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3 Simplicial Complexes

3.1 (Geometrical Independence

Definition Points vy, vy,...,v, in some Euclidean space R” are said to be
geometrically independent (or affine independent) if the only solution of the
linear system

q
> Nvi =0,
j=0
q
>N =0
j=0
is the trivial solution \g = A\ = --- = A\, = 0.

Lemma 3.1 Let vo,vy,...,v, be points of Euclidean space R* of dimen-
sion k. Then the points vo,Vvi,...,v, are geometrically independent if and
only if the displacement vectors vi — Vo, Ve — Vo, ..., Vy — Vo are linearly
independent.

Proof Suppose that the points vy, vy, ..., v, are geometrically independent.
Let A1, A2, ..., Ay be real numbers which satisfy the equation

Z)\j(vj —vp) =0.

j=1
q q

Then > A\;jv; =0 and
~ -

q
A;j =0, where A\g = — > \;, and therefore
=1

J Jj=0 J
=A== )7=0.
It follows that the displacement vectors vi — vy, vy — Vg, ..., v, — Vo are

linearly independent.
Conversely, suppose that these displacement vectors are linearly inde-

pendent. Let Ao, A1, A2,..., A, be real numbers which satisfy the equations
q q q
Ajvi=0and Y A; =0. Then A\g = — > \;, and therefore
j=0 3=0 j=1

q q q
0= Z/\jVj = )\()VO -+ Z)\jVj = Z)\j(Vj — VO).
7=0 j=1 j=1

It follows from the linear independence of the displacement vectors v; — vg
for j =1,2,...,q that

A== =) =0.



q
But then Ay = 0 also, because \y = — >  A;. It follows that the points
j=1

Vo, V1, ..., V, are geometrically independent, as required. |}
It follows from Lemma 3.1 that any set of geometrically independent

points in R* has at most k + 1 elements. Moreover if a set consists of geo-
metrically independent points in R¥, then so does every subset of that set.

3.2 Simplices
Definition A g-simplez in R* is defined to be a set of the form

q q
{thvjzogtjglforj:0,1,...,qand th:1},
j=0

=0
where v, vy, ..., v, are geometrically independent points of R*. The points
Vo, V1, ..., Vq are referred to as the vertices of the simplex. The non-negative

integer ¢ is referred to as the dimension of the simplex.
Example A 0-simplex in a Euclidean space R* is a single point of that space.

Example A 1-simplex in a Euclidean space R of dimension at least one is
a line segment in that space. Indeed let A be a 1-simplex in R* with vertices
v and w. Then

A= {sv+itw:0<s<1, 0<t<lands+t=1}
{I—=t)v+tw:0<t <1},

and thus ) is a line segment in R* with endpoints v and w.

Example A 2-simplex in a Euclidean space R¥ of dimension at least two is
a triangle in that space. Indeed let 7 be a 2-simplex in R¥ with vertices u, v
and w. Then

T={ru+sv+tw:0<rst<landr+s+t=1}.

Let x € 7. Then there exist r,s,t € [0, 1] such that x =ru+ sv + tw and
r+s+t=1 If r=1 then x = u. Suppose that » < 1. Then

X:ru+(1—r)<(1—p)v+pw>
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t
where p = T Moreover 0 < r <1 and 0 < p < 1. Moreover the above

formula determines a point of the 2-simplex 7 for each pair of real numbers
r and p satisfying 0 <r <1 and 0 < p < 1. Thus

T = {ru—l—(l—?")((l—p)V-HUW) 0<p,r< 1-}-

Now the point (1 — p)v + pw traverses the line segment vw from v to w
as p increases from 0 to 1. It follows that 7 is the set of points that lie on
line segments with one endpoint at u and the other at some point of the line
segment v w. This set of points is thus a triangle with vertices u, v and w.

Example A 3-simplex in a Euclidean space R* of dimension at least three
is a tetrahedron on that space. Indeed let x be a point of a 3-simplex ¢ in
R? with vertices a, b, ¢ and d. Then there exist non-negative real numbers
s, t, w and v such that

x=sa+tb+uc+uvd,

and s+t+u-+v = 1. These real numbers s, t, u and v all have values between
0 and 1, and moreover 0 <t <1 -5, 0<u<l—sand 0 <v<1-—s.
Suppose that x # a. Then 0 < s <1 and x =sa+ (1 — s)y, where

t U v
= b d.
1-s +1—sc+1—s

Moreover y is a point of the triangle b cd, because

y

0< <1l 0< <1l 0<

1—s 1—s 1—s

and
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It follows that the point x lies on a line segment with one endpoint at the
vertex a of the 3-simplex and the other at some point y of the triangle b cd.
Thus the 3-simplex o has the form of a tetrahedron (i.e., it has the form of
a pyramid on a triangular base b cd with apex a).

A simplex of dimension ¢ in R* determines a subset of R¥ that is a
translate of a g-dimensional vector subspace of R*. Indeed let the points
V0, V1, .., V, be the vertices of a g-dimensional simplex ¢ in R*. Then these
points are geometrically independent. It follows from Lemma 3.1 that the
displacement vectors vi — vg, va — Vg, ..., VvV, — Vg are linearly independent.
These vectors therefore span a k-dimensional vector subspace V of R*. Now,
given any point x of o, there exist real numbers ¢, ;,...,?, such that 0 <

q q
t;<lforj=0,1,...,q, Y. t;=1and x= > t;v;. Then
j=0 Jj=0

q q q
X = (Z%’) Vot Y (v = Vo) = Vo + ) t;(v; — Vo).
§=0 j=1 j=1
It follows that
q q
a:{V0+th(vj—vo):Ogtjglforjzl,Q,...7qand thfl},
j=1 j=1

and therefore ¢ C vg + V. Moreover the g-dimensional vector subspace V'
of R* is the unique g-dimensional vector subspace of R¥ that contains the
displacement vectors between each pair of points belonging to the simplex o.

3.3 Barycentric Coordinates

Let o be a g-simplex in R* with vertices v, vy,...,v,. If x is a point of &
then there exist real numbers #y,t;,...,%, such that

q q
d tivi=x, Y t;=land0<t;<lforj=0,1,...,q.
=0

Jj=0
q q
Moreover tg,ti,...,t, are uniquely determined: if ) s;v; = > t;v; and
j=0 j=0

q q q q
Y>.sj=>.t;=1,then > (t; —s;)v; = 0 and ) (t; —s;) = 0, and there-
=0 i=0 =0 i=0

fore t; —s; = 0 for j = 0,1,...,q, because the points vy, vy,...,v, are
geometrically independent.
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Definition Let o be a g-simplex in R¥ with vertices vq, vy, ..., v,, and let
x € o. The barycentric coordinates of the point x (with respect to the

vertices vg, v1,...,V,) are the unique real numbers ¢y, 1, ..., t, for which
q q
thvj—x and th =1
7=0 7=0
The barycentric coordinates ¢y, t1,...,t, of a point of a g-simplex satisfy

the inequalities 0 <¢; <1 for j =0,1,...,q.
Example Consider the triangle 7 in R? with vertices at i, j and k, where
i=(1,0,0), j=(0,1,0) and k= (0,0,1).
Then
T={(v,y,2) ER*: 0<2,y,z<landx+y+z=1}
The barycentric coordinates on this triangle 7 then coincide with the Carte-
sian coordinates z, y and z, because
(z,y,2) =wi+yj+:zk

for all (z,y,z2) € 7.

Example Consider the triangle in R? with vertices at (0,0), (1,0) and (0, 1).
This triangle is the set

{(z,y) eR?*:2>0, y>0and z +y < 1.}.

The barycentric coordinates of a point (x,y) of this triangle are t¢, t; and s,
where
to=1—x—y, ti=x and ty=y.

Example Consider the triangle in R? with vertices at (1,2), (3,3) and (4, 5).
Let to, t; and t be the barycentric coordinates of a point (z,y) of this
triangle. Then %, t1, ty are non-negative real numbers, and ty + t; + ¢, = 1.
Moreover
(z,y) = (1 —t1 — t2)(1,2) + t4(3,3) + t2(4,5),
and thus
r=142t; 4+ 3ty and y =2+t + 3ts.

It follows that

ti=x—y+1 and tQZ%($—1—2t1):§y—%ZL’—1,
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and therefore

t():l—tl—tgzéy—gx—f'l
In order to verify these formulae it suffices to note that (to,t1,t2) = (1,0,0)
when (z,y) = (1,2), (to, t1,t2) = (0,1,0) when (z,y) = (3,3) and (to, t1,t2) =
(0,0,1) when (z,y) = (4,5).

Lemma 3.2 Let g be a non-negative integer, let o be a q-simplex in R™,
and let 7 be a g-simplex in R™, where m > q and n > q. Then o and T are
homeomorphic.

Proof Let vy, vy,...,v, be the vertices of o, and let wg, wy, ..., w, be the
vertices of 7. The required homeomorphism h: o — 7 is given by

q q
h (Z tj"j) = thWj
=0 =0
q
for all to,t1, ..., t, satisfying 0 <t; <1lfor j=0,1,...,gand > t; =1. ||
7=0

A homeomorphism between two g-simplices defined as in the above proof
is referred to as a simplicial homeomorphism.

It follows from Lemma 3.2 that every g-simplex is homeomorphic to the
standard q-simplex in R9T! whose vertices are the points

(1,0,0,...,0), (0,1,0,...,0),..., (0,0,0,...,1).

This standard g¢-simplex is the subset of R4*! consisting of those points
to,t1,...,ts) of R which satisfy 0 < t; < 1 for j = 0,1,...,q and
q y j

q
Z tj — 1
7=0

Example Let o be the triangle in R? with vertices at (1,2), (3,3) and (4, 5)
discussed in a previous example, and let the map h: o — R3 from o to R? be
defined such that

May) = (Sy—2o+1, o —y+1, 3y-La-1).

We have already verified that the components of this map h are the barycen-
tric coordinate functions on the triangle o. It follows that h maps this triangle
homeomorphically onto the triangle in R* with vertices (1,0,0), (0,1,0) and
(0,0,1).
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3.4 Simplicial Complexes in Euclidean Spaces

Definition Let ¢ and 7 be simplices in R*¥. We say that 7 is a face of o if
the set of vertices of 7 is a subset of the set of vertices of o. A face of o is
said to be a proper face if it is not equal to o itself. An r-dimensional face
of o is referred to as an r-face of o. A 1-dimensional face of o is referred to
as an edge of 0.

Note that any simplex is a face of itself. Also the vertices and edges of
any simplex are by definition faces of the simplex.

Definition A finite collection K of simplices in R is said to be a simplicial
complex if the following two conditions are satisfied:—

e if 0 is a simplex belonging to K then every face of o also belongs to K,

e if o, and o, are simplices belonging to K then either oy Noy = () or
else 01 N oy is a common face of both ¢, and os.

The dimension of a simplicial complex K is the greatest non-negative
integer n with the property that K contains an n-simplex. The union of all
the simplices of K is a compact subset | K| of R referred to as the polyhedron
of K. (The polyhedron is compact since it is both closed and bounded in
RE.)

Example Let K, consist of some n-simplex o together with all of its faces.
Then K, is a simplicial complex of dimension n, and |K,| = 0.

Lemma 3.3 Let K be a simplicial complex, and let X be a topological space.
A function f:|K| — X is continuous on the polyhedron |K| of K if and only
if the restriction of f to each simplex of K is continuous on that simplex.

Proof If a topological space can be expressed as a finite union of closed
subsets, then a function is continuous on the whole space if and only if its
restriction to each of the closed subsets is continuous on that closed set. The
required result is a direct application of this general principle. |

We shall denote by Vert K the set of vertices of a simplicial complex K
(i.e., the set consisting of all vertices of all simplices belonging to K). A
collection of vertices of K is said to span a simplex of K if these vertices are
the vertices of some simplex belonging to K.

Definition Let K be a simplicial complex in R*¥. A subcomplex of K is a
collection L of simplices belonging to K with the following property:—
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e if o is a simplex belonging to L then every face of o also belongs to L.

Note that every subcomplex of a simplicial complex K is itself a simplicial
complex.

Definition Let vy, vy,...,v, be the vertices of a ¢g-simplex ¢ in some Eu-

clidean space R*. We define the interior of the simplex o to be the set of all
q

points of ¢ that are of the form ) t;v;, where t; > 0 for j =0,1,...,¢ and
7=0

q9
ot =1
j=0

Lemma 3.4 Let o be a q-simplex in some Euclidean space R*, where k > q.
Then a point of o belongs to the interior of o if and only if it does not belong
to any proper face of o.

Proof Every proper face of the ¢-dimensional simplex ¢ is contained in one
of the (¢—1)-dimensional proper faces of o whose vertex set omits exactly one
vertex of 0. Let x be a point of o with barycentric coordinates ¢y, 1,...,1,
with respect to the vertices vo,vy,...,v, of 0. Then

X:t0V0+t1V1+"'—|—thq,

where t; > 0 for j = 0,1,...,¢ and zq: t; = 1. The barycentric coordinates
=0

to,t1,...,t, of x are uniquely deterrrjlined by the point x. It follows that x
belongs to the (¢— 1)-dimensional proper face of o whose vertex set omits the
vertex v; of o if and only if ¢; = 0. It follows that x belongs to some proper
face of ¢ if and only if ¢; = 0 for at least one integer j between 0 and ¢g. Thus
a necessary and sufficient condition to ensure that a point x of the simplex o
belongs to no proper face of the simplex is that the barycentric coordinates
t1,t2,...,t, of that point must all be strictly positive. It therefore follows
from the definition of the interior of a simplex that a point of that simplex
belongs to the interior of the simplex if and only if it does not belong to any
proper face of the simplex. |}

Example A 0-simplex consists of a single vertex v. The interior of that
O-simplex is the vertex v itself.

Example A 1-simplex is a line segment. The interior of a line segment in a
Euclidean space R* with endpoints v and w is

{I—=t)v+tw:0<t <1}

Thus the interior of the line segment consists of all points of the line segement
that are not endpoints of the line segment.
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Example A 2-simplex is a triangle. The interior of a triangle with vertices
u, v and w is the set

{rut+sv+tw:0<rs;t<landr+s+t=1}

The interior of this triangle consists of all points of the triangle that do not
lie on any edge of the triangle.

