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6 Introduction to Homological Algebra

6.1 Exact Sequences

In homological algebra we consider sequences
RPN A AN SNy ~ SN

where F', G, H etc. are modules over some unital ring R and p, q etc. are
R-module homomorphisms. We denote the trivial module {0} by 0, and
we denote by 0—G and G——0 the zero homomorphisms from 0 to G' and
from G to 0 respectively. (These zero homomorphisms are of course the only
homomorphisms mapping out of and into the trivial module 0.)

Unless otherwise stated, all modules are considered to be left modules.

Definition Let R be a unital ring, let F', G and H be R-modules, and
let p: F — G and ¢:G — H be R-module homomorphisms. The sequence
F-2.G-5H of modules and homomorphisms is said to be ezact at G if
and only if image(p: ' — G) = ker(q: G — H). A sequence of modules and
homomorphisms is said to be ezact if it is exact at each module occurring in
the sequence (so that the image of each homomorphism is the kernel of the
succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.
The following result follows directly from the relevant definitions.

Lemma 6.1 let R be a unital ring, and let h: G — H be a homomorphism
of R-modules. Then

e h: G — H is a monomorphism if and only if 0—G-"H is an ezact
sequence;

e h:G — H 1is an epimorphism if and only if G H—0 is an ezact
sequence;

e h:G — H is an isomorphism if and only if 0—G-LSH—0 is an
exact sequence.

Let R be a unital ring, and let F' be a submodule of an R-module G.
Then the sequence

0— F—5G-5G/F—0,
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is exact, where G/F is the quotient module, i: ' — G is the inclusion ho-
momorphism, and ¢: G — G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0—>F—i>Gi>H—>O,

we can regard F' as a submodule of G (on identifying F' with i(F')), and then
H is isomorphic to the quotient module G/F. Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various modules
occurring on the diagram. The diagram is said to commute if, whenever
there are two routes through the diagram from a module G to a module H,
the homomorphism from G to H obtained by forming the composition of the
homomorphisms along one route in the diagram agrees with that obtained
by composing the homomorphisms along the other route. Thus, for example,
the diagram

4 L 2, C
ll’ lq lr

D " B * F

commutes if and only if go f =hopand rog=kogq.
Proposition 6.2 Let R be a unital ring. Suppose that the following diagram
of R-modules and R-module homomorphisms

0 0 0 0
G — Gy 5 Gy — Gy — G

R R

H S Hy S H S H S H,

commutes and that both rows are exact sequences. Then the following results
follow:

(1) if ¥ and 1y are monomorphisms and if Yy is a epimorphism then s
18 an monomorphism,

(i) if Yo and ¥y are epimorphisms and if 15 is a monomorphism then 13
1s an epimorphism.

Proof First we prove (i). Suppose that v, and 1, are monomorphisms and
that 11 is an epimorphism. We wish to show that 13 is a monomorphism.

Let x € G35 be such that ¥s(z) = 0. Then 4 (03(x)) = ¢3(¢Y3(z)) = 0,
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and hence 05(z) = 0. But then z = 0(y) for some y € Gq, by exactness.
Moreover

P2 (V2(y)) = V3 (02(y)) = ¥3(z) = 0,

hence 15(y) = ¢1(z) for some z € Hy, by exactness. But z = 11 (w) for some
w € Gy, since vy is an epimorphism. Then

Yo (01(w)) = é1 (P1(w)) = Ya(y),

and hence 01 (w) = y, since 15 is a monomorphism. But then

z = bh(y) =02 (01(w)) =0

by exactness. Thus 3 is a monomorphism.

Next we prove (ii). Thus suppose that ¢, and 1, are epimorphisms and
that 15 is a monomorphism. We wish to show that w3 is an epimorphism.
Let a be an element of Hz. Then ¢3(a) = 14(b) for some b € Gy, since 1y is
an epimorphism. Now

5 (04(b)) = b4 (1ha(b)) = ¢a (ds(a)) =0,

hence 64(b) = 0, since ¥5 is a monomorphism. Hence there exists ¢ € G
such that 63(c) = b, by exactness. Then

¢3 (P3(¢)) = 14 (63(c)) = 1a(b),

hence ¢3 (a —3(c)) = 0, and thus a — ¥3(c) = ¢a(d) for some d € H,, by
exactness. But vy is an epimorphism, hence there exists e € (G5 such that
t9(e) = d. But then

s (02(€)) = ¢2 (¥2(€)) = a — ¥s3(c).

Hence a = 93 (¢ + 03(e)), and thus a is in the image of ¢3. This shows that
5 is an epimorphism, as required. |}

The following result is an immediate corollary of Proposition 6.2.
Lemma 6.3 (Five-Lemma) Suppose that the rows of the commutative dia-

gram of Proposition 6.2 are exact sequences and that 1, 1o, Y4 and s are
1somorphisms. Then 3 is also an isomorphism.
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6.2 Chain Complexes

Definition A chain complex C. is a (doubly infinite) sequence (C; : i € Z) of
modules over some unital ring, together with homomorphisms 0;: C; — C;_;
for each ¢ € Z, such that 0; 0 9,11 = 0 for all integers 1.

The ith homology group H;(C,) of the complex C, is defined to be the
quotient group Z;(C,)/B;(C\), where Z;(C,) is the kernel of 0;: C; — C;_4
and BZ(C*) is the image of 8i+1: Ci—H — Oz

Note that if the modules C, occuring in a chain complex C, are modules
over some unital ring R then the homology groups of the complex are also
modules over this ring R.

Definition Let C, and D, be chain complexes. A chain map f:C, — D, is
a sequence f;: C; — D; of homomorphisms which satisfy the commutativity
condition d; o f; = fi_1 0 0; for all i € Z.

Note that a collection of homomorphisms f;: C; — D, defines a chain map
fe: Cy — D, if and only if the diagram

Oit1 0;
R i+l T C; — Ciog —---
J/fi-&-l J/fi lfi—l
Oit1 0;

e e — DZ+1 _— D’L _— lel .

is commutative.

Let C, and D, be chain complexes, and let f,:C, — D, be a chain map.
Then fi(Z;(C.)) C Zi(D.) and f;(B;(Cy)) C B;i(D,) for all i. It follows
from this that f;: C; — D; induces a homomorphism f,: H;(C,) — H;(D.)
of homology groups sending [z] to [fi(z)] for all z € Z;(C,), where [z] =
z 4 Bi(Cy), and [fi(2)] = fi(2) + Bi(D.).

Definition A short exact sequence 0— A, 2B, -0, —0 of chain com-
plexes consists of chain complexes A,, B, and C, and chain maps p,: A, — B,
and ¢,: B, — C, such that the sequence

0—sA; 25 B,-25C,—0

is exact for each integer i.
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We see that 0— A, 25 B, -2, —0 is a short exact sequence of chain
complexes if and only if the diagram

Oiy2 Oiy2 Oiy2

Pi+1 qi+1
0 — Ay — B — G — 0

Oig1 Oig1 Oig1
Pi qi
o — A —- B — ;. — 0.
0; 0; 0;

Pi—1 qi—1
0 — A4, — B, — C,; — 0

i1 Oi—1 0i—1

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.

. D= qx
Lemma 6.4 Given any short evact sequence 0— A,— B,—C,—0 of
chain complexes, there is a well-defined homomorphism

a;: Hi(Cy) — Hi—1(A))

which sends the homology class [z] of z € Z;(C\) to the homology class [w] of
any element w of Z;_1(A,) with the property that p;_1(w) = 9;(b) for some
b € B; satisfying ¢;(b) = z.

Proof Let z € Z;(C,). Then there exists b € B; satisfying ¢;(b) = z, since
q;: B; — C} is surjective. Moreover

¢i-1(05(b)) = 0i(qi(b)) = 95(2) = 0.

But p;—1: A;-1 — B;_ is injective and p;_1(A;—1) = kerg;_1, since the se-
quence
0—A; 1 25 B 1 1550

is exact. Therefore there exists a unique element w of A;_; such that 9;(b) =
pi—1(w). Moreover

pi2(0i1(w)) = 01 (pia(w)) = 0;-1(0i(b)) = 0

(since 0;_1 0 0; = 0), and therefore 9;_1(w) = 0 (since p;_9: A;_9 — B;_5 is
injective). Thus w € Z;_1(A,).
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Now let b,0 € B; satisfy ¢;(b) = ¢;(/) = z, and let w,w" € Z;_1(A.)
satisfy p;—1(w) = 0;(b) and p;—1(w') = 0;(b'). Then ¢;(b — V') = 0, and hence
b — b= p;(a) for some a € A;, by exactness. But then

pici(w + 9i(a)) = pica(w) + di(pi(a)) = 0i(b) + 0i(V — b) = %i(V) = pia(w'),

and p;_1: A;_1 — B;_1 is injective. Therefore w + 0;(a) = w’, and hence
[w] = [w] in H;_1(A,). Thus there is a well-defined function &;: Z;(C,) —
H;_1(A,) which sends z € Z;(C,) to [w] € H;_1(As), where w € Z;_1(A,) is
chosen such that p;_i(w) = 9;(b) for some b € B; satisfying ¢;(b) = z. This
function &; is clearly a homomorphism from Z;(C,) to H;—1(A.).

Suppose that elements z and 2’ of Z;(C,) represent the same homology
class in H;(Cy). Then 2z’ = z+ 0;41¢ for some ¢ € C;1. Moreover ¢ = ¢;41(d)
for some d € B4, since q;11: Biy1 — Cj41 is surjective. Choose b € B; such
that ¢;(b) = 2z, and let ¥’ = b+ 0;41(d). Then

ql(b’) =z + qi(@-ﬂ (d)) =z + 8¢+1 (qi+1 (d)) =z + 6i+1(c) = Z/.

