & --- & My of R-
modules My, Ms, ..., My is defined to be the R-module consisting of all k-
tuples (x1,xo, ..., xy) with x; € M; for i = 1,2,... k, where

(1,22, .., xk) + (Y1, Y2, - -, Yk) = (@1 + Y1, T2 + Yo, ..., Tk + Yi)
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and
r(zy, xe,. .., x8) = (rey,rae, ..., ray)

for all elements (x1,xs,...,zx) and (y1,yz,...,yx) of My & My @ --- & My,
and for all » € R.

Lemma 8.4 Let K be a simplicial complex, and let R be an unital ring.
Suppose that K = K; U Ky U --- U K, where Ky, K, ... K, are pairwise
disjoint. Then

Hy(K;R) = Hy(Ki; R) © Hy(Kos R) @ -+~ @ Hy(Ky; R)
for all integers q.

Proof We may restrict our attention to the case when 0 < ¢ < dim K,
since H,(K; R) = {0} if ¢ < 0 or ¢ > dim K. Now any ¢-chain ¢ of K with
coefficients in the unital ring R can be expressed uniquely as a sum of the
form ¢ = c¢; + ¢y + - -+ + ¢, where ¢; is a g-chain of K for j =1,2,...,s. It
follows that

Cy(K;R) = Cy(K1;R) ® Cy(Ko; R) @ - - - @ Cy( Ky R).

Now let z € Z,(K;R). We can express z uniquely in the form z =
21+ 29+ - + 25, where z; € Cy(Kj; R) for j =1,2,...,s. Now

0=0,(2) = 0y(21) + 0y(22) + -+ + 9,(2s),

and 0,(z;) is a (¢—1)-chain of K for j =1,2,...,s. It follows that 9,(z;) =0
for j =1,2,...,s. Hence each z; is a g-cycle of K, and thus

Zo(K; R) = Zy(K1; R) @ Zg(K2; R) @ -+ - @ Zy (K R).

Now let b € B,(K;R). Then b = J,41(c) for some ¢ € Cuy1(K;R).
Moreover ¢ = ¢; + ¢ + -+ - ¢5, where ¢; € Cy1(Kj;R) for j = 1,2,...,s.
Thus b = by + by + -+ - bs, where b; = Oyq1c; for j = 1,2,...,s. Moreover
bj € By(Kj;R) for j =1,2,...,s. We deduce that

B,(K;R) = B,(K1;R) ® B)(Ky;R) ® --- & By(Ks; R).
It follows from these observations that there is a well-defined isomorphism
viH(K;R) ® Hy (Ko R) @ -+ @ Hy(Ks; R) — Hy(K; R)

which maps ([z1], [22], ..., [25]) to [21 + 22 + - - - + 2], where [z;] denotes the
homology class of a ¢-cycle z; of K for j =1,2,...,s. |}
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Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
Vo, V1, ...,V of vertices of K with vo =y and v,, = z such that the line
segment with endpoints v;_; and v; is an edge belonging to K for j =
1,2,...,m.

Lemma 8.5 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if | K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex vy of K. It suffices to verify that
every vertex of K can be joined to vy by an edge path.

Let Ky be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to vy
by an edge path. If ¢ is a simplex belonging to K, then every vertex of o can
be joined to vy by an edge path, and therefore every face of o belongs to Kj.
Thus Ky is a subcomplex of K. Clearly the collection K of all simplices of K
which do not belong to Kj is also a subcomplex of K. Thus K = Ky U K,
where Ko N K; = (), and hence |K| = |Ko| U | K|, where |Ko| N |Ky| = 0.
But the polyhedra |Ky| and |K;| of Ky and K are closed subsets of |K|. It
follows from the connectedness of |K| that either |Ky| = 0 or |K;| = 0. But
v € Ky. Thus K; = 0 and Ky = K, showing that every vertex of K can be
joined to vy by an edge path, as required. |

Theorem 8.6 Let K be a simplicial complex and let R be an unital ring.
Suppose that the polyhedron |K| of K is connected. Then Hy(K; R) = R.