Remark Let o be a g-dimensional simplex in some Euclidean space R¥,
where k > ¢. If & > ¢ then the interior of the simplex (defined according
to the definition given above) will not coincide with the topological interior
determined by the usual topology on R¥. Consider for example a triangle
embedded in three-dimensional Euclidean space R3. The interior of the tri-
angle (defined according to the definition given above) consists of all points
of the triangle that do not lie on any edge of the triangle. But of course no
three-dimensional ball of positive radius centred on any point of that trian-
gle is wholly contained within the triangle. It follows that the topological
interior of the triangle is the empty set when that triangle is considered as a
subset of three-dimensional space R3.

Lemma 3.5 Any point of a simplex belongs to the interior of a unique face
of that simplex.

Proof let vy, vy,..., v, be the vertices of a simplex o, and let x € . Then

q
x = »_ t;vj, where to, t1,...,t, are the barycentric coordinates of the point x.
j=0

q
Moreover 0 <'t; <1 for j =0,1,...,q and > t; = 1. The unique face of o
=0
containing x in its interior is then the face spanned by those vertices v; for

which ¢; > 0. |

Lemma 3.6 Let K be a finite collection of simplices in some Fuclidean
space R* and let |K| be the union of all the simplices in K. Then K is
a simplicial complex (with polyhedron |K|) if and only if the following two
conditions are satisfied:—

e K contains the faces of its simplices,

e cvery point of | K| belongs to the interior of a unique simplex of K.

Proof Suppose that K is a simplicial complex. Then K contains the faces
of its simplices. We must show that every point of | K| belongs to the interior
of a unique simplex of K. Let x € |K|. Then x € p for some simplex p of K.
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It follows from Lemma 3.5 that there exists a unique face o of p such that
the point x belongs to the interior of ¢. But then ¢ € K, because p € K
and K contains the faces of all its simplices. Thus x belongs to the interior
of at least one simplex of K.

Suppose that x were to belong to the interior of two distinct simplices o
and 7 of K. Then x would belong to some common face ¢ N7 of ¢ and 7
(since K is a simplicial complex). But this common face would be a proper
face of one or other of the simplices o and 7 (since o # 1), contradicting
the fact that x belongs to the interior of both ¢ and 7. We conclude that
the simplex ¢ of K containing x in its interior is uniquely determined, as
required.

Conversely, we must show that if K is some finite collection of simplices
in some Euclidean space, if K contains the faces of all its simplices, and if
every point of the union | K| of those simplices belongs the the interior of a
unique simplex in the collection, then that collection is a simplicial complex.
To achieve this, we must prove that if o and 7 are simplices belonging to the
collection K, and if o N7 # (), then o N 7 is a common face of o and 7.

Let x € o N7. Then x belongs to the interior of a unique simplex w
belonging to the collection K. However any point of o or 7 belongs to the
interior of a unique face of that simplex, and all faces of ¢ and 7 belong to
K. It follows that w is a common face of ¢ and 7, and thus the vertices of
w are vertices of both ¢ and 7. It follows that the simplices o and 7 have
vertices in common.

Let p be the simplex whose vertex set is the intersection of the vertex
sets of 0 and 7. Then p is a common face of both ¢ and 7, and therefore
p € K. Moreover if x € 0 N7 and if w is the unique simplex of K whose
interior contains the point x, then (as we have already shown), all vertices
of w are vertices of both ¢ and 7. But then the vertex set of w is a subset
of the vertex set of p, and thus w is a face of p. Thus each point x of o N7
belongs to p, and therefore cN7 C p. But p is a common face of o and 7 and
therefore p C o N 7. It follows that o N7 = p, and thus ¢ N 7 is a common
face of o and 7. This completes the proof that the collection K of simplices
satisfying the given conditions is a simplicial complex. |}

Definition A triangulation (K, h) of a topological space X consists of a sim-
plicial complex K in some Euclidean space, together with a homeomorphism
h:|K| — X mapping the polyhedron |K| of K onto X.

The polyhedron of a simplicial complex is a compact Hausdorff space.

Thus if a topological space admits a triangulation then it must itself be a
compact Hausdorff space.
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Lemma 3.7 Let X be a Hausdorff topological space, let K be a simplicial
complex, and let h: | K| — X be a bijection mapping |K| onto X . Suppose that
the restriction of h to each simplex of K is continuous on that simplex. Then
the map h:|K| — X is a homeomorphism, and thus (K, h) is a triangulation
of X.

Proof Each simplex of K is a closed subset of |K|, and the number of sim-
plices of K is finite. It follows from Lemma 3.3 that h: || — X is continuous.
Also the polyhedron |K| of K is a compact topological space. But every con-
tinuous bijection from a compact topological space to a Hausdorff space is a
homeomorphism. Thus (K, h) is a triangulation of X. |

3.5 Simplicial Maps

Definition A simplicial map p: K — L between simplicial complexes K
and L is a function ¢: Vert K — Vert L from the vertex set of K to that of
L such that p(vy), @(v1),...,p(v,) span a simplex belonging to L whenever
Vo, V1,...,V, span a simplex of K.

Note that a simplicial map ¢: K — L between simplicial complexes K
and L can be regarded as a function from K to L: this function sends a
simplex o of K with vertices vy, vy, ..., Vv, to the simplex ¢(o) of L spanned
by the vertices ¢(vp), ¢(v1), ..., o(v).

A simplicial map ¢: K — L also induces in a natural fashion a continuous
map @: |K| — |L| between the polyhedra of K and L, where

@ (Z th]'> = th@(Vj)

whenever 0 <t; <1forj=0,1,...,q, itj =1, and vo, vy,..., Vv, span a
=0

simplex of K. The continuity of this mapjfollows immediately from a straight-
forward application of Lemma 3.3. Note that the interior of a simplex o of
K is mapped into the interior of the simplex (o) of L.

There are thus three equivalent ways of describing a simplicial map: as
a function between the vertex sets of two simplicial complexes, as a function
from one simplicial complex to another, and as a continuous map between
the polyhedra of two simplicial complexes. In what follows, we shall describe
a simplicial map using the representation that is most appropriate in the
given context.
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3.6 Barycentric Subdivision of a Simplicial Complex

Let o be a g-simplex in R¥ with vertices vq, vy, ...,v,. The barycentre of o
is defined to be the point

.1
o= m(V0+V1+‘“+Vq)-
Let 0 and 7 be simplices in some Euclidean space. If o is a proper face
of 7 then we denote this fact by writing o < 7.
A simplicial complex K, is said to be a subdivision of a simplicial com-
plex K if |K;| = |K| and each simplex of K; is contained in a simplex of
K.

Definition Let K be a simplicial complex in some Euclidean space R*. The
first barycentric subdivision K' of K is defined to be the collection of simplices
in R¥ whose vertices are 6y,61,...,0, for some sequence og,0y,...,0, of
simplices of K with 0g < 01 < -+ < g,. Thus the set of vertices of K’ is the
set of all the barycentres of all the simplices of K.

Note that every simplex of K’ is contained in a simplex of K. Indeed if
00,01, ...,0, € K satisfy g < 01 < -+ < 0, then the simplex of K’ spanned
by 69,61, ...,0,, is contained in the simplex o, of K.

Example Let K be the simplicial complex consisting of two triangles abd

and b cd that intersect along a common edge b d, together with all the edges
and vertices of the two triangles, as depicted in the following diagram:

d

The barycentric subdivision K’ of this simplicial complex is then as depicted
in the following diagram:
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We see that K’ consists of 12 triangles, together with all the edges and
vertices of those triangles. Of the 11 vertices of K’, the vertices a, b, ¢ and
d are the vertices of the original complex K, the vertices e, f, g, h and i
are the barycentres of the edges ab, bc, cd, ad and bd respectively, and
are located at the midpoints of those edges, and the vertices j and k are
the barycentres of the triangles abd and becd of K. Thus e = %a + %b,
f= %b+%c, etc., and j = %a—l—%b—i—%d and k = %b+%c—|—%d.

Proposition 3.8 Let K be a simplicial complex in some Fuclidean space,
and let K' be the first barycentric subdivision of K. Then K' is itself a
simplicial complex, and |K'| = |K]|.

Proof We prove the result by induction on the number of simplices in K.
The result is clear when K consists of a single simplex, since that simplex
must then be a point and therefore K/ = K. We prove the result for a
simplicial complex K, assuming that it holds for all complexes with fewer
simplices.

It is clear from the definition of the barycentric subdivision K’ that any
face of a simplex of K’ must itself belong to K’. We must verify that any
two simplices of K’ are disjoint or else intersect in a common face.

Choose a simplex ¢ of K for which dimo = dim K, and let L = K\ {o}.
Then L is a subcomplex of K, since o is not a proper face of any simplex
of K. Now L has fewer simplices than K. It follows from the induction
hypothesis that L’ is a simplicial complex and |L'| = |L|. Also it follows
from the definition of K’ that K’ consists of the following simplices:—

e the simplices of L/,

e the barycentre & of o,
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e simplices dp whose vertex set is obtained by adjoining ¢ to the vertex
set of some simplex p of L', where the vertices of p are barycentres of
proper faces of o.

By checking all possible intersections of simplices of the above types, it is
easy to verify that any two simplices of K’ intersect in a common face. Indeed
any two simplices of L’ intersect in a common face, since L’ is a simplicial
complex. If p; and ps are simplices of L’ whose vertices are barycentres of
proper faces of o, then p; N py is a common face of p; and py which is of this
type, and dp; N dpy = d(p1 N p2). Thus Gp; N Gps is a common face of 6p;
and G py. Also any simplex 7 of L’ is disjoint from the barycentre & of o, and
apN7=pN7. We conclude that K’ is indeed a simplicial complex.

It remains to verify that |K'| = |K|. Now |K'| C |K|, since every simplex
of K’ is contained in a simplex of K. Let x be a point of the chosen simplex o.
Then there exists a point y belonging to a proper face of o and some t € [0, 1]
such that x = (1—t)6+ty. But theny € |L|, and |L| = |L/| by the induction
hypothesis. It follows that y € p for some simplex p of L’ whose vertices are
barycentres of proper faces of o. But then x € dp, and therefore x € |K’|.
Thus |K| C |K’|, and hence |K’| = |K]|, as required. ||

We define (by induction on 5) the jth barycentric subdivision K ) of K
to be the first barycentric subdivision of KU~V for each j > 1.

Lemma 3.9 Let 0 be a g-simplex and let T be a face of 0. Let ¢ and 7 be
the barycentres of o and T respectively. If all the I1-simplices (edges) of o
have length not exceeding d for some d > 0 then

o7 < 1
Tqg+1
Proof Let vy, vy,...,v, be the vertices of 0. Let x and y be points of o.
q q
We can writey = > t;v;, where 0 <t¢; <1fori=0,1,...,¢gand > ¢, =1.
=0 =0
Now
q q
x—y| = th’(X—Vi) < th’|X—Vz’|
i=0 i=0
< maximum (|x — vol, [x —vi|,...,|x —Vv,|).

Applying this result with x = ¢ and y = 7, we find that

|6 — 7| < maximum (|6 — vol, |6 — vi|,..., |6 — v,]).
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But

i

i+ ——z
q+1 qg+1

fori =0,1,...,q, where z; is the barycentre of the (¢ — 1)-face of o opposite
to v;, given by

1
zZ, = — V.
@i
Moreover z; € o. It follows that
o —vil = g v < 2L
qg+1 “q+1
fori=1,2,...,q, and thus
L . . . ) qd
|6 — 7| < maximum (|6 — vol, |6 — Vi],..., |0 —v,]) < —,
qg+1

as required.

The mesh p(K) of a simplicial complex K is the length of the longest
edge of K.

Lemma 3.10 Let K be a simplicial complex in R¥ for some k, and let n be
the dimension of K. Let K' be the first barycentric subdivision of K. Then

p(K') < (K.

n
n+1

Proof A 1-simplex of K’ is of the form (7,5), where ¢ is a ¢g-simplex of K
for some ¢ < n and 7 is a proper face of o. Then

- ol < —L (k) <

by Lemma 3.9, as required. |}

It follows directly from the above lemma that lim u(K")) = 0, where

Jj—+oo

K is the jth barycentric subdivision of K.
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3.7 The Barycentric Subdivision of a Simplex

Proposition 3.11 Let o be a simplex in RN with vertices vo, vy, ..., v,, and
let mg,my, ..., m, be integers satisfying

0<my<mi <---<m,<q.

Let p be the simplex in RY with vertices 79,1, ..., 7., where 73, denotes the
barycentre of the simplex 1, with vertices vo,vy,..., vy, fork=1,2,...,r
Then the simplez p is the set consisting of all points of RN that can be repre-
sented in the form Z?:o t;vj, where to,t1,...,t, are real numbers satisfying
the following conditions:

(i) 0<t; <1 forj=0,1,...,q;
.o q
(i) Yoty =
=0
(i) to >t > - >ty

(iv) tj =ty for all integers j satisfying j < my;

(V) tj = tim, for all integers j and k satisfying 0 < k <1 and my_y < j <
my;
(vi) t; =0 for all integers j satisfying j > m,.
Moreover the interior of the simplex p is the set consisting of all points of
q
RN that can be represented in the form Zotjvj, where to,t1,...,t, are real
]:
numbers satisfying conditions (i)—(iv) above together with the following extra
condition:

(Vil) tp,_, > tm, > 0 for all integers k satisfying 0 < k <.

Proof Let wy =7 for k =0,1,...,r. Then

Mk

1
W = V.
g my + 1 Z !
7=0
Let x € p, and let the real numbers ug, uq, ..., u, be the barycentric coordi-
nates of the point x with respect to the Vertlces Wo, Wi, ..., W, of p, so that
0<u,<1lfork=0,1,.. T‘Zukwk—x andZukzl Also let
=0 k=0

K()={keZ:0<k<randmg>j}
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q
for j =0,1,...,¢. Then x = ) t;v;, where
=0

Uk
tj: Z mk—l—l

kEK(j)

when 0 < 7 <m,, and ¢; = 0 when m, < j < ¢. Moreover

PO Uk _ Uk
;] az—;kezl(;ﬁ k u%;Lm”l
ro mg r

I S S

where
L={(j,k)€Z°:0<j<q 0<k<randj<m}.