Moreover 0;(b') = 0;(b + 0;11(d)) = 0;(b) (since 0; 0 0;41 = 0). Therefore
&;(z) = a;(2'). It follows that the homomorphism &;: Z;(Cy) — H;—1(A.) in-
duces a well-defined homomorphism «;: H;(C.) — H;_1(A,), as required. ||

Let 0— A, 25 B, *5C,—0 and O—>A;p—;>B;q—i>C’i—>O be short ex-
act sequences of chain complexes, and let \,: A, — A, u.: B, — B, and
v,: C. — C] be chain maps. For each integer i, let oy: H;(C\) — H;—1(AL)
and o): H;(C") — H;_1(A,) be the homomorphisms defined as described in
Lemma 6.4. Suppose that the diagram

0 — A, X B, & 0, — 0

[ 2 |~

/ !
p q
0 — A I p Lo — 0

commutes (i.e., pio\; = p;op; and ¢} o p; = v;0¢; for all 7). Then the square

Hi(C.) == H;i1(A)

Vx A
Hi(C) =% Hiy(A)

commutes for all i € Z (i.e., A\, o oy = a o v,).
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Proposition 6.5 Let 0— A, 2B, 20, —0 be a short ezact sequence of
chain complezes. Then the (infinite) sequence

S (A L H(B) S H(C) 5 Hima (A 2 Hia(B) -

of homology groups is exact, where a;: Hi(C) — H;_1(A,) is the well-defined
homomorphism that sends the homology class [z] of z € Z;(C) to the homol-
ogy class [w] of any element w of Z;_1(A.) with the property that p;—;(w) =
0;(b) for some b € B; satisfying q;(b) = z.

Proof First we prove exactness at H;(B.). Now ¢; o p; = 0, and hence
¢« o p. = 0. Thus the image of p,: H;(A.) — H;(B.) is contained in the
kernel of ¢.: H;(B.) — H;(C.). Let x be an element of Z;(B,) for which
[x] € kergq,. Then ¢;(z) = 0;11(c) for some ¢ € Cyy1. But ¢ = ¢i11(d) for
some d € B, since ¢;11: Biy1 — Cjyq is surjective. Then

¢i(z — 0ir1(d)) = ¢i(x) — 0iy1(¢ir1(d)) = qi(z) — Oi31(c) = 0,

and hence  — 0;41(d) = p;(a) for some a € A;, by exactness. Moreover

pi-1(0i(a)) = Oi(pi(a)) = O0i(x — 0;11(d)) = 0,

since al<.1‘) = 0 and (91 o @H = 0. But pifliAifl — Bi,1 is injective.
Therefore 0;(a) = 0, and thus a represents some element [a] of H;(A,). We

deduce that
[2] = [z = 0i41(d)] = [pi(a)] = p.([a]).

We conclude that the sequence of homology groups is exact at H;(B,).
Next we prove exactness at H;(C,). Let x € Z;(B,). Now

@;(g+[7]) = ail[a:(2)]) = [w],

where w is the unique element of Z;(A,) satisfying p;_1(w) = 9;(x). But
O;(z) = 0, and hence w = 0. Thus «; o ¢, = 0. Now let z be an element
of Z;(C,) for which [z] € kera;. Choose b € B; and w € Z;_1(A,) such
that ¢;(b) = z and p;_;(w) = 0;(b). Then w = 0;(a) for some a € A;, since
[w] = a;([z]) = 0. But then ¢;(b — p;(a)) = z and 9;(b — p;(a)) = 0. Thus
b—pi(a) € Z;(B,) and q.([b — pi(a)]) = [z]. We conclude that the sequence
of homology groups is exact at H;(C).

Finally we prove exactness at H; 1(A,). Let z € Z;(C.). Then «;([z]) =
[w], where w € Z;_1(A.) satisfies p;_;(w) = 0;(b) for some b € B; satisfying
¢;(b) = z. But then p.(;([z])) = [pi—1(w)] = [0;(b)] = 0. Thus p. o a; = 0.
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Now let w be an element of Z;_;(A,) for which [w] € kerp,.. Then [p;—1(w)] =
0 in H; 1(B.), and hence p;_;(w) = 0;(b) for some b € B;. But

az‘(%‘(b)) = qi—l(ai<b>> = Qi—1<pi—1(w)) = 0.

Therefore [w] = «;([z]), where z = ¢;(b). We conclude that the sequence of
homology groups is exact at H;_1(A,), as required. |}
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7 Exact Sequences of Homology Groups

7.1 The Euler Characteristic of a Simplicial Complex
Lemma 7.1 Let R be a field, and let

0—ULvV-LWw =0

be a short exact sequence of vector spaces over the field R. Then dimgpV =

Proof The vector space W is isomorphic to the quotient space V/U. It
follows from basic linear algebra that dimg W = dimgV — dimgU. The
result follows. |}

Definition Let K be a simplicial complex of dimension n. The Euler char-
acteristic x(K) of K is defined by the equation

n

X(K) =Y (~1)?dim H,(K;R)

q=0

Proposition 7.2 Let K be a simplicial complex of dimension n, and, for
each non-negative integer q, let my be the number of q-simplices of K. Then
the Euler characteristic x(K) of K satisfies the identity

n

V(E) = 3 (1),

q=0

Proof The groups C,(K;R), Z,(K;R), B,(K;R) of g-chains, g-cycles and
g-boundaries of K with coefficients in the field R of real numbers are real
vector spaces, as is the homology group H,(K;R). Moreover there are exact
sequences

0 — Z,(K;R) — Cy(K;R) "B, (I R) — 0

and
0 — B,(K;R) — Z,(K;R) — H,(K;R) — 0.

It follows from Lemma 7.1 that
dim Z,(K;R) = B,(K;R) + H,(K;R)
for ¢ > 0. Also dim Zy(K;R) = dim Cy(K;R), and

dim C, (K R) = Z,(K;R) + B, 1(K;R)
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for ¢ > 0. Now dim C,(K; R) = m, for all non-negative integers q. Therefore

n

X(K) = Y (-1)"H,(K;R)

- g(_nqzq(K;R) - :Z_:(—l)qu(K;R)

- g(_mzq(f(; R) — g(—l)‘I‘qu_l(K; R)

= LR+ qgi;(—m(cq(fc R) - Z,(K:R))
- g(—l)qC’q(K;R) = qzz;(—l)"mq,

as required. |}

7.2 Homology Groups of Simplicial Pairs

A simplicial pair (K, L) consists of a simplicial complex K together with a
subcomplex L.

Let (K, L) be a simplicial pair, and let R be an integral domain. The gth
chain group C,(L; R) of the subcomplex L with coefficients in the integral
domain R may be regarded as a module of the gth chain group C,(K; R) of
the simplicial complex K, and the inclusion map i: L — K induces inclusion
homomorphisms

iq: Cy(L; R) — Cy(K; R).

We define the gth chain group C,(K, L; R) of the simplicial pair to be the
quotient group C,(K; R)/C,(L; R). The boundary homomorphism

0y Cy(K; R) — Cyq (K R)

maps the submodule C,(L; R) into C,—1(L; R), and therefore induces a ho-
momorphism

0y Cy(K, Ly R) — Cy1(K, L; R).

For each integer ¢, let

ug: Cy(K; R) — Cy(K, L; R)
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be the quotient homomorphism from C,(K; R) to Cy (K, L; R). Then 0,0u, =
uq—1 © 0, for all integers ¢. (This is an immediate consequence of the fact
that the homomorphism

0y Cy(K, Ly R) — Cyq1 (K, L; R)
is by definition the homomorphism induced by the boundary homomorphism
0y Cy(K;R) — Cy—1(K; R) of K.)

Now
Og—100,0U; =0y—10Ug—100; =Ug—200;-1 00, =0.
Moreover the quotient homomorphism
ug: Cy(K; R) — Cy(K, L; R)

is surjective. It follows that the composition of the homomorphisms

0y Cy(K, Ly R) — Cyy (K, L; R)

and
Og—1:Cy1(K,L;R) — Cy—o(K, L; R)

is the zero homomorphism. Therefore the sequence of R-modules
(Cy(K,L;R) 1 q € R)
and R-module homomorphisms
(0 Cy(K,L; R) — Cy—1(K,L; R) : ¢ € R)

constitutes a chain complex C, (K, L; R), whose modules are the chain groups
of the simplicial pair (K, L) with coefficients in the integral domain R. We
shall refer to the R-module homomorphisms

0y Cy(K, Ly R) — Cyy (K, L; R)

as the boundary homomorphisms of the simplicial pair (K, L).
The sequence of quotient homomorphisms

(ug: Cy(K; R) — Cy(K,L;R) : ¢ € R)

define a chain map
us: Co(K; R) — Cu(K, L; R)
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between the chain complexes C,(K; R) and C.(K, L; R). The image u,(c) of
a ¢-chain ¢ € Cy(K; R) of K under the quotient homomorphism is the coset
c+ Cy(L; R) of Cy(L; R) in Cy(K; R) that contains c¢. Moreover

Oy(c+ Cy(L; R)) = 0yc + Cy1(L; R).
We define

Z,K,L;R) = ker(0,:Cy(K,L;R) — Cy_1(K,L; R))

= {c+CyL;R) : c€ Cy(K;R) and 0,c € Cy,1(L; R)},
B,(K,L;R) = image(0;11: Cys1(K, L; R) — Cy (K, L; R))

= {041(e) + Cy(L; R) : e € Cypa (K R) .