Proof Let vy, vs,..., v, be the vertices of the simplicial complex K. Every
0-chain of K with coefficients in R can be expressed uniquely as a formal
sum of the form

T1<V1> + 7“2<V2> + -+ T5<Vs>

for some ry,ro,...,7rs € R. It follows that there is a well-defined homomor-
phism e: Cy(K; R) — R defined such that

e(ri(vy) +ra(va) + -+ rs(ve)) =r1 +rg+ -+ 1.

for all r1,7q,...,7s € R and for all vertices vy, vs,...,v, of K.
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Now £(0;((u, v))) = e({(v) — (u)) = 0 whenever u and v are endpoints of
an edge of K. It follows that € o 9; = 0, and therefore By(K; R) C kere.
Let wqo,wq,...,w,, be vertices of K determining an edge path. Then
w;_1 w; is an edge of K for j =1,2,...,m, and
(Wi) — (Wo) = Z((Wj> - <ijl>) =0 (Z<Wj1,wj>> € By(K; R).

j=1 j=1

Now |K| is connected, and therefore any pair of vertices of K can be joined
by an edge path (Lemma 8.5). We deduce that (v) — (u) € By(K; R) for all
vertices u and v of K.

Choose a vertex u € K. Then

D vy = ri(vy) — (W) + (Z Tj) (u) € Bo(K; R) + (Z Tj) (u)

j=1 j=1 j=1 j=1

for all r1,79,...,rs € R and for all vertices vy, vs, ..., v, of K, and therefore
z —¢e(z)(u) € By(K; R)

for all z € Cy(K; R). It follows that kere C By(K; R). But we have already
shown that Byo(K; R) C kere. It follows that kere = By(K; R).

Now the homomorphism e: Cy(K; R) — R is surjective and its kernel
is Bo(K;R). Moreover Zy(K;R) = Co(K;R) (because 0p: Co(K;R) —
C_1(K;R) is defined to be the zero homomorphism from Cy(K; R) to the
zero module C_;(K; R)), and therefore

Hy(K; R) = Zo(K; R)/Bo(K; R) = Co(K; R)/Bo(K; R).

It follows that the homomorphism ¢ induces an isomorphism from Hy(K'; R)
to R (see Corollary 1.4), and therefore Ho(K; R) = R, as required. |

On combining Theorem 8.6 with Lemmas 8.3 and 8.4 we obtain immedi-
ately the following result.

Corollary 8.7 Let K be a simplicial complex, and let R be an unital ring.
Then Ho(K; R) & R?, where s is the number of connected components of | K|.

8.4 The Homology Groups of the Boundary of a Sim-
plex

Proposition 8.8 Let K be the simplicial complex consisting of all the proper
faces of an (n + 1)-dimensional simplex o, where n > 0. Then

Hy(K:Z) =7, H,(K;Z)~7, H,(K;Z)=0 whenq#0,n.
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Proof Let M be the simplicial complex consisting of the (n+1)-dimensional
simplex o, together with all its faces. Then K is a subcomplex of M, and
Cy(K;Z) = Cy(M;Z) when q < n.

It follows from Proposition 8.1 that Hy(M;Z) = Z and H,(M;Z) = 0
when ¢ > 0. (Here 0 denotes the zero group.) Now Z,(K;Z) = Z,(M;Z)
when ¢ < n, and B,(K;Z) = By(M;Z) when ¢ < n. It follows that
H,(K;Z) = Hy(M;Z) when ¢ < n. Thus Ho(K;Z) = Z and H,(K;Z) =0
when 0 < ¢ < n. Also H,(K;Z) = 0 when ¢ > n, since the simplicial com-
plex K is of dimension n. Thus, to determine the homology of the complex K,
it only remains to find H,(K;Z).

Let the (n+1)-dimensional simplex o have vertices v, vy, ..., V,11. Then

Cot1(M;Z) = {n(vo, V1, ..., Vpi1) 1 n € Z}.
and therefore B,,(M;Z) = {nz :n € Z}, where

2= Ony1 ({(Vo, V1, -+, V1)) -

Now H,,(M;Z) = 0 (Proposition 8.1). It follows that Z,(M;Z) = B, (M;Z).
But Z,(K;Z) = Z,,(M;Z), since C,,(K;Z) = C,(M;Z) and the definition of
the boundary homomorphism on C,,(K;Z) is consistent with the definition
of the boundary homomorphism on C,(M;Z). Also B,(K;Z) = 0, because
the simplicial complex K is of dimension n, and therefore has no non-zero
n-boundaries. It follows that

Ho(K;7) 2 Zy(K; Z) = Zo(M; Z) = Bo(M;7) 2 7.