Now t; > 0 for j = 0,1,...,¢q, because u; > 0 for £ = 0,1,...,r, and
therefore

q
0<t; <Y ;=1
j=0

Also tj < t; for all integers j and j’ satisfying 0 < 5 < j' < m,, because
K(j') € K(j). If 0 < j < myg then K(j) = K(my), and therefore t; = t,,,.
Similarly if 0 < & < r, and my—1 < j < my then K(j) = K(mg), and

therefore t; = ¢,,,. Thus the real numbers %y,?;,...,?; satisfy conditions
(i)—(vi) above.
Now let tg,t1,...,t, be real numbers satisfying conditions (i)-(vi), let

= (my + D)ty
and
U, = (mk + 1)(tmk - tmk+1)
for k=0,1,...,7r—1. Then

Ut
tm, =

for k=0,1,...,r. Alsou, >0 for k=0,1,...,r, and

r r—1
Sk = Y (A Dty — bgy) + (my + Dt
k=0 k=0
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<
[y

= > (4 Dt = (macsr + Dty ) + (e + Do,
0

£
Il

r—1
+ E M1 — Myt Mt
k=0

= (mo+ tm, + Z(mk — M 1)y
k=1

:ZtJrZ Z t—Zt

k=1 j=mp_1+1

= 17
because the real numbers to,t1,...,t, satisfy conditions (ii), (iv), (v) and
(vi). It follows that ug,us,...,u, are the barycentric coordinates of a point
of the simplex with vertices wg, w1, ..., w,. Moreover
Uk
b=,
KeKU) my + 1

for y =0,1,...,q, and therefore

I8
) >y
UWK — A7
m 1
k=0 —0 j=0 F -

q
= E thj.
j=0

We conclude the the simplex p is the set of all points of RY that are

q
representable in the form ) ¢;v;, where the coefficients to, ¢, ..., ¢, are real
j=0
numbers satisfying conditions (i)—(vi).
q
Now the point ) ¢;v; belongs to the interior of the simplex p if and only
j=0

ifug > 0for k=0,1,...,r, where u, = (m, + 1)t,,. and ux = (mg+1)(tm,
tmy,,) for k=0,1,...,r — 1. This point therefore belongs to the interior of
the simplex p if and only if ¢,,, > 0 and ¢,,, >t for k=0,1,...,r — 1.

MEg+1
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q
Thus the interior of the simplex p consists of those points > ¢;v; of ¢ whose
=0
barycentric coordinates ty, ?1, . .., t;, with respect to the vertices vo, vy, . ..
of o satisfy conditions (i)—(vii), as required. |

A%

)

Corollary 3.12 Let o be a simplex in some Euclidean space RY, and let
K, be the simplicial complex consisting of the simplex o together with all
of its faces. Let vy, Vi,...,v, be the vertices of o, and let to,t1,...,t, be
the barycentric coordinates of some point x of o, so that 0 < t; < 1 for

7=0,1,...,q, i t;v; =x and i t; = 1. Then there exists a permutation 7
of the set {0, 1,].:.0. ,q} and integje:r(; Mo, M1, ..., M, satisfying
0<my<m <---<m,<q.
such the following conditions are satisfied:
(ili) tr() 2 tr1) =+ 2 tr(g);
(iV) tx() = tr(mo) Jor all integers j satisfying j < my;

(V) tr() = ta(my) for all integers j and k satisfying 0 < k <1 and my_y <
j S mgy

(vi) tz(j) = 0 for all integers j satisfying j > m,.
(Vi) tr(my_yy > ta(my) > 0 for all integers k satisfying 0 <k <.

Let p be the simplex of the first barycentric subdivision K. of the simplical

complex K, with vertices 7y, 71, ..., T, where Ty 1s the barycentre of the sim-
plex 7, with vertices Vo), Va(1), - - - Va(my) for k=0,1,...,7. Then p is the

unique simplex of K that contains the point x in its interior.

Proof The required permutation 7 can be any permutation that rearranges
the barycentric coordinates in descending order, so that 1 > tr) > 1) >
... 2 tr = 0. The required result then follows immediately on applying
Proposition 3.11. |

Corollary 3.12 may be applied to determine the simplices of the first

barycentric subdivision K of the simplicial complex K, that consists of
some simplex o together with all of its faces.
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Example Let K be the simplicial complex consisting of a triangle with
vertices vg, vi and vy, together with all its edges and vertices, and let K’
be the first barycentric subdivision of the simplicial complex K. Then K’
consists of six triangles poi12, P12, Po21, P120, P201 and po1g, together with all
the edges and vertices of those triangles, where

Vo

Po12 P102
Vo Vi

2 2

Po12 = {thvj:lztOZtlztgannd Zt]:l}’
7=0 7=0
2 2

P102 = {thvjzlztlztOZtQZOand thzl},
7=0 7=0
2 2

Po21 = {thvjzlztOZtQZtleand Zt]:l}’
j=0 Jj=0
2 2

P120 — {thvj:lztlztgztOEOand Zt]:l}’
j=0 Jj=0
2 2

P201 — {thvj:IZtQZtOZtleand thzl},
j=0 Jj=0
2 2

P10 = {thvjzlztgztlztonand Zt]:l}
j=0 Jj=0



The intersection of any two of those triangles is a common edge or vertex of
those triangles. For example, the intersection of the triangles pg12 and pygo
is the edge pg12 N p1o2, where

2 2
Po12 N Pro2 = {thlelzt():tthgzoand Zt]:l}

=0 =0
And the intersection of the triangle pgp12 and pig is the barycentre of the
2

triangle v vq vo, and is thus the point ) ¢;v; whose barycentric coordinates
=0
to, t1, to satisfy to = t1 =ty = 3.

Let o be a g-simplex with vertices vo, vy, ..., vy, let K, be the simplicial
complex consisting of the simplex o, together with all its faces, and let K/
be the first barycentric subdivision of the simplicial complex K,. Then the
g-simplices of K are the simplices of the form py,gm,..m,, Where the list
Mo, My, ..., M, is a rearrangement of the list 0, 1,..., ¢ (so that each integer
between 0 and ¢ occurs exactly one in the list mg,my,...,m,), and where

a q
Pmoms ..mq = {Ztﬂj 1>y Z b, > 2 b, > 0and Y 1 = 1}.
j=0 =0

A point of o belongs to the interior of one of the simplices of K/ if and only if
its barycentric coordinates %y, t1,...,%, are all distinct and strictly positive.

q
Moreover if a point > ¢;v,; of o with barycentric coordinates to,t1,...,1,
7=0
belongs to the interior of some r-simplex of K/ then there are exactly r + 1
distinct values amongst the real numbers to, t1,...,t, (i.e., {to,t1,...,t,} is

a set with exactly r 4+ 1 elements).

3.8 The Simplicial Approximation Theorem

Definition Let f:|K| — |L| be a continuous map between the polyhedra of
simplicial complexes K and L. A simplicial map s: K — L is said to be a
simplicial approzimation to f if, for each x € | K|, s(x) is an element of the
unique simplex of L which contains f(x) in its interior.

Definition Let X and Y be topological spaces. Continuous maps f: X — Y
and ¢: X — Y from X to Y are said to be homotopic if there exists a
continuous map H: X x [0,1] — Y such that H(z,0) = f(x) and H(z,1) =
g(x) for all z € X.
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Lemma 3.13 Let K and L be simplicial complexes, let f:|K| — |L| be a
continuous map between the polyhedra of K and L, and let s: K — L be a
simplicial approximation to the map f. Then there is a well-defined homotopy
H:|K| x [0,1] = |L|, between the maps f and s, where

H(x,t) = (1 —1t)f(x) + ts(x)
for allx € |K| and t € [0, 1].

Proof Let x € |K|. Then there is a unique simplex o of L such that the
point f(x) belongs to the interior of 0. Then s(x) € o. But, given any
two points of a simplex embedded in some Euclidean space, the line segment
joining those two points is contained within the simplex. It follows that
(1 —t)f(x) +ts(x) € |L] for all x € K and t € [0,1]. Thus the homotopy
H:|K| x[0,1] — |L]| is a well-defined map from |K| x [0, 1] to |L|. Moreover
it follows directly from the definition of this map that H(x,0) = f(x) and
H(x,1) = s(x) for all x € |[K| and t € [0,1]. The map H is thus a homotopy
between the maps f and s, as required. |}

Definition Let K be a simplicial complex, and let x € |K|. The star st (x)
of x in K is the union of the interiors of all simplices of K that contain the
point x.

Lemma 3.14 Let K be a simplicial complex and let x € |K|. Then the star
str(x) of x is open in |K|, and x € sty (x).

Proof Every point of |K| belongs to the interior of a unique simplex of K
(Lemma 3.6). It follows that the complement |K|\ stx(x) of stx(x) in |K]|
is the union of the interiors of those simplices of K that do not contain the
point x. But if a simplex of K does not contain the point x, then the same
is true of its faces. Moreover the union of the interiors of all the faces of
some simplex is the simplex itself. It follows that |K| \ stx(x) is the union
of all simplices of K that do not contain the point x. But each simplex of K
is closed in |K|. It follows that |K| \ stx(x) is a finite union of closed sets,
and is thus itself closed in |K|. We deduce that sty (x) is open in |K|. Also
X € st (x), since x belongs to the interior of at least one simplex of K. ||

Proposition 3.15 A function s: Vert K — Vert L between the vertez sets of
simplicial complexres K and L is a simplicial map, and a simplicial approx-
imation to some continuous map f:|K| — |L|, if and only if f (stx(v)) C
sty (s(v)) for all vertices v of K.

43



Proof Let s: K — L be a simplicial approximation to f:|K| — |L|, let v be
a vertex of K, and let x € stx(v). Then x and f(x) belong to the interiors
of unique simplices ¢ € K and 7 € L. Moreover v must be a vertex of o,
by definition of sty (v). Now s(x) must belong to 7 (since s is a simplicial
approximation to the map f), and therefore s(x) must belong to the interior
of some face of 7. But s(x) must belong to the interior of s(o), since x is in
the interior of o. It follows that s(o) must be a face of 7, and therefore s(v)
must be a vertex of 7. Thus f(x) € sty (s(v)). We conclude that if s: K — L
is a simplicial approximation to f:|K| — |L|, then f (stx(v)) C str (s(v)).
Conversely let s: Vert K — Vert L be a function with the property that
f(stg(v)) C stg (s(v)) for all vertices v of K. Let x be a point in the
interior of some simplex of K with vertices vo, vy,...,v,. Then x € stx(v;)
and hence f(x) € sty (s(v;)) for 7 =0,1,...,q. It follows that each vertex
s(v;) must be a vertex of the unique simplex 7 € L that contains f(x) in its
interior. In particular, s(vy), s(v1),...,s(v,) span a face of 7, and s(x) € 7.
We conclude that the function s: Vert K — Vert L represents a simplicial
map which is a simplicial approximation to f:|K| — |L|, as required. |

Corollary 3.16 If s: K — L and t: L — M are simplicial approximations
to continuous maps f:|K| — |L| and g:|L| — |M|, where K, L and M are
simplicial complexes, then t o s: K — M 1s a simplicial approximation to
go f:|K| — [M].

Theorem 3.17 (Simplicial Approximation Theorem) Let K and L be sim-
plicial complezes, and let f:|K| — |L| be a continuous map. Then, for some
sufficiently large integer j, there exists a simplicial approzimation s: KW —
L to f defined on the jth barycentric subdivision K9 of K.

Proof The collection consisting of the stars sty (w) of all vertices w of L
is an open cover of |L|, since each star stz (w) is open in |L| (Lemma 3.14)
and the interior of any simplex of L is contained in st;(w) whenever w is a
vertex of that simplex. It follows from the continuity of the map f: | K| — ||
that the collection consisting of the preimages f~*(st;(w)) of the stars of all
vertices w of L is an open cover of |K|. It then follows from the Lebesgue
Lemma that there exists some § > 0 with the property that every subset of
| K| whose diameter is less than § is mapped by f into sty (w) for some vertex
w of L.

Now the mesh p(K()) of the jth barycentric subdivision of K tends to
zero as j — 400, since

- dim K J
KOy < (22 i
ure) < (oY
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for all j (Lemma 3.10). Thus we can choose j such that p(KW) < 6. If v is
a vertex of K@ then each point of sty (v) is within a distance 16 of v, and
hence the diameter of sty (v) is at most §. We can therefore choose, for
each vertex v of KW a vertex s(v) of L such that f (st (v)) C stz(s(v)). In
this way we obtain a function s: Vert K¥) — Vert L from the vertices of K©)
to the vertices of L. It follows directly from Proposition 3.15 that this is the
desired simplicial approximation to f. |
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4 Simplicial Homology Groups

4.1 Basic Properties of Permutations of a Finite Set

A permutation of a set S is a bijection mapping S onto itself. The set of all
permutations of some set S is a group; the group multiplication corresponds
to composition of permutations. A transposition is a permutation of a set S
which interchanges two elements of S, leaving the remaining elements of the
set fixed. If S is finite and has more than one element then any permu-
tation of S can be expressed as a product of transpositions. In particular
any permutation of the set {0,1,...,¢} can be expressed as a product of
transpositions (j — 1, ) that interchange j — 1 and j for some j.

Associated to any permutation 7 of a finite set S is a number €., known as
the parity or signature of the permutation, which can take on the values +1.
If m can be expressed as the product of an even number of transpositions,
then €, = +1; if m can be expressed as the product of an odd number of
transpositions then e, = —1. The function m + €, is a homomorphism
from the group of permutations of a finite set S to the multiplicative group
{+1, -1} (i-e., €xp = €r€, for all permutations m and p of the set S). Note in
particular that the parity of any transposition is —1.

4.2 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex, let Vert(K') denote the set of vertices of K,
and let R be a unital commutative ring. For each non-negative integer ¢, let
A,(K; R) denote the free R-module FrW, i on the set W, x, where W, x de-
notes the subset of Vert(K)?™ consisting of all (¢ + 1)-tuples (vo, vi,...,Vv,)

of vertices of K with the property that vg,vi,...,v, span a simplex of K.
(Thus if vo, vy,..., v, are vertices of K then (vo,vy,...,v,) € W, g if and
only if v, vy,..., Vv, span a simplex of K.)