Then B,(K,L; R) C Z,(K, L; R). We define

Let z be an element of Z,(K,L;R), and let ¢ and ¢ be elements of
Cy(K; R) for which

z=c+ CyL;R) = + Cy(L; R).
Then ¢ — ¢ € Cy(L; R), 9,c € Cy—1(L; R) and 9,c’ € Cy—1(L; R). But
8q_18qc = aq_laqc’ =0

and J,c — 0,¢ = Oy(c — ). It follows that d,c € Z,_1(L), 0, € Z,—1(L)
and 0,c — 0,¢' € B,_1(L), and therefore [0,c] = [0,c]. It follows that there
is a well-defined homomorphism from Z,(K, L; R) to H,_1(L; R) that maps
c+Cy(L; R) to [0,c]. The submodule B, (K, L; R) is contained in the kernel of
this homomorphism. The homomorphism therefore induces a homomorphism

0. Hy(K,L;R) — H, 1(L; R).

This homomorphism sends the homology class of c+Cy(L; R) in H (K, L; R)
to the homology class of J,c in Cy(L; R) for all ¢ € Cy(K;R) satisfying
an S Cq_1<L; R)

Proposition 7.3 (The Homology Exact Sequence of a Simplicial Pair) Let
K be a simplicial complex, let L be a subcomplex of K, and let R be an
integral domain. Then the sequence

P H(L RS HY (K R H (K, Ly R)

2 H, 1(L: R Hy (K R)- - -
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of homology groups is exact, where O0,: Hy(K,L;R) — H,_1(L; R)) is the
homomorphism that sends the homology class of c+ Cy(L; R) in Hy(K, L; R)
to the homology class of O,c in Hy_1(L; R) for all ¢ € Cy(K; R) satisfying
an € Cq_l(L; R)

Proof The sequence
0—C,(L; R)-25C\(K; R)25C, (K, L; R)—0

is a short exact sequence of chain complexes. It follows from Proposi-
tion 6.5 that there is a corresponding (infinite) sequence of homology groups.
Moreover the homomorphism from H,(K, L; R) to H,_1(L; R) defined as in
the statement of that proposition is the homomorphism 0,: H,(K, L; R) —
H, 1(L; R) defined as described above. |}

q

Corollary 7.4 Let K be a simplicial complex, let L be a subcomplex of K,
and let R be an integral domain. Suppose that

Hy (K, LiR) = Hy(K,L; R) = 0
for some integer q. Then i,: H,(L; R) — H,(K; R) is an isomorphism.

Corollary 7.5 Let K be a simplicial complezx, let L be a subcomplex of K,
and let R be an integral domain. Suppose that

H,(K;R) = H,_(K:R) =0
for some integer q. Then O,: Hy(K, L; R) — H,—1(L; R) is an isomorphism.

Corollary 7.6 Let K be a simplicial complex, let L be a subcomplex of K,
and let R be an integral domain. Suppose that

H,(L:R) = H,_,(L;R) = 0
for some integer q. Then u,: Hy(K; R) — H,(K, L; R) is an isomorphism.

Example Let K be the simplicial complex consisting of all the faces of an
n-dimensional simplex, and let L be the subcomplex consisting of all the
proper faces of this simplex. Then C,(L; R) = C,(K; R) when ¢ # n, and
therefore Cy(K, L; R) = 0 when ¢ # n. Also C,(K,L;R) = R. It follows
that H,(K,L;R) = R, H,(K,L; R) = 0 when ¢ # n. Also it follows from
Proposition 4.8 that H,(K; R) = 0 when ¢ > 0.
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Suppose that n > 2. It follows from Corollary 7.5 that 0,: H, (K, L; R) —
H, 1(L; R) is an isomorphism for ¢ > 2. Therefore H,_1(L; R) = R, and
H,(L;R) =0 for g #0,n — 1.

Now suppose that n = 1. We have an exact sequence

0— Hy (K, L; R)-25 Hy(L; R)— Ho(K; R)—0.

Now Hy(K,L;R) = R when n = 1. Also Hy(K; R) = R. From the exact-
ness of the above sequence we can deduce that Hyo(L; R) = Hy(K,L; R) &
Ho(K; R) = R® R. This result is consistent with the fact that, in this case,
L is a 0-dimensional simplicial complex consisting of two vertices.

7.3 The Excision Property

Lemma 7.7 Let K be a simplicial complex, let L and M be subcomplezes of
K, and let R be an integral domain. Suppose that K = LU M. Then

Co(K; R) = Co(L; R) + Co(M; R)

and
Co(LNM;R)=Cy(L; R)nC,(M;R).
Proof Proposition 4.3 ensures that there exists a free basis 1,72, ..., for
Cy(K; R), where these generators are in one-to-one correspondence with the
g-simplices o1, 09, ...,0, of K, and where
= v v )
for some chosen ordering v(()j ), ng ). .v(gj ) of the vertices of the corersponding

g-simplex o; of K. Now any g-chain c of K with coefficients in the integral
domain R can be represented uniquely as a linear combination of the form

,
C = Z Tj/yj-
j=1
The g-chain ¢ then determines, and is determined by, the values of its coef-

ficients r1, 79, ..., 7. It follows that

ce C)(L;R) <= r;=0 whenevero; &L,
ce Cy(M;R) <= r;=0 whenever o; € M,
ceCyLNM;R) <= r;=0whenever o; ¢ LN M,
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It follows that Cy,(L N M; R) = C,(L; R) N Cy(M; R). Moreover each of the
g-simplices o; of K belongs to one or other of the subcomplexes L and M.
Thus if I is the set of those indices j between 1 and £ for which o; € L then
Y.riv; € Co(L; R) and ) rjy; € Cy(M; R), and therefore

jel J¢l
c=> i+ Y € Co(L; R) + Cy(M; R).
Jel J¢l
This shows that Cy(K; R) = Cy(L; R) + Cy(M; R), as required. |

Proposition 7.8 Let K be a simplicial complex, let L and M be subcom-
plexes of K, and let R be an integral domain. Suppose that K = LU M.
Then Hy (M,LNM;R)= H,(K,L; R) for all integers q.

Proof It follows from Lemma 7.7 that
Cy(K; R) = Cy(L; R) + Cy(M; R)

and
Cy(LNM;R)=Cy(L; R)NCy(M; R).

Let wy:Cy(M;R) — Cy(K;L;R) be the R-module homomorphism from
Cy(M; R) to Cy(K, L; R), where Cy(K, L; R) = Cy(K; R)/Cy(L; R), defined
such that w,(c) = Cy(L;R) + ¢ for all ¢ € Cy(M;R). Then the homo-
morphism w, is surjective, because Cy(K;R) = C,(L; R) + C,(M; R), and
kerw, = C,(L N M; R), because C,(L N M; R) = C,(L; R) N Cy(M; R). Now

Co(M,LNM;R)=Cy(M;R)/Cy(LNM;R) =C,(M;R)/ker w,.
It follows that the homomorphism w, induces an isomorphism
Wy Cy(M,LNM) — Cy(K, L),
for each integer ¢, where
We(Cy(LN M)+ ¢) =wy(c) = Cy(L; R) + ¢

for all ¢ € Cy(M; R) (see Proposition 1.7). Moreover 0, o w, = w,_1 o 0, for
each integer q. It follows that the isomorphisms

Wy Cy(M,LNM;R) — C,(K,M;R)
of chain groups induce corresponding isomorphisms
We: Hy(M, LN M; R) — H,(K, M;R)

of homology groups. The result follows. |}
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7.4 Homology Groups of some Closed Surfaces

Lemma 7.9 Let K be a 2-dimensional simplicial complex, and let L and
M be subcomplexes of L, where K = L U M. Suppose that M consists of a
triangle of K, together with all its edges and vertices, and that LOYM matches
one of the following descriptions:

(i) LN M consists of a single vertezx of the triangle;

(il) LNM consists of a single edge of the triangle together with the endpoints
of that edge;

(iii) LN M consists of two edges of the triangle together with the endpoints
of those edges.

Then H,(K,L;Z) = 0 for all integers q, and therefore the inclusion
map i: L — K induces isomorphisms i.: H,(L; Z) — H,(K;Z) of homology
groups.

Proof Let the triangle have vertices vo, v; and vy, and let 7 € Cy(K;7Z)
and po, p1, p2 € C1(K;Z) be defined by

T = <V0> Vi, V2>7

Po = <V17V2>, P1 = <V2,V0>7 P2 = <V07V1>-

Then 07 = po + p1 + po in C1(K;Z).

Consider first the case where L N M is as described in (i). We label the
vertices of the triangle so that L N M consists of the single vertex vqy. In this
case

Co(K,L;Z) = {nt+ Co(L;Z) :n € Z},
Ci(K,L;Z) = {nopo+mnipr +nops+ Ci(L; Z) - ng,mq € Z},
Co(K,L,Z) = {7"1<V1> + T2<V2> + C()(L, Z) re Z}

Now b7 € po + p1 + p2 + C1(L; Z), and
01 (nopo + nip1 + naps) € (ng — no)(vi) + (ng — n1){ve) + Co(L; Z)
for all ng,ny,ne € Z. It follows that By(K, L;Z) = Zy(K, L; Z) = 0,
Zy(K, L, Z) = By(K, L; Z) = {nlpo + p1 + p2) + C1(L; Z) : n € T},

and
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Therefore H, (K, L; Z) = 0 for all integers ¢ in the case when L N M consists
of a single vertex of the triangle.

Consider next the case where L N M is as described in (ii). We label the
vertices of the triangle so that L N M consists of the single edge ps, together
with its endpoints vy and vy. In this case

Co(K, L;Z) = {nt+ Cy(L;Z) :n € Z},
Ci(K, L;Z) = A{nopo+nip1 + Ci(L; Z) : no,n1 € Z},
Co(K,L;Z) = {r(ve) +Co(L;Z) :r € Z}.

Now Oy € po + p1 + C1(L;Z), and
01 (nopo + nip1) € (no — n1)(va) + Co(L; Z)
for all ng,ny € Z. It follows that By(K, L;7Z) = Zy(K, L;Z) = 0,
ZU(K,L;Z) = B\(K, L; Z) = {n(po + p1) + C1(L; Z) : n € L},

and Zy(K, L;Z) = Bo(K,L;Z) = Cy(K,L;Z). Therefore H,(K,L;Z) = 0
for all integers ¢ in the case when L N M consists of a single edge of the
triangle together with its endpoints.

Finally consider the case where L N M is as described in (iii). We label
the vertices of the triangle so that L N M consists of the edges p; and po,
together with the vertices vy, vi and vy of the triangle. In this case

Co(K,L;Z) = {nt+ Co(L;Z) :n € Z},
Cl(K,L;Z) = {nopo + Cl<L,Z) Ng € Z},
Co(K,L;Z) = 0.
In this case
82: CQ(K,L,Z) — Cl<K, L,Z)
is an isomorphism that sends 7+ Cy(L;Z) to po + C1(L; Z),
and
By(K, L, Z) = Zy(K, L; Z) = Col(K, L; Z) = 0.