Indeed H,(K;Z) = {n|z] : n € Z}, where [z] denotes the homology class of
the n-cycle z of K defined above. |}

Remark Note that the n-cycle z is an n-cycle of the simplicial complex K,
since it is a linear combination, with integer coefficients, of oriented n-
simplices of K. The n-cycle z is an n-boundary of the large simplicial com-
plex M. However it is not an n-boundary of K. Indeed the n-dimensional
simplicial complex K has no non-zero (n + 1)-chains, therefore has no non-
zero n-boundaries. Therefore z represents a non-zero homology class [z] of
H,(K;Z). This homology class generates the homology group H,(K;Z).

Remark The boundary of a 1-simplex consists of two points. Thus if K

is the simplicial complex representing the boundary of a 1-simplex then
Hy(K;Z) = Z & Z (Corollary 8.7), and H,(K;Z) = 0 when ¢ > 0.
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8.5 The Reduced Homology of a Simplicial Complex

Lemma 8.9 Let K be a non-empty simplicial complex, and let R be a unital
ring with multiplicative identity element 1g. Let e:Cy(K;R) — R be the
homomorphism defined such that

€(T1<V1> +’I"2<V2> + - +’I"k<Vk>) =ri+ro+---+1y

for all vertices vi,vs, ..., v of K and coefficients ri,7s, ..., belonging to
the coefficient ring R. Let

Ho(K; R) = kere/0,(C1(K; R)).
Then Hy(K; R) is a subgroup of Hy(K; R), and
Ho(K;R) = Hy(K;R) ® R.

Moreover Hy(K; R) is the kernel of the homomorphism e,: Hy(K;R) — R
defined such that €,([(v)]) = 1g for all vertices v of K.

Proof The definition of the homomorphisms € and 0; ensure that

(01 ((vo,v1))) = e({v1) = (v))) = 0

whenever vy and v; are the endpoints of an edge of K. It follows that
Bo(K; R) C kere. Now Zy(K;R) = Co(K; R), and therefore Hy(K; R) =
Co(K; R)/By(K; R). It follows that the quotient of the subgroup kere of
Co(K; R) by the subgroup By(K; R) is a well-defined subgroup Hy(K; R) of
Hy(K; R). Moreover the surjective homomorphism e: Co(K; R) — R induces
a well-defined homomorphism e,: Hy(K; R) — R, and Hy(K; R) = kere,.

Choose a vertex w of K. Then there is a well-defined homomorphism
f: Ho(K; R) — Ho(K; R) @ R defined such that

) = (= 2D lw)], e.(0)

for all n € Ho(K'; R). This homomorphism is an isomorphism whose inverse
sends (n,7) to n + r[(w)] for all n € Hy(K;R) and r € R. The result
follows. |}

Definition Let K be a simplicial complex, let R be a unital ring with iden-
tity element 1g, and let e,: Ho(K; R) — R be the homomorphism from
Ho(K; R) to R characterized by the requirement that e.([(v)]) = 1p for
all vertices v of K. The reduced homology groups lflq(K ; R) of K are defined
such that

. ker ¢, if g =0;
H,(K;R)=4( H,(K;R) if ¢ > 0;
0 if ¢ < 0.
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Lemma 8.10 Let K and L be simplicial complexes, let R be a unital ring,
and let p: K — L be a simplicial map from K to L. Then the induced
homomorphism v.: Hy(K; R) — Ho(L; R) of homology groups in dimension
zero maps the reduced homology group FIO(K : R) into the reduced homology
group Hy(L; R) of L. Moreover

ker(p,: Ho(K; R) — Ho(L; R)) C Hy(K; R)

and
. (Ho(K; R)) N Ho(L; R) = ¢.(Ho(K; R)).

Proof The relevant definitions ensure that

(e ([(V)]) = ex(lp(v))]) = Lr = ex([(V)]).

for all vertices v of K. The homology group Ho(K; R) is generated by the
homology classes of the vertices of K. It follows that e.(p.(n)) = e.(n) for
all n € Ho(K; R). It follows that an element n of Hy(K; R) belongs to the
reduced homology group Ho(K; R) if and only if . (n) belongs to the reduced
homology group Hy(L; R). Therefore ¢, maps the kernel of e,: Hy(K; R) —
R into the kernel of ,: Hy(L; R) — R, and thus ¢,(Ho(K; R)) C Hy(L; R).
Also the kernel of ¢,: Hy(K; R) — Hy(L; R) must be contained in Hy(K; R),
and

0. (Ho(K; R)) N Ho(L; R) = ¢.(Ho(K; R)),

as required. |
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