Now the set W, g is a finite set for each non-negative integer ¢. It follows
that elements of the free R-module A,(K; R) can be represented as functions
from the set W,k to the ring R, where (f + g)(w) = f(w) + g(w) and
(rf)(w) =rf(w)forall f,g € AJ(K;R), we W,k and r € R. Each element
(Vo, V1, ...,v,) of W, i determines a corresponding element Arv,v,,...
A,(K; R), represented by the function from W, x to the ring R defined such

that .
g ifw=(vg,v1,...,Vy),
O otherwise,

)\(V07V17-~-7Vq)<w) = {

where O denotes the zero element of the ring R and 1r denotes the multi-
plicative identity element of the ring R. Any element of A (K; R) can then
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be represent by a (finite) sum of the form >  r,A\,, where r,, € R for all
’LUGWq’K

w e Wq,K~

Definition Let K be a simplicial complex, let R be a unital commutative
ring, and let ¢ be a non-negative integer Let AS(K ; R) be the submodule of
A,(K; R) generated by elements of the form Ay, v,,...v,) Where vo, vy, ..., v,
are not all distinct, and by elements of the form

>\(v7r(0)7v7r(1)7'-'7v7'r(q)) - €7r>‘(V07V17--~,vq) )

where 7 is some permutation of {0, 1,...,¢} with parity e¢,. We define the
qth chain group C,(K;R) of the simplicial complex K with coefficients in
the unital commutative ring R to be the corresponding quotient module
Ay(K; R)/AYK; R).

An element of the chain group Cy(K; R) is referred to as g-chain of the
simplicial complex K with coefficients in the ring R.

For convenience, we define both A,(K; R) and C,(K; R) to be the zero
module over the ring R when ¢ < 0.

Remark We have defined above the chain group C,(K; R) of a simplicial
complex with coefficients in a unital commutative ring R. In topological
applications this coefficient ring will often be the ring Z of integers, the field R
of real numbers, or the finite field Z, with p elements, where p is some prime
number. In such cases we refer to chain groups (and associated homology
and cohomology groups) with integer coefficients, real coefficients, or with
coefficients in Z,. Chain groups, homology groups and cohomology groups
with coefficients in the finite field Zy are particularly important in studying
the topology of manifolds. (A manifold of dimension n is a topological space
that locally resembles Euclidean space of dimension n.)

Lemma 4.1 Let K be a stmplicial complex, let R be unital commutative ring,
and, for each non-negative integer q, let C,(K; R) be the qth chain group of
K with coefficients in the ring R. Then Cy (K;R) = 0 for all integers q
satisfying ¢ > dim K.

Proof The dimension dim K of the simplicial complex K is by definition
the maximum of the dimensions of the simplices of K. Thus if a finite
list of distinct vertices spans a simplex of K then the number of vertices
in that list cannot exceed dim K + 1. It follows that if ¢ > dim K then
AYK; R) = Ay(K; R), because no (g + 1)-tuple of vertices of K can consist
of distinct vertices of K. Therefore C,(K; R) = 0 whenever ¢ > dim K, as
required. ||
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Each (¢+ 1)-tuple (vg, vi,...,v,) of vertices of K that span a simplex of
K belongs to the set W, x, and therefore determines a corresponding element
(vo,v1,...,v,) of Cy(K; R), where

(Vo, Vi, ..., Vy) = AYK;R) + AVo,viyeve)-

This element (vg,vy,...,v,) of C,(K; R) is then the image of the generator
..... v,) Of the free R-module A (K;R) under the quotient homomor-
phism from A,(K; R) to Cy(K; R).

Lemma 4.2 Let K be a simplicial complex, let R be a unital commutative
ring, let vo,vi,...,v, be vertices of K that span a simplex of K. Then the
following identities are satisfied within the R-module Cy(K; R):—

(1) (vo,vi,...,vq) =0 if vo,vi,..., v, are not all distinct;
(i1) (Vr(0), Va(1)s - - -5 Va(q)) = €x(V0, V1, - .., Vgq) for any permutation 7 of the
set {0,1,...,q}.
Proof If the vertices vg,vy,..., v, are not all distinct then Aygv, . .v,) €

Ao(K; R), and therefore the coset

-----

.....

is the submodule AY(K; R) itself. It follows that (vo, vi,. .., V,) is the zero el-
ement of the corresponding quotient module A(K; R)/AY(K; R). This proves
(1).

Now suppose that the vertices vy, vy,..., v, of K span a simplex of K but
are not necessarily distinct. Let 7 be a permutation of the set {0,1,...,q}.
Then the element

)\(V‘II'(O)7V7T(1) ----- vﬂ'(q))_Eﬂ-)\(vO:V:l ,,,,, vq)

of Ay(K; R) is one of the generators of the submodule A)(K; R) specified in
the definition of this submodule. It follows that
Ag(K ' R) + A(v

7(0)Va(1)sVa(g)) T MVO, Vi,

and therefore

(V) Va()s - +» Va(q)) — €x{V0, V1, ..., Vg) = 0.

This proves (ii). |}
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Example Let v and w be the endpoints of a line segment in some Eu-
clidean space, and let K be the simplicial complex consisting of these two
vertices together with the line segment joining them. Also let R be a unital
commutative ring. Then

Ao(K;R) = {ryA\ + TwAw : v, Tw € R}
and
Al(Kv R) = {r(v,v)/\(v,v) + T(V,W))\(V,W) + T(w,v))\(w,v) + T(w,w))\(w,w) :
Tvv), T(v,w)s T(w,v)s T'(w,w) € R}

Now the submodule AJ(K; R) of the R-module Ay(K; R) has no non-zero
generators, and therefore Co(K; R) = Ag(K; R). It follows that Co(K; R) =
R?. Moreover

Co(K; R) = {ry(v) + r(w) : ry, 7w € R}.

The submodule AY(K; R) of Ai(K; R) is generated by the elements Ay v),
/\(ij) and )\(ij) + )‘(w,v) of Al(K; R) It follows that

(v,v) =0, (w,w)=0

and
(v,w) + (w,v) = 0.

Let T(v7v)7 T(v,w), T(w,v); T(w,w) € R. Then

T Avy) T Tvw) Avw) + 7w Awy) + 7 ww) Aw,w)
T Avw) + T Awaw) T 7 ww) Avw) + Aww))
+ (Fvaw) = Twaw) ) Aw,w)
€ AYNK;R) + (rvw) = T(ww) Avw)

Moreover if 8: Ay (K; R) — R is the R-module homomorphism defined such
that

0 (T M) T v Avaw) T Twn) Awy) T Twawn Aww)) = Tivaw) = Tw.w)

then A\ v) € ker0, Aww) € kerf) and Ay w) + Aw,v) € ker6, and therefore
AYK; R) C kerf. But

T(V,V)A(V,V) + T(v,w))\(v,w) + T(w,v))\(w,v) + r(w,w))\(w,w) € ker 6
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if and only if r(w,v) = 7'(v,w), in which case

70(v,v))\(v,v) + T(v,w))\(v,w) + T(w,v))\(w,v) + T(w,w))\(w,w)
T(V,V))\(V,V) + 7a(w,w)>\(w,w) + T(v,w)()\(v,w) + /\(w,v))
c AVK;R).

Thus ker = AY(K;R). Moreover the homomorphism 6: A(K;R) — R
is surjective. It follows that the homomorphism 6 induces an isomorphism
0:Ci(K;R) — R, where Ci(K;R) = A{(K;R)/AYK;R), and therefore
C1(K; R) = R (see Corollary 1.8).

Example Let u, v and w be the vertices of a triangle in some Euclidean
space. Let K be the simplicial complex consisting of this triangle, together
with its edges and vertices, and let R be a unital commutative ring. (The
coefficient ring R could for example be the ring Z of integers, or the field R of
real numbers, or the finite field Z, with exactly two elements.) Every element

of the chain group Cy(K; R) of K in dimension zero can be expressed uniquely
in the form

ra(u) 4+ ry (V) + ry (w)
for some 7y, 7y, 7w € R. It follows that Co(K; R) = R3. Also
(w,v) = —(v,w), (u,w)=—(w,u), (v,u)=—(u,v)
and
(wu) = (v,v) = (w,w) =0
in the R-module C(K; R). It follows that every element of C}(K; R) can be
expressed uniquely in the form
ro(v, w) + ri{w,u) + ro(u, v)
for some rg, 71,79 € R. Indeed any element of A;(K; R) may be represented
as a linear combination of the form
pO)\(v,w) + pl)\(w,u) + p2)\(u,v)
+ SO)\(W,V) + Sl/\(u,w) + 82/\(v,u)
+ t())\(u,u) + tl)\(v,v) + 232)\(w,w)7
where pg, p1, P2, So, S1, S2, Lo, t1,t2 € R. The quotient homomorphism from
Ai(K; R) to C1(K; R) maps this linear combination to the element ¢; of
C1(K; R), where
G = pO(VaW> +p1<W7u> +p2<u7v>
+ So(W, V) + s1(u, w) + s2(v,u)
+ to(u, u) + t1(v,v) + to(w, w).
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But it follows from Lemma 4.2 that

1 = (5o — 50) (v, w) + (91 — 1), u) + (2 — 52, v
Therefore
Ci1(K; R) = {ro(v,w) + ri{w,u) + ro{u,v) : ro, 71,79 € R},
and thus C;(K; R) = R3. Moreover

ro(Vv, W) + ri{w,u) + ro(u, v)
= —ro(w,v) +7ri(w,u) + ry{u,v)
= ro(v,w) —ri(u,w) + ry{u, v)
= ro(v,w) +ri(w,u) — ry(v,u)
—ro(w,v) — ri{u, w) + ra(u, v)

etc.
Finally, we consider the structure of Co(K; R). Now

(u,v,w) = (v,w,u) = (w,u,v) =—(w,v,u)

= —(u,W,V> = —<V,uaw>-

and
(u,u,w) =0, (u,v,u) =0, (u,v,v) =0, etc.,

and therefore every element of Co(K; R) can be expressed uniquely in the
form r(u, v, w) for some r € R. It follows that C2(K; R) = R.

Proposition 4.3 Let K be a simplicial complex, and let R be an integral
domain. Then the chain group Cy(K; R) of K in dimension q with coefficients
in the integral domain R is a free module over R whose rank is equal to the
number of q-simplices of K. Moreover let an element v, of C,(K;R) be
associated with each q-simplex o of K, where

Vo = <V8,Vf,...vg)

for some chosen ordering v§,v{,...vq of the vertices of 0. Then Cy(K; R) is
freely generated by the elements v, as o ranges over all the q-simplices of o,
and thus, given any element ¢ of Cy(K; R), there exist uniquely-determined
elements r, of the coefficient ring R such that

T = Z ToYo-

ceEK
dim o=q
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Proof Let W, x be the set of all (¢ + 1)-tuples of vertices of K that span
simplices of K, and, for each w € W, k let A, be the corresponding generator
of the free R-module A,(K;R). This R-module A (K;R) is then freely
generated by {\, : w € W, k}.

Let

Wihe ={(v§,v{,...,v?) ;0 € K and dimo = g},

Then W+K is a subset of W, k-, and, for each ¢-simplex o of K, the set VVJr
has exactly one element (v{,v{,...,v7) that is an ordered (q—|—1) tuple Whose
components are distinct and are the vertices of o. Let AT (K;R) be the
submodule of A,(K; R) generated by {\, : w € W%} (This submodule
A;(K ; R) is determined by the chosen orderings of the vertices of the ¢-
simplices of K, but is dependent on the choice of those orderings.)

Let (wo,Ww1,...,w,) € W, k. If wo,wy,..., w, are not all distinct let
r(Wo,W1,...,W,) be the zero element of AT(K;R). If these vertices are
distinct, let r(wo, wy,...,w,) = ET)\(WT<O)7WT(1)7 W) where 7 is the unique

permutation of the set {0,1,. .., ¢} for which (W o), Wr(1), ..., Wr(g) € W
and where €, denotes the parity of the permutation T. We then obtaln a
well-defined function r: W, i — AT (K; R) mapping W, x into the R-module

AF(K; R). Moreover if the vertices wo, w, ..., W, are all distinct then
T(WW(O)a Wr(1)s - - - 7W7r(q)> = €TO7T_1)\(W7.(O>,WT(1),...,WT(q))
ETEWA(WT(O)7WT(1)7~~-7WT(q))
= &r(Wo, Wi,..., W)

for all permutations 7 of {0,1,...,q}. Moreover

T(Wa(0), Wr(1)s - - - s Wr(q)) = € (Wo, W1, ..., Wy)
for all (wo, wy,...,w,) € W, x and for all permutations 7 of {0,1,...,q},
irrespective of whether or not wg, wy, ..., w, are distinct vertices of K. (If

these vertices are not distinct, then both sides of this identity are equal to
the zero element of AT (K; R).)

Now A, (K R) is freely generated by {\, : w € W, g}, and therefore
the function r:Wyx — AF(K;R) induces an R-module homomorphism
Pq Dg(K; R) — AF(K; R), where py(Ay) = r(w) for all w € W, g (see

Proposition 2.2). Moreover

pq()\(WW(O)7W7r(1)7"'7w7r(q))) = Eﬂ'pq()\(W07W1,...,Wq))

for all (wo,wy,...,w,) € W, x and for all permutations 7 of {0,1,...,q},
where €, denotes the parity of the permutation .
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Now the kernel AS(K ; R) of the quotient homomorphism from A, (K; R)
to Cy(K; R) is generated by elements of A,(K;R) that are of the form
A(wo,wi,..,wq), Where wo, wi, ..., w, span a simplex of K but are not all dis-
tinct, and by elements of A (K; R) that are of the form

where wo, wy, ..., w, are distinct and span a simplex of K and 7 is a permu-
tation of the set {0,1,...,q}. All these generators of AS(K; R) belong to the
kernel of the homomorphism p,, and therefore A)(K; R) C ker p,. Moreover
the definition of the function 7 ensures that p,(z) = z for all z € AT (K; R).
The definitions of the function r and the submodule AS(K ; R) also en-
sure that A, — r(w) € A%K;R) for all w € W, k, and thus z — p,(z) €
A)K;R) for all x € Ay(K;R). It follows that kerp, C AJ(K;R), and
therefore ker p, = AJ(K;R). Moreover the homomorphism p, is surjec-
tive, because p,(z) = w for all z € AF(K;R). It follows that the ho-
momorphism p,: A, (K; R) — AfF(K; R) induces an R-module isomorphism
Py Cy(K; R) — AT (K; R) (see Corollary 1.8).
Now

ﬁq(’YO') = ﬁq(<V8; V(1T7 cee Vg>) = p()\(vg,v‘f,...vg)) = )\(Vg,v‘l’,...vg)

for each g-simplex o of K. But the free R-module Al (K; R) is freely gener-
ated by the elements )\(vg,v{,...vg) as o ranges over all g-simplices of K. This
free basis of A;F(K ; R) corresponds under the isomorphism p to a free basis
of Cy(K; R). It follows that C,(K; R) is a free R-module which is freely gen-
erated by the elements v, as ¢ ranges over all g-simplices of K. The result
follows. |}

Example Let a, b, ¢ and d be the vertices of a tetrahedron in some Eu-
clidean space of dimension at least three, and let K be the simplicial complex
consisting of this tetrahedron, together with all its triangular faces, edges and
vertices. Then the simplicial complex K consists of the following simplices:
the four vertices a, b, ¢ and d; the six edges ab, ac, ad, bc, bd and cd;
the four triangular faces bcd, acd, abd and ab c; the tetrahedron abcd
itself. We shall investigate the structure of the chain groups C, (K, Z) with
integer coefficients. (Analogous results apply to the chain groups C, (K, R)
with coefficients in any integral domain R.)