Therefore H, (K, L; Z) = 0 for all integers ¢ in the case when L N M consists
of two edges of the triangle, together with the vertices of the triangle.

The exact sequence of homology groups of the simplicial pair (K, L)
(Proposition 7.3) then ensures that the inclusion map i: L — K induces
isomorphisms i,: H,(L; Z) — H,(K;Z) of homology groups, as required. ||
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Lemma 7.10 Let K be a 2-dimensional sitmplicial complex, and let L and
M be subcomplexes of L, where K = LU M. Suppose that M consists of
a triangle of K, together with all its edges and vertices, and that L N M
consists of all the edges and vertices of this triangle. Then Ho(K, L;Z) = Z,
and Hy(K, L;Z) = 0 for all integers q satisfying q¢ # 2. Moreover Hy(L;Z) =
Ho(K;Z) and there are short exact sequences

0— Hy(L; Z) -2 Hy (K ; Z2)— J—0,

0—T—Hy(L; Z) - Hy (K Z)—0,

where i,: Hy(L; Z) — H,(K;Z) is induced by the inclusion map i: L — K for
all g € Z, and

J = ker(0.: Hy(K,L;Z) — H\(L;Z)),
I = image(0,: Ho(K, L;Z) — Hy(L;Z)).

Proof Let the triangle have vertices vg, vi and vy. Then
Co(K,L;Z) = {nT + C2(L;Z) : n € Z},

where 7 = (v, V1, Va), and therefore Cy(K, L; Z) = Z. Moreover Cy(L; Z) =
Cy(K;Z) when g # 2, and thus Cy (K, L;Z) = 0 when ¢ # 2. It follows
that H,(K,L;Z) = 0 when q # 2, and Hy(K, L; Z) = Cy(K, L; Z) = 7. The
exactness of the short exact sequences then follows from the exact sequence
of homology groups of the simplicial pair (K, L) (Proposition 7.3). |}

Example We calculate the homology groups H.(Kg, Lg;Z), where the sim-
plicial complex Kg represents a square .5, subdivided into eighteen triangles,
and Lg is the subcomplex corresponding to the boundary of that square. We
let S = [0,3] x [0,3], so that S is the square in the plane with corners at
(0,0), (3,0), (3,3) and (0, 3). The subdivision of this square into triangles is
as depicted on the following diagram:
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e 2N é;
Vi3 Vig Vis Vie
[yl tu t16 18 o
13 15 17
Vo Vio Vi1 Vi2
-t t1o 12 +
h t7 tg t11 471
Vs Ve V7 Vg
-ty ty ts +
fO tl t3 t5 fO
Vi oeq V2 e V3 ey V4
The vertices of this simplicial complex Kg are vy, ..., vig, where

vy = (0,0), wvo=(1,0), v3=1(2,0), wvy=(3,0),

vs =(0,1), ve=(1,1), vy=1(2,1), vg=(3,1),
vg =(0,2), vio=1(1,2), vi1=(2,2), vi2=(3,2),
vis =(0,3), vis=1(1,3), vi5=1(2,3), wvig=(3,3),
We label the exterior edges of the simplicial complex Kg as indicated on the
diagram, so that
¢g = (vi,v2), ey =(va,v3), ey =(v3,Va),

ear = <V13,V14>a e{“ = <V14,V15>, 6; = <V15>V16>a

fo =vi,vs), fi =(vs,va), fy = (vo, V),
fJ=<V4>V8>, f1+2<V8,V12>, f2+:<V127V16>>

We also the vertices, triangles and exterior edges of the simplicial complex
Ky as indicated on the diagram. Thus We give each triangle of the simplicial
complex Kg the orientation determined by an anticlockwise ordering of its
vertices. Then the oriented triangles of Kg are represented by ti,...,ts,
where

tl = <V17V27V6>7 t2 = <V17V67V5>7 t3 - <V27V37V7>7

ty = (V2, V7, Vg), ts5=(V3,Va,Vs), tg= (V3 Vs, Vr),

107



tr = (s, Ve, Vio), ts = (Vs, V10, Vo), to = (Ve, V7, V11),
tio = (Ve, Vi1, Vio), ti1 = (V7, Vs, Vi2), tia = (V7, V12, Vi1),
tis = (Vo, V1o, Via), tia = (Vo, Via, Vig), tis5 = (Vio, Vi1, Vis),
tie = (Vio, V15, V1a), t1r = (V11, V12, Vi), tis = (V11, V16, V15)-

Let Mj be the simplicial complex consisting of the single vertex vy and, for
each integer k between 1 and 18, let M}, be the subcomplex of Kg consisting
of the triangles T} represented by ¢; for 1 < j <k, together with all the edges
and vertices of those triangles. Then Kg = Mjs. Now examination of the
diagrams shows that, for each integer k£ between 1 and 18, the intersection
T N Uj<ij is either a single vertex of T}, or a single edge of T}, or the
union of two edges of Tj. It follows from Lemma 7.9 that the inclusion
map iy: My_1 — My induces isomorphisms iy, H,(My_1;2) — H,(My;Z)
of homology groups for all integers k satisfying 1 < k < 18. Therefore
H,(Kg;Z) = Hy(My;Z) for all integers ¢, and thus H,(Kgs;Z) = 0 when
q > 0, and Hy(Kg;Z) = Z. Moreover Hy(Kg;7Z) is generated by the 0-
dimensional homology class represented by the single vertex vj.

Let Lg denote the one-dimensional subcomplex of Kg consisting of all
edges and vertices of Kg that are contained within the boundary of the square
[0,3] x [0,3]. Now Ho(Ls;Z) = 7Z, H(Lg;Z) = Z, and H,(Lg;Z) = 0 when
q > 1. The group Hy(Lg;Z) is generated by the homology class representing
the vertex vy, and therefore the homomorphism i,: Hy(Lg; Z) — Hy(Kg;Z)
induced by the inclusion map ¢: Lg — Kg is an isomorphism. The group
H,(Lgs;Z) is generated by the 1-cycle zg, where

zs=e€y +el+eg +f T+ —ef—ef —el —fr —fr - fq-

This generating 1-cycle zg represents the sum of the edges of Kg that lie on
the boundary of the square, where the orientation on each edge is consistent
with an anticlockwise traversal of the boundary of the square S.

We can use the homology exact sequence of the simplicial pair (Kg, Lg)
(Proposition 7.3) in order to evaluate the homology groups H,.(Kg, Lg;Z).
The sequence

Hy(Ks;Z)—H,(Kg, Ls; Z)-2Hy(Lg; Z) 5% Ho (K s; Z.)

is exact, where the homomorphism ig,: Hy(Lg;Z) — Hy(Kg;Z) is induced
by the inclusion map ig: Lg — Kg. We have noted that this homomor-
phism is an isomorphism. It follows from the exactness of the above sequence
that 0,: Hy(Kg, Ls;Z) — Ho(Lg;Z) is the zero homomorphism. Therefore
its kernel is the whole of H,(Kg, Lg;Z), and therefore the homomorphism
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from H,(Kg;Z) to Hi(Kg,Ls;Z) is surjective. But we have shown that
H,(Ks;Z) =0 for ¢ > 0. It follows that Hy(Kg, Ls;Z) = 0.

The homology exact sequence of the pair also ensures that the homomor-
phism 0,: Hy(Kg, Ls; Z) — Hy(Lg; Z) is an isomophism, since Hy(Kg;Z) =0
and Hy(Lg;Z) = 0 (see Corollary 7.5). But Hy(Lg;Z) = Z. 1t follows that
Hg(Ks, Ls; Z) = 7.

In fact Ho(Kg, Ls;Z) = Z5(Kg, Lg) since By(Kg, Ls) = 0. Moreover

ZQ(Ks, LS) = {nys + CQ(LS> ne Z},

18
where ys = > t;. Indeed let ¢ be a 2-chain of Kg. Then there are integers

Jj=1

18
ni,...,ns such that ¢ = > n;t;. Now any edge belonging to Kg \ Lg lies
=1

on the boundary of exactfy two triangles T; and Tj of Kg. Moreover the
orientation on that edge determined by the anticlockwise ordering of the
vertices of T is opposite to the orientation determined by the anticlockwise
ordering of the vertices of T, and therefore the coefficient of this edge in Osc is
+(nj; —ny). It follows that 0xc € C1(L;Z) if and only if ny = ny = -+ - = nys,
in which case ¢ = nys for some integer n. It is then easy to verify that
D2 (ys) = zs-

Example We shall make use of the above results to calculate the homology
groups of a torus. The two-dimensional torus may be represented as the
quotient space obtained from the square [0, 3] x [0, 3] by identifying the points
(x,0) and (z,3) for all z € [0,3], and also identifying the points (0,y) and
(3,y) for all y € [0, 3]. Thus each point on an edge of the square is identified
with a corresponding point on the opposite edge of the square. The four
corners of the square are identified together, so as to represent a single point
of the torus.

Now there exists a simplicial complex K7, and a simplicial map p: Kg —
K1 where Kg is the simplicial complex triangulating the square [0, 3] x [0, 3]
discussed in the previous example, where the polyhedron | K7r| of K is home-
omorphic to the torus, and where the induced map p: |Kg| — |Kr| between
polyhedra is an identification map which identifies points on opposite edges
of the square S as described above. Moreover this simplicial complex Ky
has 18 triangles, 27 edges and 9 vertices. Throughout this example we shall
use the notation developed in the previous example to describe the simplical
complex Kg and its chain groups and homology groups.