Let us first consider the chain group Cs(K;Z) in dimension three. It
follows from Proposition 4.3 that this is a free Abelian group of rank 1,
isomorphic to the group Z of integers itself. It is freely generated by the 3-
chain (a, b, c,d). (We recall that, for each non-negative integer ¢, a g-chain
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of K with coefficients in an integral domain R is by definition an element of
the group C,(K; R).) It follows that

C3(K,Z) = {n(a,b,c,d) : n € Z}.
We note also that, for each n € Z,
n{a,b,c,d) = —n(b,a,c,d) = n(b,a,d,c) = etc.

It also follows from Proposition 4.3 that the chain group Cy(K;Z) in
dimension two is a free Abelian group of rank 4, isomorphic to Z* and
moreover this group is freely generated by the elements

(b,c,d), (a,c,d), (a,b,d) and (a,b,c).

It follows that, given any 2-chain ¢ with integer coefficients, there exist
uniquely determined integers mg, my, mo and mg such that

c=my(b,c,d) +my(a,c,d) + my(a,b,d) + ms(a,b,c).
The group Co(K;Z) is also freely generated by the elements
(b,c,d), (c,a,d), (a,b,d) and (a,c,b),

for example, and

= m0<b7 C, d> —m <C, a, d> + m2<a7 bv d> - m3<aa C, b>

for all integers mg, my, mo and mg.

The chain group C1(K;Z) in dimension one is a free Abelian of rank 6,
isomorphic to Z8. Tt is freely generated by (a,b), (a,c), (a,d), (b,c), (b,d)
and (c,d). Thus, given any 1-chain e of K with integer coefficients, there
exist unique integers kap, kac, Fad; Fbe, kba and ke q such that

e = kap(a,b) + kac(a,c) + kaa(a,d) + kpc(b,c) + kpa(b,d) + ke alc,d).

Moreover k,p(a,b) = —kan(b, a) etc.
Finally we note that the chain group Cy(K,Z) in dimension zero is a free
Abelian group of rank 4, isomorphic to Z*. This group is freely generated by

(a), (b), (c) and (d).
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4.3 Homomorphisms defined on Chain Groups

Lemma 4.4 Let K be a simplicial complex, and let M be a module over a
unital commutative ring R, let W, denote the set of (¢ + 1)-tuples over
vertices of K that span simplices of K, and let f:W,x — M be a function
from Wy i to M. Suppose that the function f has the following properties:

o f(vo,Vvi,...,vy) =0 unless vo, vy, ..., v, are all distinct,

o f(vo,V1,...,v,) changes sign on interchanging any two adjacent ver-
tices vj_1 and v;.

Then there exists a unique R-module homomorphism ¢: Cy(K; R) — M char-
acterized by the property that

©((vo,vi,...,Vg)) = f(Vo,V1,..., V)
whenever vy, vy, ..., Vv, span a simplex of K.

Proof Let the elements of the free R-module A,(K; R) be represented in
the standard fashion as functions from the finite set W, x to the coefficient
ring R, where W, x is the set of all (¢ + 1)-tuples of vertices of K whose
components span some simplex of K. Then the free R-module A,(K; R) is
freely generated by the set

{)\w RS quK},

where, for each w € W, g, the element A\, of A,(K;R) is represented by
the function from W, x to R that sends w to the multiplicative identity el-
ement 1z of R and sends all other elements of W, x to the zero element
Or of R (see Proposition 2.6). It follows that the f:W,x — M deter-
mines a homomorphism f: A,(K;R) — M characterized by the property
that f(\,) = f(w) for all w € W (see Proposition 2.2). Moreover

fN Z Tw)\w = Z wa(w)
weWqy i weWy i

for all collections (1, : w € W, ) of elements of the ring R indexed by the
finite set W, x. Now the conditions imposed on the function f ensure that

Awovi,ve) € ker f

unless vo, vy,..., v, are all distinct. Also
)\(VW(O)’VW(I):'“vvﬂ(q)) - gw)\(VO»VIM"vvq) € kerf
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for all permutations 7 of {0,1,...,¢}, since the permutation 7 can be ex-
pressed as a product of transpositions (7 — 1, j) that interchange j — 1 with j
for some j and leave the rest of the set fixed, and the parity ¢, of 7 is given
by £, = +1 when the number of such transpositions is even, and by ¢, = —1
when the number of such transpositions is odd. Thus all the generators of
AS(K ; R) specified in the definition of this submodule are contained in ker 1,

and therefore AY(K’; R) C ker f. It follows that f: A (K; R) — M induces a
well-defined R-module homomorphism ¢: Cy(K; R) — M, where

p | AYEGR) + Y o [ = D rede | = D ruf(w)

wqu,K ”LUEWq,K wqu,K

for all collections (1, : w € W, ) of elements of the ring R indexed by the
finite set W, . Then

¢(<V07V17 s ?VtI>) = fN(Ag(Kﬂ R) + )\(VO,Vlw-nvq)) = f(V07 Vi,... 7Vq)

whenever the vertices vo,vy,...,v, of K span a simplex of K. This ho-
momorphism ¢: Cy(K;R) — M is uniquely determined by the function
Wy — M, as required. |}

4.4 Orientations on Simplices

Let V be a finite-dimensional real vector space. Then each ordered basis
of V' determines one of two possible orientations on this vector space. Let
e, ey, ...,e, and f;, £, ... f, be two ordered bases of a vector space V' of
dimension q. Then there exists a non-singular ¢ x ¢ matrix (A7) such that
f, = i Aiej for k =1,2,...,q. If this matrix (Ai) has positive determinant
=1

then jthe two bases determine the same orientation on the vector space V.
On the other hand, if the matrix (A]) has negative determinant then the two
bases determine the opposite orientation on the vector space V. In particular
if any two elements of an ordered basis ey, ey, ..., e, of the vector space V
are interchanged with one another, then this reverses the orientation of the
vector space.

Let 7 be a permutation of the set {1,..., ¢}, and let ey, es, ..., e, be an or-
dered basis of the vector space V', determining a particular orientation of this
vector space. If the permutation 7 is even then the basis €1, €x(2), ..., €x(q)
of V obtained on reordering the elements of the given basis by means of the
permutation 7 determines the same orientation on the vector space V' as the
original basis e, ey,...,e,. On the other hand, if the permutation 7 is odd
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then the basis er(1), €x(2), . . ., €x(g) determines the opposite orientation on V'
to that determined by the original basis.

Let o be a g-dimensional simplex in some Euclidean space R*, where
k > ¢, and let V be the unique g-dimensional vector subspace of R¥ that
contains the displacement vectors between any two points of o.

Let vo, vy, ..., v, an ordered list of the vertices of o. Then these vertices
are geometrically independent and determine an ordered basis e, ey, ..., e,
of the vector space V, where e; = v; — vq for j = 1,2,...,¢. This or-
dered basis then determines an orientation on the vector space V. We see
therefore that each ordering of the vertices of the g-simplex o determines a
corresponding orientation on the g-dimensional vector space V' determined
by the ¢-simplex o.

Proposition 4.5 Let o be a g-dimensional simplex in some Fuclidean space
R¥, where k > q, and let V be the unique g-dimensional vector subspace of
R* that contains the displacement vectors between any two points of o (so
that V' is parallel to the tangent space to o at each point in the interior of o).
Gen any ordered list vy, Vi, ..., v, of the vertices of o, let the corresponding
orientation on the vector space V' be the orientation determined by the ordered
basis ey, eq, ..., e, of V, where ej = v; — v for j = 1,2,...,q. Then any
even permutation of the order of the vertices in the ordered list vy, vy, ...,V
preserves the orientation on the vector space V', whereas any odd permutation
of the order of these vertices reverses the orientation on V.

Proof Let vy, vy,...,v, be the ordered list of vertices determining the ori-
entation on the vector space V. If the vertex v; is transposed with vy, where
J > 0 and k£ > 0, then the corresponding basis elements e; and e;, in the
ordered basis eq,es,...,e, of V are also transposed, and this reverses the
orientation on V' determined by that ordered basis.

If the vertices vy and v; are interchanged, then this has the effect of

replacing the ordered basis e;, ey, ..., e, corresponding to the ordered list
Vo, V1,..., Ve by the ordered basis fi, s, ..., f;, where
fi=vo—vi=—¢
and
fi=v,—vi=e;—e forj=23,...,¢q

The non-singular ¢ x ¢ matrix that implements this change of basis is the
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upper triangular matrix A, where

—_

1 -1

OHO'

—_
— oo |
OOO'

0 1
0 0
0 0

o o0 o0 o0 - 1
The determinant of an upper triangular matrix is the product of the matrix
elements along the leading diagonal, and therefore det A = —1. It follows
that transposing the vertices vy and v; occurring in the first two positions
in the ordered list vy, vy,..., v, of vertices of o reverses the orientation on
the vector space V' determined by the ordering of the vertices of o.

It now follows from standard properties of permutations of finite sets
that interchanging any two of the vertices in any ordered list v, vy,..., v, of
the vertices of the g-simplex o reverses the orientation on the ¢-dimensional
real vector space V' that is determined by the ordering of these vertices.
Indeed if the positions in the list are numbered from 0 to ¢ then the vertex
in position 0 can be transposed with the vertex in position j, where j >
1, by first transposing the vertices in positions 1 and j, then transposing
the vertices in positions 0 and 1, and then again transposing the vertices
in positions 1 and j. This involves three transpositions of vertices in the
list, and each of these transpositions reverses the orientation on the vector
space V. It follows that any even permutation of the ordering of the vertices
in the ordered list vo,vy,..., v, preserves the corresponding orientation on
the vector space V', whereas any odd permutation of the ordering of these
vertices reverses the orientation on this vector space, as required. |}

We can regard the orientation on the vector space V' as an orientation of
the simplex o itself. Indeed this orientation may be viewed as an orientation
on the ¢g-dimensional tangent space to the simplex o at any interior point
of o. In this fashion any ordering of the vertices of a simplex o determines
a corresponding orientation on that simplex. If the ordering of the vertices
is permuted by means of an even permutation then the orientation of the
simplex is preserved. But if the ordering of the vertices is permuted by
means of an odd permutation then the orientation of the simplex is reversed.

Example Let u, v and w be the vertices of a triangle in a Fuclidean space

R¥ of dimension at least two. Then this triangle determines a 2-dimensional
vector subspace V' of R*. This 2-dimensional subspace V is spanned by the
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displacement vectors v — u and w — u, and is parallel to the tangent plane
to the triangle at any interior point of the triangle.

Now it follows from Proposition 4.5 that the orientation of the triangle
should be preserved under cyclic permutations of its vertices. Now the order-
ing u, v, w of these vertices determines an ordered basis by, by of the vector
space V', where by = v —u and by = w — u. The ordering v, w,u of the
vertices of the triangle corresponds to the orientation on the vector space V'
determined by the ordered basis w — v, u — v. Now w — v = by, — by and
u — v = —b;. Moreover the 2 x 2 matrix implementing the change of basis
from the ordered basis by, by to the ordered basis by — by, —b; is the matrix

-1 -1
10 )
and this matrix has determinant 1. Similarly the ordering w,u,v of the
vertices of the triangle determines a corresponding ordered basis u—w, v—w
of the vector space V. Moreover u—w = —by and v—w = b; — by, and the

2 x 2 matrix implementing the change of basis from the ordered basis by, by
to the ordered basis —bs, by — by is the 2 x 2 matrix

(54)

and this matrix also has determinant 1. It follows that an even permutation of
the ordering of the vertices of the triangle (resulting from a cyclic permutation
of those vertices) preserves the orientation on the vector space V' determined
by the ordering of the vertices.

On the other hand the 2x 2 matrices that implement the change of ordered
basis of the vector space V' resulting from odd permutations of the order of
the vertices u, v and w are the matrices

(10) (0 77) = (425)

and these three matrices all have determinant —1. It follows that any odd
permutation of the vertices (resulting from a transposition of two of those
vertices that fixes the remaining vertex) results in a reversal of the orientation
on the vector space V.

Thus even permutations of the ordering of the vertices of the triangle
preserve the orientation of the triangle determined by the ordering of its
vertices, whereas odd permutations of the ordering reverse the orientation
determined by the ordering.
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Let K be a simplicial complex, and let o be a ¢g-simplex of K with vertices
Vo, V1,...,Ve. Then o, with the chosen ordering of its vertices, determines
a corresponding element (v, vy, ..., v,) of the chain group C,(K; R). This
element is in fact determined by the orientation on the simplex o. If the
vertices vy, vy, ..., v, of the simplex are reordered by means of an even per-
mutation of the vertices in the list then both the orientation on the simplex
determined by the ordering of its vertices remains unchanged and the corre-
sponding element of C,(K; R) determined by the ordered list of the vertices
of the simplex also remains unchanged. On the other hand, if the vertices
are reordered through an odd permutation of the vertices in the list then
both the orientation of the simplex determined by the ordering of its ver-

tices is reversed, and the corresponding element (vg,vy,...,v,) of C,(K;R)
determined by the ordered list of those vertices is replaced by the element
—(Vo, V1,...,Vg).

It follows from Proposition 4.3 that if we choose an orientation on each ¢-
simplex of the simplicial complex K, then the ¢g-simplices of K, together with
the chosen orientations, determine corresponding generators of C,(K’; R) that
constitute a free basis of this R-module.

Now r # —r for all non-zero elements r of the integral domain R, provided
that char R # 2, where char R denotes the characteristic of R (see Lemma 1.2
and Lemma 1.3). It then follows from a direct application of Proposition 4.3
that

(Vo,V1,...,Vg) # —(Vo, V1,...,Vg),

provided that char R # 2. Thus, provided that charR # 2, the element
(Vo, V1,...,V,) of the chain group C,(K; R) determined by an ordered list
Vo, V1, ..., V, of the vertices of a simplex represents one of two possible orien-
tations on that simplex. The negative of this element of C,(K’; R) represents
the other orientation on the simplex.

Example Let u, v and w be the vertices of a triangle in a Euclidean space
R* of dimension at least two, and let K be the simplicial complex consisting
of this triangle uv w together with its edges and vertices. Then the element
(u, v, w) of the chain group Cy(K,Z) represents the triangle uv w, provided
with the orientation determined by the ordered list u, v,w of the vertices
of this triangle. Moreover this orientation on the triangle corresponds to
the orientation on the vector space V' determined by the ordered basis v —
u, w —u of V. The algebraic properties of the chain group Cy(K;Z) then
ensure that

(u,v,w) = (v,w,u) = (w,u,v) =—(u,w,v)

= —<V711,W> = —<W,V,1l>
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Thus a cyclic permutation of the vertices u, v and w preserves both the
orientation of the triangle determined by the ordering of its vertices and also
the value of the corresponding 2-chain (u, v, w) in the chain group Cy(K;Z).
On the other hand, if two of the vertices are transposed, whilst the remaining
vertex remains unchanged, then this reverses the orientation on the triangle
determined by the ordering of its vertices and also changes the sign of the
2-chain (u,v,w) in Cy(K;Z). We see therefore that the orientation on the
triangle determined by each ordering of the vertices of the triangle is cor-
rectly encoded in the corresponding element of the chain group Cy(K;Z)
determined by the ordered list of vertices of the triangle.

A O-simplex is a single vertex. Let v be a vertex of a simplicial com-
plex K. Then v is considered to admit a positive orientation, represented by
the element (v) of Cy(K;Z), and a negative orientation, represented by the
element —(v) of Cy(K;Z).

4.5 Boundary Homomorphisms

Let K be a simplicial complex, and let R be an integral domain. We introduce
below boundary homomorphisms 0,: Cy(K; R) — C,_1(K;R) between the
chain groups of K with coefficients in R.

In order to define and investigate the properties of this boundary homo-
morphism, we introduce a notation that is frequently used to indicate that
some particular vertex is to be omitted from a ordered list of vertices of a
simplex. Let (vo,v1,...,Vv,) be the element of the chain group C,(K;R)

determined by some ordered list vo,vy,..., v, of vertices of K that span a
simplex of K. We denote by (vq,...,V;,...,Vv,) the element

<V0, ey Vi1, Vg, .. 7Vq>
of C,—1(K; R) obtained on omitting the vertex v; from the list vo, vy,..., v,

of vertices of K. Thus

<\A/0,V1,V2,V3,...,Vq> = <V1,V2,V3,...,Vq>,

<V0,\A/1,V2,V3,...,Vq> = <V0,V2,V3,...,Vq>,

<V07V17‘A’27V3)"'7vq> - <V07V1)V37"'7Vq>7
<V07V17V27~--7Vq—17{’q> = (Vo,V17V2>--~qu—1>'
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We may employ analogous notation when omitting two or more vertices
from an ordered list of vertices. Thus if j and £ are integers between 0 and ¢,
where j < k, we denote by

<V0,...,\A’j,...,\A’k,...Vq>

the element (vo,...,Vj_1,Vji1,.-., Vi_1, Vit1, ..., Vy) of Cpo(K; R) deter-
mined by the ordered list of vertices that results on omitting both vertices
v; and vy from the list v, vy,..., vq.

If the vertices vo,vy,..., v, are distinct then they are the vertices of a
g-simplex o of K, and this simplex is represented by the corresponding gener-
ators £(vo, vy, ..., v,) of the chain group C,(K; R). Moreover if char R # 2
then there are exactly two such generators in C,(K; R) corresponding to
the simplex o, and these two generators represent the two possible orienta-
tions on the simplex. The elements £(vy,...,V;,...,v,) of the chain group
Cy—1(K; R) obtained by omitting the vertex v; from the list of vertices then
represent the unique (¢ — 1)-dimensional face of the simplex o that does not
contain the vertex v;.

Proposition 4.6 Let K be a simplicial complex, and let R be an integral
domain. Then there exist well-defined homomorphisms

0 Cy(K; R) — Cyq (K R)

for all integers q characterized by the requirement that

q

0y(Vo, Vi, ve)) = D (1) (o, 95, V).

=0
whenever the vertices vo,vi,...,v, of K span a simplex of K.
Proof If ¢ <0, or if ¢ > dim K, then at least one of the R-modules C,(K; R)
and C,_1(K; R) is the zero module: in those case we define 0,: C,(K; R) —
Cy—1(K; R) to be the zero homomorphism.

Suppose then that 0 < ¢ < dim K. We prove the existence of the required

homomorphism 9, by means of Lemma 4.4.
Given vertices vg, vy, ..., V, spanning a simplex of K, let

q

Fv0, Vi, V) = ) (=1 {(Vo, ., Vg, V).

=0
Let ¢ be an integer between 1 and ¢. If 0 < j <7 — 1 then

(Vo, ooy Vs oo, Vi1, Vi o2, V)
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changes sign (i.e., it is replaced by the negative of itself) when the vertices
v;_1 and v; are transposed. Similarly if ¢ < j < ¢ then

<V0,...,VZ'_1,VZ‘7...,Vj,...,Vq>
changes sign when the vertices v,_; and v; are transposed. Also
(Vo, .-, Vi1, ..., Vg) and  (vo,..., Vi, ..., V)

are transposed when the vertices v;_; and v; are transposed. It follows that
the (¢ — 1)-chain f(vg,vy,...,v,) changes sign when the vertices v,_; and
v; are transposed for some integer ¢ satisfying 1 <1 < gq.

Next suppose that v; = v for some ¢ and k satisfying ¢ < k. Then

F(vo,vi, .., vy) = (=) Vo, .o, Vi, V) + (=D (o, ..., Vg, ... Vg)s

since the remaining terms in the expression defining f(vo, vy, ..., Vv,) contain
both v; and v and are therefore equal to the zero element of C,_1(K;R)
when v; = vi. Also

(Voy ooy Vi ooy V) = (=D vy, o ¥y, V).

Indeed this identity is immediate when k = i+1. Suppose that k > ¢+1. Let
w = v; = v;. Then the vertex w occurs in the ordered list vo,..., Vg, ..., v,
before v;; but is omitted after v;_;, whereas the vertex w occurs in the
ordered list vo, ..., v;,..., v, after v;_; but is omitted before v;,;. Thus, in
order to convert the first ordered list to the second by successively transposing
vertices, it suffices to transpose the vertex w occurring before v, in the first
list successively with the vertices v;11, Vo, ..., Vvi_1, shuffling it along the
list until it occurs after viy_;. This process requires k — ¢ — 1 successive
transpositions and is thus results in a permutation of the vertices in the list
which is of parity (—1)¥=*~1. It follows that

(_1)k<V07 s 7‘}]437 cee 7Vq> = (_1>i_1<V0, .. ,\A/'i, . ,Vq>
and thus
f(vo,vi,...,vy) =0
whenever v; = v, where 0 < ¢ < k£ < q. We conclude therefore that
f(vo,vi,...,v,) = 0 unless the vertices vy, vy, ..., v, are all distinct.

It now follows directly from Lemma 4.4 that there is a well-defined homo-
morphism 0,: Cy(K; R) — Cy_1(K; R), characterized by the property that

q

0y (Vo, Vi, vg)) = D (=1 (vo, ..., V5, vy)

J=0

whenever vg, vy, ..., v, span a simplex of K. |}
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Let K be a simplicial complex, and let R be an integral domain. The
R-module homomorphism 0,: C,(K; R) — C,_1(K; R) between the chain
groups of K in dimensions ¢ and ¢ — 1 is referred to as the boundary homo-
morphism between these chain groups.

Example Let K be a simplicial complex consisting of a triangle with vertices
a, b and c, together with all the vertices and edges of this triangle, and let
R be an integral domain. Then

Cy(K;R) ={r(a,b,c) : r € R}.

Now

82<r (a,b,c)) =rdy({a,b,c)),

because 0y: C3(K; R) — C2(K; R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
0>2({(a, b, c)). Moreover

d2({a,b,c)) = (b,c) — (a,c) + (a,b),

and
di((b,c)) = (c)—(b),
di({a,c)) = (c)—(a),
di1({a,b)) = (b)—(a)
Therefore

01 (2:((ab,e)) ) = () = (b) = (e) + (@) + (b) — (@) = 0.
It follows that 0;(0:2(x)) = 0 for all z € Cy(K; R).

Example Let K be a simplicial complex consisting of a tetrahedron with
vertices a, b, ¢ and d, together with all the vertices, edges and triangular
faces of this tetrahedron, and let R be an integral domain. Then

C3(K;R) ={r(a,b,c,d) : r € R}.

Now
05 (7’ (a,b,c, d>) =rds((a,b,c,d)),
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because 03: C3(K; R) — Cy(K;R) is a homomorphism of R-modules. It
follows that this boundary homomorphism is determined by the value of
0s({a,b,c,d)). Moreover

83<<a,b,c,d>> = (b,c.d) — (a,c,d) + (a,b,d) — (a,b,c),

and
&((b,c,d)) = (c,d)—(b,d)+ (b,c),
&((a,c,d)) = (c,d)—(a,d)+(a,c),
d((a,b,d)) = (b,d) — (a,d) + (a,b),
d2({a,b,c)) = (b,c)—(a,c)+ (a,b)
Therefore
82<83<<a,b,c,d>>> = 3y((b,c,d)) — d((a,c,d)) + d((a,b,d))
— 02({a, b, c))
= (c,d) — (b,d) + (b, c)
—(c,d) + (a,d) — (a,c)
+ (b,d) — (a,d) + (a,b)

It follows that 02(03(x)) = 0 for all z € C3(K;R). Also the boundary
homomorphism 0y: Cy(K; R) — C1(K; R) is determined by the values of

O ((b,c,d)), x((a,c,d)), &h({(a,b,d)) and 0((a,b,c)).

It follows from the calculation in the preceding example that 0y (02(z)) = 0
for all z € Cy2(K; R).

Lemma 4.7 Let K be a simplicial complex, let R be an integral domain, and,
for each integer q, let 0,: Cy(K; R) — Cy—1(K; R) be the boundary homomor-
phism between the chain groups Cy(K; R) and Cy_1(K; R). Then 0100, =0
for all integers q.

Proof The result is trivial if ¢ < 2, since in this case d,_1 = 0. Suppose
that ¢ > 2. Let v, vy,..., v, be vertices spanning a simplex of K. Then

q

0410y (Vo, Vi, vg)) = D (1) 0p—1 (Vo -, ¥, V)

=0
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= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism 0,_; 0 9, is determined by its values on the elements
of any free basis of C,(K; R). |}

4.6 The Homology Groups of a Simplicial Complex

Let K be a simplicial complex, and let R be an integral domain, and, for each
non-negative integer ¢, let C,(K’; R) denote the R-module whose elements are
g-chains of K with coefficients in the coefficient ring R. A ¢-chain z is said
to be a ¢-cycle if 9,2 = 0. A g-chain b is said to be a g-boundary if b = 0,41¢
for some (g + 1)-chain ¢’. The R-module consisting of the g-cycles of K with
coefficients in the integral domain R is denoted by Z,(K;R), and the R-
module consisisting of the g-boundaries of K with coefficients in R is denoted
by B,(K;R). Thus Z,(K; R) is the kernel of the boundary homomorphism
0y Cy(K;R) — Cyi(K; R), and B,(K; R) is the image of the boundary
homomorphism 0y 41: Cyi1(K; R) — Cy(K; R). However 0, 0 041 = 0 (see
Lemma 4.7). It follows that B,(K; R) C Z,(K; R). But these R-modules are
submodules of the R-module C,(K; R). We can therefore form the quotient
module H,(K; R), where H,(K;R) = Z,(K;R)/B,(K;R). The R-module
H,(K; R) is referred to as the gth homology group of the simplicial complex K
with coefficients in the integral domain R. Note that H,(K;R) =0if ¢ <0
or ¢ > dim K (since Z,(K; R) = 0 and B,(K; R) = 0 in these cases).

The element [z] € H,(K; R) of the homology group H,(K; R) determined
by an element z of Z,(K; R) is referred to as the homology class of the g-
cycle z. Note that [21+25] = [21]4[22] for all 21, 20 € Z,(K; R), and [z1] = [22]
if and only if 21 — 25 = Jy41¢ for some (¢ + 1)-chain ¢ with coefficients in the
coefficient ring R.

An important special case of the above definitions is that in which the
coefficient ring R is the ring Z of integers. The resultant Abelian groups
Cy(K:2), Z(K;Z), B,(K;Z) and H,(K;Z) defined as described above are
often denoted simply by C,(K), Z,(K), B,(K) and H,(K) respectively. Thus
if a group of ¢g-dimensional chains, cycles, boundaries or homology classes is
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specified, but the ring of coefficients is not specified, then the coefficient ring
is by default taken to be the ring of integers.

Remark It can be shown that the homology groups of a simplicial complex
are topological invariants of the polyhedron of that complex. This fact is
far from obvious, and a lot of basic theory must be developed in order to
establish the tools to prove this result.

Proposition 4.8 Let K be a simplicial complex, and let R be an integral
domain. Suppose that there exists a vertex w of K with the following property:

o if vertices vy, Vvi,...,V, span a simplex of K then so do
W,Vo,Vi,..., Vg

Then Ho(K; R) = R, and H,(K; R) is the zero module for all ¢ > 0.