Let the vertices of K be labelled as wy, ..., wy, where

w1 = p(v1) =p(vs) = p(vi3) = p(Vie),

109



W2 = p(V2) = p(V14)7
wz = p(vz) =p(vis),
wy = p(vs) =p(vs),
ws = p(ve) = p(Vi2),
we = p(Ve),
wr = p(vr),
ws = p(Vio),
wo = p(vi1)-

and let
€] = (Wa,W3), €= (W3, W),

70 = (W1, Wy), ?1 = (W4, Ws), ?2 = (W5, W),
Then

pu(e) =puleg) =, pgler) =pyler) =i,

pu(es) =pules) =, pu(fd) =pu(fy) = fo,

px(f) =pe(f0) = Fio pa(fS) = px(fs) = o
where py: Cy(Kg) — Ci(Kr) is the homomorphism of chain groups induced
by p: Kg — Kp. Alsolet t; = py(t;) for j = 1,2,...,18, where py: Cy(Kg) —
Cy(Kr7) is the homomorphism of chain groups induced by the simplicial map

p: Kg — K. Then the triangulation K7 of the torus may be represented by
the following diagram:

€0 €1 €9
W1 Wo W3 W1
Fol tu L tie tis 2 | T
T2 13 t15 17 E
Wp Wg Wy Wp

F t Z t Z t ~
f1 8 7 10 o 12 7 f1

Wy Wg Wr Wy

Wi ¢ W2 e W3 e, Wi
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Let Ly = p(Ls). Then Ly is the subcomplex of Kr consisting of the
five vertices wi, wy, w3, wy and wj, together with the six edges represented
by €, €1, €, fo, f1 and f,. Now H,(Ly;Z) = Zy(Ly), since By(Ly) = 0.
Moreover Z;(Ly) = 7Z & Z. Indeed

Zl(LT) = {anl —+ N9zy : ny,No € Z},

where z; = eg+€;+e; and 2o = 70—1—71 —1—72. The simplicial map p: Kg — Ky
defines a bijection between the simplices of K¢\ Lg and those of K7\ Lp. Tt
follows from this that the chain map p.: Ci(Kg, Ls) — Ci(Kr, L) induced
by the simplicial map is an isomorphism of chain complexes, and therefore
induces isomorphisms

p«: Hi(Ks, Ls; Z) — H.(Kr, L; Z).

We conclude that Hy(Krp, Lp; Z) = Z, and Hy(Kr, Ly;Z) = 0 when g # 2.
Moreover Hy(K7r, L1;7Z) is generated by the homology class of zp, where

18
yr = Z%j = p#(Ys)-
j=1

Also Hy(Lp;Z) = 0, because the simplicial complex Ly is one-dimensional.

We now determine the homomorphism 0,: Hy(Kr, L7;72) — Hy(L1;Z).
Now the following diagram relating homology groups of the square and the
torus is commutative:

Hy(Kg, Ls;7) 2 Hy(Lg;Z)

- A
Hy(Kr, Ly Z) 2 Hy(L;7Z)
Moreover
Hl(LS§Z) = HQ(KSaLS;Z) = H2(KT7LT§Z) =7,
and the homomorphisms

8*2 HQ(Ks, Ls; Z) d Hl(LS; Z)

and

Px: HQ(Ks, LS, Z) — HQ(KT, LT7 Z)
are isomorphisms. Let pg, 1, and pg, r, be the homology classes in the
relative homology groups Hy(Kg, Lg; Z) and Ho( K, L1; Z) respectively rep-
resented by ys and yr. Then p.(prg.rs) = prpny- and O(prg ny) = [2s]s
where

ZS—€0+61+€2+]C0 ‘l’fl +f2_€2_€1_60 f2 1_—f0_
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It follows that O, (tr, 1y ) = Ps(2s).
We now calculate the image of zg under the homomorphism

p#: Ci(Ls) — Ci(Lr)

induced by the simplicial map p: Kg — Kp. We find that

p(zs) = pyleg) +pgler) +ppler)
+pp(fo) + (i) + pu(fs)
—py(es) — py(e) — pyleq)
—pe(fy) —pe(fi) —pe(fy)

= e terte

+ o+ 1+ 12
%, —8 —F
—Fo=Fi—Fo

= z1+ 29— 21— 29 =0.
Therefore O, (pr, 1) = p«(zs) = 0. We conclude from this that
6*1 HQ(KT, LT7 Z) — Hl(LT, Z)

is the zero homorphism.

We now have the information required in order to calculate the homology
groups of the simplicial complex Kr. The homology exact sequence of the
simplicial pair (K7, L) gives rise to the following exact sequence:

0—>H2(KT, Z>—>H2(KT, LT, Z)i)Hl (LT, Z)W—*>H1 (KT, Z)—>O

Using the exactness of this sequence, together with the result that 9, = 0,
we conclude that HQ(KT, Z) = HQ(KT, LT, Z) and Hl(KT, Z) = Hl(LT, Z) =
7 & 7. Indeed

Hy(Kr;Z) ={nlyr| : n € Z}

and
H\(K7;Z) = {ni]z1] + nalz2] : n1,ne € Z},

where yr, 21 and zy are the 1-cycles of Ly defined above. Thus
H()(KT,Z) = Z, HI(KT7 Z) =7 D Z, HQ(KT, Z) =7.

Example We shall make use of the above results to calculate the homology
groups of a Klein Bottle. The Klein Bottle may be represented as the quotient
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space obtained from the square [0, 3] x [0, 3] by identifying the points (z,0)
and (z, 3) for all x € [0, 3], and also identifying the points (0, y) and (3,3 —y)
for all y € [0, 3]. Thus each point on an edge of the square is identified with
some other point on the opposite edge of the square. The four corners of the
square are identified together, so as to represent a single point of the Klein
Bottle.

Now there exists a simplicial complex K g;g, and a simplicial map r: Kg —
K5 where Kg is the simplicial complex triangulating the square [0, 3] x [0, 3]
discussed in the previous example, where the polyhedron |Kk;p| of Kg;p is
homeomorphic to the Klein Bottle, and where the induced map r:|Kg| —
| K k15| between polyhedra is an identification map which identifies points on
opposite edges of the square S as described above. Moreover this simplicial
complex K;p has 18 triangles, 27 edges and 9 vertices. Throughout this
example we shall use the notation developed in a previous example to describe
the simplical complex Kg and its chain groups and homology groups.

Let the vertices of Kg;p be labelled as uy, ..., ug, where

w = r(vy) =1r(vy) =r(viz) = r(vi),
u = r(vy) =r(vi),

uz = r(v3) =r(vis),

u = r(vg) =r(vs),

us = r(vs) =r(vi),

ug = r(vg),

u; = r(vy),

ug = 7(Vi),

u = r(vy).

and let
€o <111,u2>, € = (uQ,u3>, ey = (ug,u1>,
fo (ur, uy), A1 = (uy, us), f2 = (us,uy),
Then
ru(eg) =ruleg) = o, ralef) =rpler) =éy,

ra(ed) =ryley) = ra(fe) =—ru(fs) = fo.

ru(fi) = —ra(f7) = fi, ra(fs) = —ru(f) = fo,

where r4:C1(Kg) — C1(Kgp) is the homomorphism of chain groups in-
duced by m: Kg — K. Also let fj = ru(t;) for j = 1,2,...,18, where
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ry: Co(Kg) — Co(Kgp) is the homomorphism of chain groups induced by
the simplicial map r: K¢ — K. Then the triangulation Kx;p of the Klein
Bottle may be represented by the following diagram:

€0 €1 €2
u; Us us u;
fO t14 ~ t16 ~ t18 ~ f2
13 15 17

Uy ug Ug Us

f £8 A zg10 A tAlQ ~ A
fl t7 tg 1 fl
Us Ug uz Uy

£ lfg ~ f4 ~ f@ ~ £
f2 tl 3 t5 fO
u; éo Uz él us éz u;

Let Liip = r(Lg). Then Lk, p is the subcomplex of K consisting of the
five vertices uy, uz, us, uy and us, together with the six edges represented by
éo, él, ég, fo, fl and f3. Now Hl(LKlBQZ) = Zl<LKlB)7 since Bl(LKlB) = 0.
Moreover Z1 (L) = 7 @ Z. Indeed

Zl(LKlB> = {n121 + N9z : ni, o S Z},

where z; = ég+é1+6é3 and z = f0+f1+f2. The simplicial map r: K — Kgp
defines a bijection between the simplices of Kg\ Lg and those of K\ Liip-
It follows from this that the chain map r.:C.(Kg, Ls) — Ci(Kxin, Lrxip)
induced by the simplicial map is an isomorphism of chain complexes, and
therefore induces isomorphisms

re Ho(Ks, Ls;Z) — H.(KriB, Lip; 7).

We conclude that Hy(Kkp, Lxip; Z) = Z, and Hy(Kkip, Lkip; Z) = 0 when
q # 2. Moreover Ho(Kgp, Lkip;Z) is generated by the homology class of

ZK1B, Where
18

YkiB = ij =r4(ys)-

j=1

114



Also Ho(Lgp;Z) = 0, because the simplicial complex Lg;p is one-dimen-
sional.
We now determine the homomorphism

Oy HQ(KKlBaLKlB§Z) - Hl(LKlB;Z)-

Now the following diagram relating homology groups of the square and the
Klein Bottle is commutative:
Hy(Ks,Ls;Z) >  Hy(Ls;Z)
Hy(Krip, Lxi; Z) RN H\(Lkip;Z)
Moreover
Hy(Lg;Z) = Hy(Kg, Ls; Z) =2 Hy(Krip, Lxip; Z) = Z,
and the homomorphisms
8*2 HQ(Ks, LS; Z) d Hl(LS; Z)
and
ro: Hy(Kg, Lg; Z) — Hy(Kkip, Lxip; Z)
are isomorphisms. Let prgre and pg,,, 1., be the homology classes in
Hy(Kg, Ls;Z) and Ho(Kkip, Liip;7Z) respectively represented by ys and
Yrxip- Then r*(:U'Ks,LS) = UKkip,Lrip- and 0, (MKS,LS) = [25]7 where
zs=ey tel +e; + I+ —ed —el —ed —fa —f1 — fo-
It follows that O.(fik 5. Licis) = T+(28).
We now calculate the image of zg under the homomorphism
7’#2 Ol(LS) — Cl(LKlB)
induced by the simplicial map r: K — Kg;p. We find that

ru(zs) = ry(eg) +ryler) +raley)
+ry(fo) +ra(fi) +rp(fy)
—ry(es) —ry(ef) —ry(eq)
—ra(fa) —re(fi) —ra(fo)
= ép+ €1+ 6
+fot+ fi+ fo
— €9 — €1 — €&
+ﬁ+ﬁ+ﬁ
= z1+ 29— 21+ 29 = 229.
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Therefore Oy (fkyy5.L05) = T+(2s) = 222. We conclude from this that
O Ho(Krap, Lrap; Z) — Hi(Lkip; Z)

is an injective homomorphism whose image is the subgroup of H,(KIB;Z)
generated by 2[z].

We now have the information required in order to calculate the homology
groups of the simplicial complex K;g. The homology exact sequence of the
simplicial pair (Kg;p, Liip) gives rise to the following exact sequence:

0—Hy(Kkip; Z)— Hay (KK, Lkip; Z)&Hl(LKzB; Z)
ZT—*>H1(KKIB; Z)—)O

Using the exactness of this sequence, together with the result that 0, is
injective, we conclude that Ho(Kgp;Z) = 0. Also

H\(Kgip;Z) = Hi(Lki1p; Z) )0« (Ho (KB, Liig; ) = 7 & Zo.

Indeed there is an isomorphism ¢: Hy(Lkp;Z) — 7 @& 7 which maps the
homology classes of the cycles z; and 23 to (1,0) and (0,1) respectively.
Then ¢(0.(H2(Kkip, Lxip;Z))) is the subgroup of Z @ Z generated by (0,2),
and the corresponding quotient group is isomorphic to Z & Z,. Thus

HO(KKIB;Z> §Z7 H1<KKZB;Z) gZ@ZQ, HQ(KK[B;Z) g0

Example We shall make use of the above results to calculate the homol-
ogy groups of a real projective plane. The real projective plane may be
represented as the quotient space obtained from the square [0, 3] x [0, 3] by
identifying the points (z,0) and (3 — z,3) for all € [0, 3], and also identi-
fying the points (0,y) and (3,3 — y) for all y € [0,3]. Thus each point on an
edge of the square is identified with some other point on the opposite edge
of the square. Also each corner of the square is identified with the corner
diagonally opposite, so as to represent a single point of the real projective
plane.

Now there exists a simplicial complex Kpp, and a simplicial map s: Kg —
Kpp where Kg is the simplicial complex triangulating the square [0, 3] x [0, 3]
discussed in the previous example, where the polyhedron |Kpp| of Kpp is
homeomorphic to the real projective plane, and where the induced map
s:|Kg| — | Kpp| between polyhedra is an identification map which identifies
points on opposite edges of the square S as described above. Moreover this
simplicial complex Kpp has 18 triangles, 27 edges and 10 vertices. Through-
out this example we shall use the notation developed in a previous example
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to describe the simplical complex Kg and its chain groups and homology
groups.
Let the vertices of Kpp be labelled as q, ..., qig, where

a = s(vi) =s(vig),
d2 = s(va) = 5(vis),
a3 = s(vs) = s(vi),
qs = s(va) = s(vi3),
a5 = s(vy) =s(vs),
a = s(vs) =s(vi2),
ar = s(vs),
as = s(vr),
Q = s(vio),
dio = s(vi).

and let
€ = <Q1,Q2>7 €1 = <CI2>Q3>7 € = <Q37Q4>,
fo = (014,015% fl = <CI57(I6>7 f2 = <Q6;Q1>,
Then

2 )
—syleq) = sglez) =&, sp(fe) = —sp(fy) = fo,
sp(fi) = —sp(fi) =Fi. sp(fs) = —sx(fo) = fo,
where sy:Ci(Kg) — Ci(Kpp) is the homomorphism of chain groups in-
duced by s: Kg — Kpp. Also let t; = sy(t;) for j = 1,2,...,18, where
su:Cy(Kg) — Co(Kpp) is the homomorphism of chain groups induced by
the simplicial map s: K¢ — Kpp. Then the triangulation Kpp of the real
projective plane may be represented by the following diagram:
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€9 €1 €o

(14~ (13~ Q2~ a1

foy tia tie t1g /7~ f.
Jo 13 15 17 g
(15~ (19~ Q1p 6

fy ts - tio /; tia /" f
f 1 7 9 t 1 f 1
C16~ (17~ (18~ g5
1t ta ~ tg g £
B 1 3 o
qi1 éo q2 él a3 éQ q4

Let Lpp = s(Lg). Then Lpp is the subcomplex of Kpp consisting of the
six vertices qi, g2, 43, q4, 95 and qg, together with the six edges represented
by €o, €1, €3, fo, f1 and f3. Now H,(Lpp;Z) = Zi(Lpp), since Bi(Lpp) = 0.
Moreover Z;(Lpp) = Z. Indeed

Zl(LPP) = {TZZO n e Z},

where S

Zg=¢€ + e+ e+ fot [+ fo
The simplicial map s: Kg — Kpp defines a bijection between the simplices
of Kg\ Ls and those of Kpp \ Lpp. It follows from this that the chain
map s.: Cy(Kgs,Ls) — C.(Kpp, Lpp) induced by the simplicial map is an
isomorphism of chain complexes, and therefore induces isomorphisms

s«: Hi(Ks, Ls; Z) — H.(Kpp, Lpp; Z).

We conclude that Hy(Kpp, Lpp;Z) = Z, and Hy(Kpp, Lpp;Z) = 0 when
q # 2. Moreover Ho(Kpp, Lpp;Z) is generated by the homology class of

zpp, where
18

ypp = Y1 = s4(ys).

j=1
Also Hy(Lpp;Z) = 0, because the simplicial complex Lpp is one-dimensional.
We now determine the homomorphism

Oy: Hy(Kpp, Lpp; Z) — Hy(Lpp; Z).
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Now the following diagram relating homology groups of the square and the
real projective plane is commutative:

Hy(Ks,Ls;Z) 2  Hy(Ls;7Z)

Hy(Kpp, Lpp;Z) > Hi(Lpp;Z)
Moreover
Hi(Ls; Z) = Hy(Kg, Ls; Z) = Ho(Kpp, Lpp; Z) = Z,
and the homomorphisms
Oy Hy(Ks, Lg; Z) — Hy(Ls; Z)

and
s.: Hy(Ks, Ls;Z) — Ho(Kpp, Lpp; Z2)

are isomorphisms. Let pgg e and pg,, ., be the homology classes in
Hy(Ks, Lg;Z) and Hy(Kpp, Lpp; Z) respectively represented by ys and ypp.
Then s, (HKSJJS) = KKpp,Lpp- and a*(:uKs,Ls) = [2’5], where

Zg =€y te; +ey +f0 +f1 +f2_62_€1 —fo = —J-

It follows that Oi(ftkpp,Lpp) = S«(2s).
We now calculate the image of zg under the homomorphism

su:C1(Lg) — Ci(Lpp)
induced by the simplicial map s: Kg — Kpp. We find that

sy(zs) = 8#(€o)+8#(61

= eéyterteé
+fo+ A+
+éo+ €1+ 69
+fo+ hi+fo
= 22.

Therefore Oy (prpp.Lpp) = S«(2s) = 229. We conclude from this that

Oy: Hy(Kpp, Lpp; Z) — H(Lpp; Z)
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is an injective homomorphism whose image is the subgroup of H;(PP;Z)
generated by 2[zg].

We now have the information required in order to calculate the homology
groups of the simplicial complex Kpp. The homology exact sequence of the
simplicial pair (Kpp, Lpp) gives rise to the following exact sequence:

0—>H2(KPP; Z)—>H2(KPP, Lpp; Z)iHl(LPP§ Z)iT_*)Hl(KPP; Z)—>O-

Using the exactness of this sequence, together with the result that 0, is
injective, we conclude that Hy(Kpp;Z) = 0. Also

H\(Kpp;Z) = H\(Lpp; Z) |0, (Ha(Kpp, Lpp; ) =2 7/ 27 = Zs.
Thus

Ho(Kpp; Z) = Z, H\(Kpp;Z) = Zy, Ho(Kpp;Z) = 0.

7.5 The Mayer-Vietoris Sequence

Let K be a simplicial complex, let L and M be subcomplexes of K such that
K =LUM, and let R be an integral domain. Let

ig:Co(LN M) — Cy(L; R), Jg: Co(LN M) — Cy(M; R),

ug: Cy(L; R) — Cy(K; R), vy Cy(M; R) — Cy(K; R)

be the inclusion homomorphisms induced by the inclusion maps : LN M —
L,j:LNM— M, uw:L — K and v: M — K. Then

0—C, (LN M)ESC (L R) ® Co(M; R)25C, (K ; R)—0
is a short exact sequence of chain complexes, where
ko(c) = (ig(c), —Jq(0)),
L) = ug(d) g
0(c, ") = (04(c), 04(c"))
for all c € Cy)(LN M), ¢ € Cy)(L;R) and " € Cy(M;R). It follows from
Lemma 6.4 that there is a well-defined homomorphism a,: H,(K; R) —
H, 1(L N M;R) such that a,([z]) = [0,(c")] = —[0,(c")] for any z € Z,(K),

where ¢’ and ¢’ are any ¢-chains of L and M respectively satisfying z = ¢/+¢”.
(Note that 0,(c') € Z,—1(L N M) since 0,(c') € Zy—1(L), 0,(c") € Z,—1(M)
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and J,(c') = —0,(c").) It now follows immediately from Proposition 6.5 that
the infinite sequence

- UBH (LN M; R)25H (L R) @ Hy(M: R)-“>H,(K; R)
S H, (LN MRS

of homology groups is exact. This long exact sequence of homology groups is
referred to as the Mayer-Vietoris sequence associated with the decomposition
of K as the union of the subcomplexes L and M.
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8 The Topological Invariance of Simplicial
Homology Groups

8.1 Contiguous Simplicial Maps

Definition Two simplicial maps s: K — L and t: K — L between simplicial
complexes K and L are said to be contiguous if, given any simplex o of K,
there exists a simplex 7 of L such that s(v) and ¢(v) are vertices of 7 for
each vertex v of o.

Lemma 8.1 Let K and L be simplicial complezes, and let s: K — L and
t: K — L be simplicial approximations to some continuous map f:|K| — |L|.
Then the simplicial maps s and t are contiguous.