Proof Using Lemma 4.4, we see that there is a well-defined R-module homo-
morphism D,: Cy(K; R) — Cyy1(K; R) characterized by the property that

D,((vo,V1,...,vg) = (W, Vo, V1,...,V,)

whenever vo, vy, ..., Vv, span a simplex of K. Now 0y(Dy((v))) = (v) — (w)
for all vertices v of K. It follows that

ZTk<Vk> - <Z T’k) (w) = Zrk(<vk> —(w)) € Bo(K; R)

k=1 k=1 k=1

for all r1,79,...,7¢ € R and for all vertices vi,va,..., vy of K. It follows
that
z —e(2)(w) € By(K; R)

for all z € Cy(K; R), where e: Cy(K'; R) — R is the R-module homomorphism
from Cy(K; R) to R defined such that

£ (Z Tk(Vk>> = ZTk

for all r,rs,...,7s € R and for all vertices vi,vy,..., vy of K. It follows
that kere C By(K; R). But

(01 ((u, v))) = e((v) = (w)) =0

for all edges uv of K, and therefore By(K; R) C kere. We conclude therefore
that By(K; R) = kere.
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Now Zy(K; R) = Co(K; R) (because 0y: Co(K; R) — C_1(K; R) is defined
to be the zero homomorphism from Cy(K; R) to the zero module C_(K; R)),
and therefore

Hy(K; R) = Co(K; R)/Bo(K; R),

where By(K;R) = kere. It follows that the R-module homomorphism
e:Cyo(K; R) — R induces a well-defined 1somorphlsm from HO(K R) to the

coefficient ring R that sends the homology class of Z ri(Vi) to Z 1y, for all

ri,To,...,7s € R and for all vertices vy, vs,..., vy of K (see Corollary 1.8).
Now let q > 0. Then

Oper(Dy((Vo, Vi, -, v))

= 3q+1(<w,vo,vl,...,vq>)

= (Vo,V1,...,Vy, +Z W, vo, Ve, V)

= (Vo,V1,...,Vg) _Dq—1<aq(<V0aV1a"'7Vq>))
whenever vy, vy,..., v, span a simplex of K. Thus

9q11(Dy(c)) + Dg-1(9y(c)) = ¢

for all c € Cy(K; R). In particular z = 0,41(Dy (z)) for all z € Z,(K; R), and
hence Z,(K; R) = B,(K; R). It follows that H,(K; R) is the zero group for
all ¢ > 0, as required. |}

Corollary 4.9 Let o be a simplex, let K, be the simplicial complex consisting
of the simplex o together with all of its faces, and let R be an integral domain.

Then Ho(Ky; R) = R, and H,(K,; R) is the zero module for all ¢ > 0.

Proof The hypotheses of Proposition 4.8 are satisfied for the complex K,. |}

4.7 Simplicial Maps and Induced Homomorphisms

Let K and L be simplicial complexes, and let R be an integral domain.
Any simplicial map ¢: K — L between the simplicial complexes K and L in-
duces well-defined homomorphisms ¢,: C,(K; R) — C,(L; R) of chain groups,
where

©q((Vo, V1, ..., vg)) = (¢(Vo), (V1) ..., o(vg))

whenever vy, v1, ..., Vv, span a simplex of K. (The existence of these induced
homomorphisms follows from a straightforward application of Lemma 4.4.)
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Note that ¢, ((vo, v1,...,v,)) = 0 unless ©(vo), p(v1),...,¢(v,) are all dis-
tinct.
Now ¢,_1 00, = 9, 0 g, for each integer ¢q. Therefore

0q(Z4(K; R)) C Zy(L; R) and  g(By(K; R)) C By(L; R)

for all integers ¢q. It follows that any simplicial map ¢: K — L induces
well-defined homomorphisms

Pt Hq(K3 R) - Hq(L§ R)

of homology groups, where ¢.([2]) = [¢,(2)] for all g-cycles z € Z,(K; R).
It is a trivial exercise to verify that if K, L and M are simplicial complexes
and if ¢: K — L and ¢: L — M are simplicial maps then the induced homo-
morphisms of homology groups satisfy (1) o ). = 1, 0 ..

4.8 Connectedness and Hy(K; R)

Lemma 4.10 Let K be a simplicial complex. Then K can be partitioned
into pairwise disjoint subcomplexes Ki, Ko, ..., Ky whose polyhedra are the
connected components of the polyhedron |K| of K.

Proof Let Xi, X5,..., X, be the connected components of the polyhedron
of K, and, for each j, let K; be the collection of all simplices ¢ of K for
which o C Xj. If a simplex belongs to K for all j then so do all its faces.
Therefore Ky, Ks, ..., K, are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components X, Xs, ..., X of | K| are
pairwise disjoint. Moreover, if o € K then o C Xj for some j, since o is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then o € K;. It follows that
K=K/ UKyU---UK;and |K| = |K;|U|K3|U---U|Kj|, as required. |}

Let R be an integral domain. The direct sum My & My @ --- & M, of
R-modules My, My, ..., M is defined to be the R-module consisting of all
k-tuples (x1,xo, ..., x)) with z; € M; for i = 1,2,... k, where

(xl,x%«--axk)"‘(917927---7%) - ($1+y17$2+y%---a$k+yk>

and
r(zy, xe,. .., x5) = (roy, rae, ..., X))

for all elements (x1, o, ..., xx) and (y1,y2,...,yx) of My & My @ --- & My,
and for all r € R.
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Lemma 4.11 Let K be a simplicial complex, and let R be an integral do-
main. Suppose that K = K1UKsU---UK,, where Ky, Ko, ... K are pairwise
disjoint. Then

H,(K;R) = H)(K1;R) @ Hy(Ko;R)® --- & Hy(Ks; R)
for all integers q.

Proof We may restrict our attention to the case when 0 < ¢ < dim K,
since H,(K; R) = {0} if ¢ < 0 or ¢ > dim K. Now any ¢-chain ¢ of K with
coefficients in the integral domain R can be expressed uniquely as a sum of
the form ¢ = ¢; + ¢ + - - - + ¢4, where ¢; is a g-chain of K for j =1,2,...,s.
It follows that

Cy(K; R) = Cy(K1; R) ® Cy(Ka; R) @ -+ @ Cy(Ky; R).

Now let z € Z,(K;R). We can express z uniquely in the form z =
21+ 29+ -+ + 25, where z; € Cy(Kj; R) for j =1,2,...,s. Now

0= 08,(2) = Dy(21) + Oy(22) + -+ + Dy (25),

and 0,(z;) is a (¢—1)-chain of K for j =1,2,...,s. It follows that 9,(z;) =0
for j =1,2,...,s. Hence each z; is a g-cycle of K, and thus

Z(K;R)=Z,(K;R)® Z,(Ky;R) ® --- & Z,(Ks; R).

Now let b € By(K;R). Then b = 0,41(c) for some ¢ € Cy1(K;R).
Moreover ¢ = ¢; + ¢3 + -+ - ¢5, where ¢; € Cyiq(Kj;R) for j = 1,2,...,s.
Thus b = by + by + -+ - bs, where b; = Oyq1¢; for j = 1,2,...,s. Moreover
bj € By(K;; R) for j =1,2,...,s. We deduce that

By(K; R) = By(Ky1; R) @ By(K2; R) @ -+ - @ By(Ky; R).
It follows from these observations that there is a well-defined isomorphism
viH(K1;R) ® Hy(Ko; R) @ -+ @ Hy(Ks; R) — Hy(K; R)

which maps ([21], [22], ..., [25]) to [21 + 22 + - - - + 2z,], where [z;] denotes the
homology class of a g-cycle z; of K for j =1,2,...,s. |}

Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
Vo, V1, ...,V of vertices of K with vo =y and v,, = z such that the line
segment with endpoints v;_; and v; is an edge belonging to K for j =
1,2,...,m.
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Lemma 4.12 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if |K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex vy of K. It suffices to verify that
every vertex of K can be joined to vy by an edge path.

Let Ky be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to vy
by an edge path. If ¢ is a simplex belonging to K, then every vertex of o can
be joined to vy by an edge path, and therefore every face of ¢ belongs to Kj.
Thus K is a subcomplex of K. Clearly the collection K of all simplices of K
which do not belong to K is also a subcomplex of K. Thus K = Ky U Kj,
where Ky N K; = (), and hence |K| = |Ko| U |Ky|, where |Ky| N |K7| = 0.
But the polyhedra |Ky| and |K;| of Ky and K7 are closed subsets of |K|. Tt
follows from the connectedness of | K| that either |Ky| = 0 or |K;| = 0. But
vo € Ky. Thus K; = () and Ky = K, showing that every vertex of K can be
joined to vy by an edge path, as required. |

Theorem 4.13 Let K be a simplicial complex and let R be an integral do-
main. Suppose that the polyhedron |K| of K is connected. Then Hy(K; R) =
R.

Proof Let vi,va,..., Vv, be the vertices of the simplicial complex K. Every
O-chain of K with coefficients in R can be expressed uniquely as a formal
sum of the form

ri(vi) + ro(ve) + - -+ 1re(vy)

for some ry,rs,...,7rs € R. It follows that there is a well-defined homomor-
phism e: Cy(K; R) — R defined such that

e(ri(vy) +1a(ve) + - +ry(vy)) =r +ra+ -+ 75
for all r1,79,...,7s € R and for all vertices vy, vy,..., v, of K.

Now £(0;((u,v))) = e({(v) — (u)) = 0 whenever u and v are endpoints of
an edge of K. It follows that € o 9, = 0, and therefore By(K; R) C kere.
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Let wo,wq,...,w,, be vertices of K determining an edge path. Then

w;_1 w; is an edge of K for j =1,2,...,m, and
(Win) — (wo) = Z((Wj> - <Wj—1>) =0, (Z(Wj—l,Wﬁ) € By(K; R).
j=1 j=1

Now |K| is connected, and therefore any pair of vertices of K can be joined
by an edge path (Lemma 4.12). We deduce that (v) — (u) € By(K; R) for
all vertices u and v of K.

Choose a vertex u € K. Then

D vy = ri(vy) — (W) + (Z Tj) (u) € Bo(K; R) + (Z Tj) (u)

j=1 j=1 j=1 j=1

for all r1,79,...,7rs € R and for all vertices vy, vs, ..., v, of K, and therefore
z—¢e(z)(u) € By(K; R)

for all z € Cy(K; R). It follows that kere € By(K; R). But we have already
shown that By(K; R) C kere. It follows that kere = By(K; R).

Now the homomorphism e: Cy(K; R) — R is surjective and its kernel
is Bo(K;R). Moreover Zy(K;R) = Co(K;R) (because 0y: Co(K;R) —
C_1(K;R) is defined to be the zero homomorphism from Cy(K; R) to the
zero module C_1(K; R)), and therefore

Ho(K; R) = Zo(K; R)/Bo(K; R) = Co(K; R)/Bo(K; R).

It follows that the homomorphism ¢ induces an isomorphism from Hy(K'; R)
to R (see Corollary 1.8), and therefore Hy(K; R) = R, as required. ||

On combining Theorem 4.13 with Lemmas 4.10 and 4.11 we obtain im-
mediately the following result.

Corollary 4.14 Let K be a simplicial complex, and let R be an integral do-

main. Then Ho(K; R) = R®, where s is the number of connected components
of |K|.
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5 Homology Calculations

5.1 The Homology Groups of an Octahedron

Let K be the simplicial complex consisting of the triangular faces, edges and
vertices of an octahedron in R? with vertices P;, P,, Py, Py, Ps and Ps, where

P, =(0,0,1), Py=(1,0,0), P;=(0,1,0),

P4:(_17070)7 P5:(07_170)7 P6:(0707_1)

This octahedron consists of the four triangular faces P, P, P3, Py P3P, PP, P;
and P, PsP, of the pyramid whose base is the square P, P3P, Ps and whose
apex is Pp, together with the four triangular faces Py P, P3, PsP3Py, PsPyPs
and PsP5P, of the pyramid whose base is P, P3P, P5 and whose apex is Fg.

A typical 2-chain ¢y of K is a linear combination, with integer coeffi-
cients, of eight oriented 2-simplices that represent the triangular faces of the
octahedron. Thus we can write

8
Co = Zni0i7
i=1
where n; € Z fort=1,2,...,8 and
o1 =(P, P, Ps), 09=(P,PsPy), o03=(P,Py,D5),

04 = <P17P5,P2>, 05 = <P67P37P2>7 O = <P6,P4,P3>,
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0'7:<P6;P5;P4>7 08:<P67P27P5>~

(The orientation on each of these triangles has been chosen such that the
vertices of the triangle are listed in anticlockwise order when viewed from a
point close to the centre of triangle that lies outside the octahedron.)
Similarly a typical 1-chain ¢; of K is a linear combination, with integer
coefficients, of twelve 1-simplices that represent the edges of the octahedron.

Thus we can write
12
G = E m;p;g,
=1

where m; € Z for j =1,2,...,12 and
p1= (P, Pa), pa={(P1,Ps), p3s=(P,Py), ps=(P,PF5),

ps = (P, Ps), pe=(Ps,Py), pr= (P, D5), ps= (D5 P),
P9:<P2>P6>, P10:<P3,P6>, 011:<P4,P6>, /)12:<P5,P6>,
A typical O-chain ¢y takes the form

Co = Zrk<Pk>,

k=1

where r, € Z for k =1,2,...,6.
We now calculate the boundary of a 2-chain. It follows from the definition
of the boundary homomorphism 0, that

0y01 = Oo(P1, Py, P3) = (P P3) — (P Ps) + (P P2) = ps — p2 + p1.

Similarly
0209 = 02(Py1, P3, Py) = ps — p3 + po,
003 = 02(Py1, Py, Ps) = pr — pa + ps,
Ohoy = Oo(Py, Ps, Po) = ps — p1 + pa,
Os05 = 09(Fs, P3, Po) = —p5 + pg — pro,
Os06 = 09(Fs, Py, P3) = —ps + p1o — pa1,
Ohor = 09(Fs, Ps, Py) = —pr + p11 — p12,
Osos = 09(Fs, Py, P5) = —ps + p12 — po.