Proof Let x be a point in the interior of some simplex o of K. Then f(x)
belongs to the interior of a unique simplex 7 of L, and moreover s(x) € 7
and t(x) € 7, since s and ¢ are simplicial approximations to the map f. But
s(x) and t(x) are contained in the interior of the simplices s(¢) and t(o) of
L. Tt follows that s(o) and t(o) are faces of 7, and hence s(v) and ¢(v) are
vertices of 7 for each vertex v of o, as required. |]

Proposition 8.2 Let s: K — L and t: K — L be simplicial maps between
simplicial compleres K and L, and let R be an integral domain. Suppose that
s and t are contiguous. Then the homomorphisms s.: Hy(K; R) — H,(L; R)
and t.: Hy(K; R) — H,(L; R) coincide for all q.

Proof Choose an ordering of the vertices of K. Then there are well-defined
homomorphisms D,: C,(K; R) — C,11(L; R) characterized by the property
that

q

D,((vo,v1,...,vy)) = Z(—l)j(s(vg), cey S(V) (), t(vy))-

J=0

whenever vo, vy, ... v, are the vertices of a g-simplex of K listed in increasing
order (with respect to the chosen ordering of the vertices of K). Then

O(Do((v))) = D((s(v), £(v))) = (t(v)) = (s(v)),

and thus 0; o Dy = tg — sg. Also

Dy1(94({vo, - -, vg)))
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= ‘_( 1)1+J<3(V0)7 =S<Vj>7t(vj)7 7@7 7t(V¢I)>
DD DT sV0). S (V) 1), (V)

— ]qoj_:<—1>f+j<s<v()>, V) SV V) t(Y)
HH(vo), ,t<vq>>+§<s<v()>, (V) H(V)
_§<S<VO>, SV ) V) — (V) 5(v,))
+]ioiil< D+ (s(vo), ooy SOV, EVS), o B (V1) H(VY))

and thus
Og+10 Dy + Dy100; =15 — 84

for all ¢ > 0. It follows that t,(2) — s4(2) = 0441 (Dy(2)) for any g-cycle z
of K, and therefore s,([z]) = t.([z]). Thus s, = t, as homomorphisms from
H,(K;R) to H)(L; R), as required. |}

8.2 The Homology of Barycentric Subdivisions

We shall show that the homology groups of a simplicial complex are isomor-
phic to those of its first barycentric subdivision.
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We recall that the vertices of the first barycentric subdivision K’ of a
simplicial complex K are the barycentres ¢ of the simplices o of K, and that
K’ consists of the simplices spanned by 69,1, ..., 64, where 0g,01,...,0, €
K and o;_; is a proper face of o; for j =1,2,...,¢.

Lemma 8.3 Let K’ be the first barycentric subdivision of a simplicial com-
plex K. Then a function (:Vert K' — Vert K from the vertices of K' to
those of K represents a simplicial approximation to the identity map of | K|
if and only if it sends the barycentre of any simplex of K to some vertex of
that simplex.

Proof If { represents a simplicial approximation to the identity map of | K|
then ((0) € o for any o € K, and hence ((¢) is a vertex of o.

Conversely suppose that the function ¢ sends the barycentre of any sim-
plex of K to a vertex of that simplex. Let 7 be a simplex of K’. Then it
follows from the definition of K’ that the interior of 7 is contained in the
interior of some simplex o of K, and the vertices of 7 are barycentres of
faces of 0. Then ¢ must map the vertices of 7 to vertices of o, and hence
¢ represents a simplicial map from K’ to K. Moreover this simplicial map
is a simplicial approximation to the identity map, since the interior of 7 is
contained in o and ¢ maps the interior of 7 into o. |}

It follows from Lemma 8.3 that there exist simplicial approximations
(:K' — K to the identity map of |K|: such a simplicial approximation
can be obtained by choosing, for each o € K, a vertex v, of o, and defining
C(6) =V,

Suppose that (: K’ — K and 0: K’ — K are both simplicial approxima-
tions to the identity map of |K|. Then ¢ and 6 are contiguous (Lemma 8.1),
and therefore the homomorphisms (, and 6, of homology groups induced by
¢ and 6 must coincide. It follows that, given any integral domain R and any
integer ¢, there is a well-defined natural homomorphism vg: H,(K'; R) —
H,(K; R) of homology groups which coincides with (, for any simplicial ap-
proximation (: K’ — K to the identity map of | K]|.

Theorem 8.4 Let K be a simplicial complex, and let R be an integral do-
main. The natural homomorphism vi: H,(K'; R) — H,(K; R) is an isomor-
phism for any simplicial complex K.

Proof Let M be the simplicial complex consisting of some simplex ¢ together
with all of its faces. Then Ho(M; R) = R, Hy(M'; R) = R, and H,(M; R) =
0= H,(M'";R) for all ¢ > 0 (see Proposition 4.8 and the following example).
Let v be a vertex of M. If §: M’ — M is any simplicial approximation to the
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identity map of |M| then 6(v) = v. But the homology class of (v) generates
both Ho(M; R) and Ho(M'; R). It follows that 6,: Hy(M'; R) — Hy(M; R)
is an isomorphism, and thus vy: H,(M'; R) — H,(M; R) is an isomorphism
for all q.

We now use induction on the number of simplices in K to prove the
theorem in the general case. It therefore suffices to prove that the required
result holds for a simplicial complex K under the additional assumption that
the result is valid for all proper subcomplexes of K.

Let o be a simplex of K whose dimension equals the dimension of K.
Then o is not a face of any other simplex of K, and therefore K \ {c} is a
subcomplex of K. Let M be the subcomplex of K consisting of the simplex o,
together with all of its faces. We have already proved the result in the special
case when K = M. Thus we only need to verify the result in the case when
M is a proper subcomplex of K. In that case K = LUM, where L = K\{o}.

Let ¢: K’ — K be a simplicial approximation to the identity map of |K]|.
Then the restrictions (|L/, {|M" and ¢|L' N M’ of { to L', M’ and L' N M’
are simplicial approximations to the identity maps of |L|, |M| and |L| N |M]|
respectively. Therefore the diagram

0—Cy(L'NM";R)—Cq(L";R)®Cy (M'; R) — Cq(K";R)—0
¢l nM’ CILHe¢IM) ¢
0— Cq(LNM;R) — Cq(L;R)®Cq(M;R) — Cq(K;R)—0

commutes, and its rows are short exact sequences. But the restrictions (|L/,
C|M’" and {|L' N M’ of ¢ to L', M’ and L' N M’ are simplicial approximations
to the identity maps of |L|, |M| and |L| N |M]| respectively, and therefore
induce the natural homomorphisms vy, vy and vy, We therefore obtain
a commutative diagram

Ho(L'NM';R)— Hq(L';R)®Hq(M';R)— Hy(K';R)~% Hy 1 (L/NM';R)— Hy_1 (L';R)®Hy 1 (M';R)
VLnM v ®vn VK lVLﬂ]M v ®vym

Hy(LNM;R) — Hy(L;R)®Hy(M;R) — Hy(K;R) ~% H, 1 (LNM;R) — Hy 1(L;R)®H,_1(M;R)

in which the rows are exact sequences, and are the Mayer-Vietoris sequences
corresponding to the decompositions K = LUM and K' = L' UM’ of K
and K’. But the induction hypothesis ensures that the homomorphisms vy,
vy and vpqp are isomorphisms, since L, M and L N M are all proper sub-
complexes of K. It now follows directly from the Five-Lemma (Lemma 6.3)
that vi: H,(K'; R) — H,(K; R) is also an isomorphism, as required. |

We refer to the isomorphism vy: Hy(K'; R) — H,(K; R) as the canonical
isomorphism from the gth homology group of K’ to that of K.
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For each j > 0, we define the canonical isomorphism v j: H, (K @ R) —
H,(K; R) from the homology groups of the jth barycentric subdivision K
of K to those of K itself to be the composition of the natural isomorphisms

Hq(K(j)§ R) — Hq(K(j_1)§ R)— - — Hq(K,§ R) — H,(K; R)

induced by appropriate simplicial approximations to the identity map of |K|.
Note that if 7 < j then I/I;}i o Vg ; is induced by a composition of simplicial
approximations to the identity map of |K|. But any composition of simplicial
approximations to the identity map is itself a simplicial approximation to the
identity map (Corollary 3.16). We deduce the following result.

Lemma 8.5 Let K be a simplicial complex, let © and j be positive integers
satisfying i < j. Then vi; = vk, o (. for some simplicial approximation
C: KW — K@ to the identity map of |K]|.

8.3 Continuous Maps and Induced Homomorphisms

Proposition 8.6 Let K and L be simplicial complexes, and let R be an in-
tegral domain. Then any continuous map f:|K| — |L| between the polyhedra
of K and L induces a well-defined homomorphism f.: H,(K; R) — H,(L; R)
of homology groups such that f, = s, o I/;(}i for any simplicial approzimation
s: KW — L to the map f, where s,: Hy(K%YW; R) — H,(L; R) is the homo-
morphism induced by the simplicial map s and vi;: Hy(KW; R) — H,(K; R)
s the canonical isomorphism.

Proof The Simplicial Approximation Theorem (Theorem 3.17) guarantees
the existence of a simplicial approximation s: K — L to the map f defined
on the ith barycentric subdivision K@ of K for some sufficiently large i.
Thus it only remains to verify that if s: K) — L and t: K¥) — L are both
simplicial approximations to the map f then s, o 1/;{711. =1,0 V;(}j.

Suppose that ¢ < j. Then V;(’liVK’j = (, for some simplicial approx-
imation ¢: K — K@ to the identity map of |K| (Lemma 8.5). Thus
Sy O V;(}i = s5,0(. 0 V]_(,lj = (so ()0 VI}}j. Moreover (: KU — K® and

s: K — L are simplicial approximations to the identity map of |K| and
to f:|K| — |L| respectively, and therefore s o : K — L is a simplicial
approximation to f:|K| — |L| (Corollary 3.16). But then so( and t are sim-
plicial approximations to the same continuous map, and thus are contiguous
simplicial maps from KU) to L (Lemma 8.1). It follows that (s o (), and t,
coincide as homomorphisms from H,(KY; R) to H,(L; R) (Lemma 8.2), and
therefore s, o I/I_{}Z- =t,0 VI}}]-, as required. [
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Proposition 8.7 Let K, L and M be simplicial complexes and let f:|K| —
|L| and g:|L| — |M]| be continuous maps. Then the homomorphisms fs, g.
and (g o f).« of homology groups induced by the maps f, g and g o f satisfy

(gOf)*:g*Of*.

Proof Let t: L(™ — M be a simplicial approximation to g and let s: KU —
L™ be a simplicial approximation to f. Now the canonical isomorphism VLm
from H,(L™); R) to H,(L; R) is induced by some simplicial approximation to
the identity map of |L|. It follows that vy ,, o s, is induced by some simplicial
approximation to f (Corollary 3.16), and therefore f, = v, 05,0 I/I_(}j. Also
g« = tiowp,.. It follows that g, o f, = t, 0 s, ovg' = (tos), ovg,. But
tos: KU — M is a simplicial approximation to go f (Corollary 3.16). Thus

(go f)« = gs«o fi, as required. ||

Corollary 8.8 If the polyhedra |K| and |L| of simplicial complezes K and
L are homeomorphic then the homology groups of K and L are isomorphic.

Proof Let h:|K| — |L| be a homeomorphism, and let R be an integral
domain. Then h,: H,(K; R) — H,(L; R) is an isomorphism whose inverse is
(™)« Hy(L; R) — Hy(K; R). 1

One can make use of induced homomorphisms in homology theory in
order to prove the Brouwer Fixed Point Theorem in all dimensions. The
Brouwer Fixed Point Theorem is a consequence of the fact that there is no
continuous map 7: A — JA from an n-simplex A to its boundary 0A with
the property that r(x) = x for all x € JA. Such a continuous map would
induce homomorphisms r,: H,(A;Z) — H,(0A;Z) of homology groups for
all non-negative integers ¢, and 7, o7, would be the identity automorphism of
H,(0A; Z) for all ¢, where i,.: H,(0A; Z) — H,(A;Z) is induced by the inclu-
sion map i: A — A. But this would imply that r.: H,(A;Z) — H,(0A;Z)
was surjective for all non-negative integers ¢, which is impossible, since
H, 1(A) = 0 and H,1(0A) = Z when n > 2 (and H,,_1(A) = Z and
H, 1(0A) =2 Z & Z when n = 1). We conclude therefore that there is no
continuous map r: A — OA that fixes all points of A, and therefore the
Brouwer Fixed Point Theorem is satisfied in all dimensions.

We next show that homotopic maps between the polyhedra of simplicial
complexes induce the same homomorphisms of homology groups. For this
we require the following result.

Lemma 8.9 For any simplicial complex L there is some € > 0 with the
following property: given continuous maps f:|K| — |L| and g:|K| — |L|
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defined on the polyhedron of some simplicial complex K, where f(x) is within
a distance € of g(x) for all x € |K|, there exists a simplicial map defined on
K for some sufficiently large i which is a simplicial approxzimation to both

f and g.

Proof An application of the Lebesgue Lemma shows that there exists ¢ > 0
such that the open ball of radius 2¢ about any point of |L| is contained
in stz (b) for some vertex b of L. Let f:|K| — |L| and g:|K| — |L| be
continuous maps. Suppose that f(x) is within a distance ¢ of g(x) for all
x € |K|. Another application of the Lebesgue Lemma (to the open cover of
| K| by preimages of open balls of radius ¢) shows that there exists ¢ > 0 such
that any subset S of |K| whose diameter is less than ¢ is mapped by f into
an open ball of radius £ about some point of |L|, and is therefore mapped by
g into an open ball of of radius 2¢ about that point. But then f(S) C st.(b)
and g(S) C stz (b) for some vertex b of L. Now choose i such that u(K®) <
%5 . Asin the proof of the Simplicial Approximation Theorem (Theorem 3.17)
we see that, for every vertex a of K| the diameter of stz (a) is less than
d, and hence f(stxm(a)) C str(s(a)) and g(stxm(a)) C stp(s(a)) for some
vertex s(a) of L. It then follows from Proposition 3.15 that the function
s:Vert K — Vert L constructed in this manner is the required simplicial
approximation to f and g. |}

Theorem 8.10 Let K and L be simplicial complexes, let R be an integral
domain, and let f:|K| — |L| and g:|K| — |L| be continuous maps from |K|
to |L|. Suppose that f and g are homotopic. Then the induced homomor-
phisms f. and g. from H,(K;R) to H,(L; R) are equal for all q.

Proof Let F:|K| x [0,1] — |L| be a homotopy with F(x,0) = f(x) and
F(x,1) = g(x), and let € > 0 be given. Using the well-known fact that con-
tinuous functions defined on compact metric spaces are uniformly continuous
(which is easily proved using the Lebesgue Lemma), we see that there exists
some § > 0 such that if |s — ¢| < J then the distance from F(x,s) to F(x,1)
is less than . Let f;(x) = F(x,t;) fori =0,1,...,r, where to,tq,...,t. have
been chosen such that 0 = t5 < t; < --- < t, = 1land t; — t,_1 < 0 for
all 2. Then f;_1(x) is within a distance € of f;(x) for all x € |K|. Using
Lemma 8.9, we see that the maps f;_; and f; from | K| to |L| have a common
simplicial approximation, and thus f;_; and f; induce the same homomor-
phisms of homology groups, provided that £ > 0 has been chosen sufficiently
small. It follows that the maps f and g induce the same homomorphisms of
homology groups, as required. |
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8.4 Homotopy Equivalence

Let X and Y be topological spaces. Continuous maps f: X — Y and ¢g: X —
Y from X to Y are said to be homotopic if there exists a continuous map
H: X x[0,1] — Y such that H(z,0) = f(x) and H(z,1) = g(x) for all z € X.

Definition Let X and Y be topological spaces. A continuous map f: X —
Y is said to be a homotopy equivalence if there exists a continuous map
h:Y — X such that h o f is homotopic to the identity map of X and foh
is homotopic to the identity map of Y. The spaces X and Y are said to be
homotopy equivalent if there exists a homotopy equivalence from X to Y.

Lemma 8.11 A composition of homotopy equivalences is itself a homotopy
equivalence.

Proof Let X, Y and Z be topological spaces, and let f: X — Y and h:Y —
Z be homotopy equivalences. Then there exist continuous maps ¢: Y — X
and k: Z — Y such that go f ~ix, fog~iy, koh~1iy and hok ~ iy,
where iy, iy and i1z denote the identity maps of the spaces X, Y, Z. Then
(gok)o(hof)=go(koh)of~goiyof=gof~ixand(hof)o(gok)=
ho(fog)ok~hoiyok=hok~iy Thus ho f: X — Z is a homotopy
equivalence from X to Z. |}

Lemma 8.12 Let K and L be simplicial complexes, and let R be an integral
domain. Let f:|K| — |L| be a homotopy equivalence between the polyhedra of
K and L. Then, for each non-negative integer q, the induced homomorphism
fer Hy(K; R) — Hy(L; R) of homology groups is an isomorphism.

Proof There exists a continuous map g:|L| — |K| such that g o f is ho-
motopic to the identity map of |K| and f o g is homotopic to the identity
map of |L|. It follows that the induced homomorphisms (go f).: H,(K; R) —
H,(K;R)and (fog).: H/(L; R) — H,(L; R) are the identity automorphisms
of H,(K; R) and H,(L; R) for each q. But (gof). = g«of. and (fog). = f.og..
It follows that f.: H,(K;R) — H,(L;R) is an isomorphism with inverse
9+: Ho(L; R) — Hy(K; R). 1

Definition A subset A of a topological space X is said to be a deformation
retract of X if there exists a continuous map H: X x [0,1] — X such that
H(z,0) =z and H(z,1) € Afor all z € X and H(a,1) =a for all a € A.

Thus a subset A of a topological space X is a deformation retract of X if
and only if there exists a function r: X — A such that r(a) = a for alla € A
and r is homotopic in X to the identity map of X.
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Example The unit sphere S"! in R" is a deformation retract of R™ \ {0}.
For if H(x,t) = (1 —t + t/|x|)x for all x € R"\ {0} and ¢t € [0, 1] then
H(x,0) =x and H(x,1) € S"! for all x € R"\ {0} and H(x,1) = x when
x e SnL

If A is a deformation retract of a topological space X then the inclusion
map 7: A — X is a homotopy equivalence.

Theorem 8.13 The spaces R™ and R™ are not homeomorphic if m # n.

Proof Let S™ ! and S™ ! denote the unit spheres in R™ and R” respectively.
Then S™~! and S"~! are homeomorphic to the polyhedra of simplicial com-
plexes K and L respectively. Let i,,: S™ ' — R™\ {0} be the inclusion map
and let r,: R"\ {0} — S™~! be the map that sends x € R"\ {0} to (1/|x|)x.
Then both i,,: ™' — R™\ {0} and r,:R"\ {0} — S™! are homotopy
equivalences.

Suppose that there were to exist a homeomorphism h:R™ — R™. Let
f(x) = h(x) —h(0) for all x € R™\ {0}. Then f:R™\ {0} — R™\ {0} would
also be a homeomorphism, and therefore r,, o f 04,,: S™ ! — 5"~! would be
a homotopy equivalence. Thus if R™ and R" were homeomorphic then S™!
and S"! would be homotopy equivalent, and therefore the homology groups
of the simplicial complexes K and L would be isomorphic. But H,(K;Z) = Z
when ¢ = 0 and ¢ = m — 1 and H,(K;Z) = 0 for all other values of ¢,
whereas H,(L;Z) = Z when ¢ = 0 and ¢ =n — 1 and H,(L;Z) = 0 for all
other values of q. Thus if m # n then the homology groups of the simplicial
complexes K and L are not isomorphic, and therefore R™ and R™ are not
homeomorphic. |}
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