Thus

8262 = 82 (n101 -+ No09 + N3o3 + N404 + N505 + NgO0g + n7o7 + ngo'g)
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= n10201 + No0209 + N300 + Ny0r04
+ n50205 + ngOa0¢ + N70207 + Ngdaoy
= (n1 —na)p1 + (n2 —n1)py + (n3 — n2)ps + (N4 — n3)pa
+ (n1 — ns)ps + (n2 — ng)ps + (n3 — n7)pr + (ng — ng)ps
+ (n5 — ng)py + (16 — 15)p10 + (N7 — n6) p11 + (N8 — n7) P12

It follows that dsco = 0 if and only if
Ny =MNg =N3 =Ny =Ny = Ng = Ny = Ng.

Therefore

8
Zo(K;Z) =ker Oy = {nu :n € Z}, where = ZU’"

i=1

Now C3(K;7Z) = 0, and thus By(K;7Z) = 0 (where 0 here denotes the zero
group), since the complex K has no 3-simplices. Therefore

Hy(K:7) = Zo(K;7) 2 7.

Next we calculate the boundary of a 1-chain. It follows from the definition
of the boundary homomorphism 0; that

12
8101 = 81 (ijp])
j=1

= mi((Py) — (P)) + ma((Ps) — (P1))

+ m3((Py) — (1)) + ma((FP5) — (P1))
+ms((P3) — (P2)) + me({Pa) — (F3))
+m7((Ps) — (1)) + ms((FP2) — (P5))
+my((Fe) — (P2)) +mio((Fs) — (F3))

+ mu((Fs) — (P) + maa((Fs) — (F5))

= —(mq +mg +mg+my)(Pr) + (my —ms + mg — mg)(Fs)
+ (mg + ms — meg — ma)(P3) + (m3 + mg — my — my)(Py)
+ (myg +my — mg — maz)(Ps) + (mg + mig + may + maa)(Fs)

It follows that the 1-chain ¢; is a 1-cycle if and only if
m1+m2—|—m3+m4:0, ml—m5+mg—m9:0,

my + ms —mg —mig =0, m3z+meg—my—mq =0,
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my+my—mg—mpp =0 and mg+ myg+ myi + m2 = 0.

On examining the structure of these equations, we see that, when ¢; is a 1-
cycle, it is possible to eliminate five of the integer quantities m;, expressing
them in terms of the remaining quantities. For example, we can eliminate
my, Mg, M7, Mmg and mq9, expressing these quantities in terms of my, mso, ms,
ms, Mg Mmyo and mq; by means of the equations

my = —MmMp — Mg — M3,

meg = Mg — My + Mms,

my = Mg+ M3 — M — My + Mk,
mg = —mj+ Mg+ Mms,

mi2 = —Mg — Mip — Mi1

It follows that
Zy(K; Z) = {maz1 + mazo + mgzs + mszs + Mg2g + Migz10 + Mi1211},
where

21 = p1— ps— pg = —0a0y,

2y = p2— pa+ps+ pr = 002+ 03),

Z3 = p3— pa+ pr = 0r03,

zs = ps+ pe+ pr+ ps = Oo(01 + 02 + 03+ 04),
29 = ps+pg— pr2 = —0a0s,

Zio = —p6— p7+ p1o — p12 = a(og + 07),

211 = P11 — P71 — P12 = 6207'

From these equations, we see that the generators zy, 2o, 23, 25, 29, 210 and
211 of the group Z1(K;Z) of 1-cycles all belong to the group By (K;Z) of 1-
boundaries. It follows that Z,(K;Z) = By(K;Z), and therefore H,(K;7Z) =
0.

In order to determine Hy(K';Z) it suffices to note that the 0-chains

() = (P1), (Bs) —(P), (Py)—(P), (B)—(P) and (F)— ()

are O-boundaries. Indeed
(P2) —(P1) = 0ip1, (Ps) — (P1) = Oipa,  (Pa) — (Pr) = Oips,

(P5) = (P1) = 01ps and  (Fs) — (P1) = 01(p1 + py).
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Therefore .

> Py - (Z rk> (P) € By(K;7Z)

k=1
for all integers 7y, 79, 73, T4, 75 and rg. It follows that By(K;Z) = kere,
where e: Cy(K;Z) — Z is the homomorphism defined such that

€ (Z’i”k<Pk>> = Z’f’k

for all integers ry (k= 1,2,...,6). Now Zy(K;Z) = Co(K;Z) since the ho-
momorphism 0y: Co(K;Z) — C_1(K;Z) is the zero homomorphism mapping
Co(K;Z) to the zero group. It follows that

Ho(K;Z) = Co(I; Z)/ Bo(K; Z) = Co(K; Z)/ ker & = Z.

(Here we are using the result that the image of a homomorphism is isomorphic
to the quotient of the domain of the homomorphism by the kernel of the
homomorphism.)

We have thus shown that

One can show that Z;(K;Z) = By(K;Z) by employing an alternative
approach to that used above. An element z of Z;(K;Z) is of the form z =

12
> m;pj, where
i=1
m1+m2—|—m3+m420, ml—m5+mg—m9:0,

mo +ms —meg —mig =0, mg+me—my—mq =0,
My +my—mg —mpp =0 and mg -+ mqg+ my + ma = 0.

The 1-cycle z belongs to the group B;(K;Z) if and only if there exists some
2-chain ¢y such that z = Oyco. It follows that z € By(K;Z) if and only if
there exist integers nq,ns, ..., ng such that

mp =mny —Nyg, M2="MNg—"N1, M3=mnN3—"N2, My ="y — N3,

ms ="N1 — N5, Me="N2 —Ng, M7="N3—N7, Mg =T"4—Ng,
mg =N —Ng, Mg ="Ng — N5, Mi11 =Ny —Ng, iz =T"Ng — N7y.

The integers nq,no, ..., ng solving the above equations are not uniquely de-
termined, since, given one collection of integers nq, ns, ..., ng satisfying these
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equations, another solution can be obtained by adding some fixed integer to
each of nq,nq, ..., ng. It follows from this that if there exists some collection
ni,ne,...,ng of integers that solves the above equations, then there exists a
solution which satisfies the extra condition n; = 0. We then find that

ny =0, na=my, mnNz=mp+mg, ng=-—m,

ng = —Ms, Ng = Mg — Mg, N7 =Mg+M3— Mz, Ng=—M3 —Msg.

On substituting ny, ne, . .., ng into the relevant equations, and making use of
the constraints on the values of mq, ma, ..., mqo, we find that we do indeed
have a solution to the equations that express the integers m; in terms of
the integers n;. It follows that every 1-cycle of K is a 1-boundary. Thus
Z\(K;Z) = By(K;Z), and therefore H,(K;Z) = 0.

Note that the results of many of the calculations of boundaries of chains
can be verified by consulting the diagram representing the vertices and edges
of the octahedron with their labels and orientations. For example, direct cal-
culation using the definition of the boundary homomorphism dy: Co(K;Z) —
C1(K;Z) shows that

Os01 = O (P, Py, P3) = (PoPs) — (P1Ps) + (P1P) = ps — pa+ p1.

Now if we follow round the edges of the triangle P, P, P represented by o,
starting at P, and proceeding to P, then P; then back to P, we traverse the
edge p; in the direction of the arrow, then the edge ps in the direction of
the arrow, and finally the edge ps in the reverse direction to the arrow. In
consequence, both p; and ps occur in the 1-boundary 0,0, with coefficient
+1, whereas py occurs in this 1-boundary with coefficient —1.

Consider also the coefficient corresponding to the vertex P, in the 0-
12

boundary 0c;, where ¢ = ) m;p;. The vertex P, is an endpoint of four
j=1

edges. The arrows indicating the orientation on the edges p; and pg are

directed towards the vertex P,, whereas the arrows indicating the orientation

on the edges p5; and pg are directed away from the vertex P,. In consequence,

the coefficient of (P,) in 0i¢; is my — ms + mg — mo.

5.2 Another Homology Example

Let P, Py, P53, Py, Ps and Py be the vertices of a hexagon in the plane, listed
in cyclic order, and let K be simplicial complex consisting of the triangles
PP, P;, P3P, P5 and Ps Py Py, together with all the edges and vertices of these
triangles.
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Then
CQ(K, Z) = {anl + NoTy + N3y : Ny, No, N3 € Z},

where

T1:<P1P2P3>, 7'2:<P3P4P5> and 7'3:<P5P6P1>.

(Note 71, 7o and 73 represent the three triangles of the simplicial complex
with the orientations that results from an anticyclic ordering of the vertices
in the diagram above.) Also

9
C{(K;Z) = {ijpj Sm; 6Zforj=1,2,...,9},

j=1

where

pr=(PsP1), p2= (PP, p3=(PaPs), ps= (P3P, ps=(PP5),

pe = (PsFs), pr=(PsP1), ps=(PP) and pg= (P3Fs),
and
6
Co(K;Z) = {Zrk(Pk) 1 € Z for k= 1,2,...,6}.
k=1

(Note that the 1-chains p1, pa, ..., po represent the 9 edges of the simplicial

complex with the orientations indicated by the arrows on the above diagram.)
We now calculate the images of the 2-chains 77, 75 and 73 under the

boundary homomorphism 0y: Co(K;Z) — C(K;Z). We find that

OoT1 = p3 — ps + p2, OoTo = ps — pg + pa, OaT3 = p1 — p7 + pe,
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Now
82(7117’1 + NoTo + 7737'3)
= ngp1 +nip2 +N1ps + Nopyg + Nops + Ngpe — N3P7 — N1pPg — N2 Pgy.

The simplicial complex K has no non-zero 2-cycles, and therefore Z,(K;7Z) =
0. It follows that Hy(K;Z) = 0.

Let
9
c1 — Z m;p;.
j=1
Then
8161 = (m1 — My + mr — m8)<P1> + (mQ — m3)<P2>
+ (m3 — my +ms — mg)(Ps) + (ma — ms)(Py)
-+ (m5 — Mg + Mg — m7)(P5) + (m6 — m1)<P6>
It follows that ¢y is a 1-cycle of K if and only if
Mg = M3, My =TMs5, Mg=111
and
my + my = mg + Mg = M5 + My.
Moreover ¢, is a 1-boundary of K if and only if
Mo = Mg = —Mg, Ny ="M5= —Mg, Mg =111 = —N7.
We see from this that not every 1-cycle of K is a 1-boundary of K. Indeed
Z1(K;Z) = {n10o1 + n20aTy + Nn302T3 + nz : ny,ng, N3, n € Z},

where z = p7 + ps + po. Let 0: Z,(K;7Z) — Z be the homomorphism defined
such that
0 (n1827'1 + n2(927'2 + 723827'3 + ’I’LZ) =N
for all ny,ns,ng,n € Z. Now
n10aT1 + no0aTy + N30ty + nz € By(K;7Z) if and only if n = 0.
It follows that By(K;Z) = kerf. Therefore the homomorphism 6 induces
an isomorphism from Hy(K;Z) to Z, where H,(K;Z) = Z1(K;Z)/ B (K;Z).
Indeed H,(K;Z) = {n[z] : n € Z}, where z = p; + ps + py and [z] denotes
the homology class of the 1-cycle z.
It is a straightforward exercise to verify that
6 6
By(K;Z) = {ZTMP;C} cry € Zfor k=1,2,...,6 and Zrk = O}.
k=1 k=1
It follows from this that Hy(K;Z) = Z. Indeed this result is a consquence of
the fact that the polyhedron |K| of the simplicial complex K is connected.

80



5.3 The Homology Groups of the Boundary of a Sim-
plex

Proposition 5.1 Let K be the simplicial complex consisting of all the proper
faces of an (n + 1)-dimensional simplex o, where n > 0. Then

Ho(K:Z) =7, Ho(K:;Z)=Z, H,(K;Z)=0 when q#0,n.

Proof Let M be the simplicial complex consisting of the (n+1)-dimensional
simplex o, together with all its faces. Then K is a subcomplex of M, and
Cy(K;Z) = Cy,(M;Z) when q < n.

It follows from Proposition 4.8 that Ho(M;Z) = Z and H,(M;Z) = 0
when ¢ > 0. (Here 0 denotes the zero group.) Now Z,(K;Z) = Z,(M;Z)
when ¢ < n, and B,(K;Z) = By(M;Z) when ¢ < n. It follows that
H,(K;Z) = H,(M;Z) when q < n. Thus Ho(K;Z) = Z and H,(K;Z) = 0
when 0 < ¢ < n. Also H,(K;Z) = 0 when ¢ > n, since the simplicial com-
plex K is of dimension n. Thus, to determine the homology of the complex K,
it only remains to find H,(K;Z).

Let the (n+1)-dimensional simplex ¢ have vertices vo, vy, ..., v,1. Then

Cn+1(M; Z) = {n<V0,V1, . ,Vn+1> n e Z}
and therefore B,,(M;Z) = {nz : n € Z}, where

z = 6n+1 (<V0,V1, . ,Vn+1>) .

Now H,,(M;Z) = 0 (Proposition 4.8). It follows that Z,(M;Z) = B, (M;Z).
But Z,(K;Z) = Z,(M;Z), since C,,(K;Z) = C,,(M;Z) and the definition of
the boundary homomorphism on C,,(K;Z) is consistent with the definition
of the boundary homomorphism on C,,(M;Z). Also B,(K;Z) = 0, because
the simplicial complex K is of dimension n, and therefore has no non-zero
n-boundaries. It follows that

Ho(K;7) 2 Zo(K; Z) = Zo(M; Z) = By(M;7) 2 7.

Indeed H,(K;Z) = {n|z] : n € Z}, where [z] denotes the homology class of
the n-cycle z of K defined above. |}

Remark Note that the n-cycle z is an n-cycle of the simplicial complex K,
since it is a linear combination, with integer coefficients, of oriented n-
simplices of K. The n-cycle z is an n-boundary of the large simplicial com-
plex M. However it is not an n-boundary of K. Indeed the n-dimensional
simplicial complex K has no non-zero (n + 1)-chains, therefore has no non-
zero n-boundaries. Therefore z represents a non-zero homology class [z] of
H,(K;Z). This homology class generates the homology group H,(K;Z).
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Remark The boundary of a 1-simplex consists of two points. Thus if K

is the simplicial complex representing the boundary of a 1-simplex then
Hy(K;Z) = Z & Z (Corollary 4.14), and H,(K;Z) = 0 when g > 0.
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