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1 Rings and Modules

1.1 Rings and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication that satisfy the following properties:

• the ring is an Abelian group with respect to the operation of addition;

• the operation of multiplication on the ring is associative, and thus
x(yz) = (xy)z for all elements x, y and z of the ring.

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the ring.

Let R be a ring. Then R is an Abelian group with respect to the operation
of addition, and therefore x+ (y+ z) = (x+ y) + z and x+ y = y+ x for all
x, y ∈ R. Also the ring R contains a unique zero element 0R characterized
by the property that x + 0R = x for all x ∈ R. Moreover given any element
x of R, there exists a unique element −x of R for which x+ (−x) = 0R. This
element −x is the negative of the element x. An element x of a ring R is said
to be non-zero if x 6= 0R.

The operation of subtraction in a ring R is defined such that x − y =
x + (−y) for all x, y ∈ R, where −y is the unique element of R for which
y + (−y) = 0R.

Lemma 1.1 Let R be a ring, and let 0R be the zero element of R. Then
x0R = 0R, 0Rx = 0R, (−x)y = −(xy) and x(−y) = −(xy) for all elements x
and y of R.

Proof Let x, y ∈ R. It follows from the Distributive Law that

xy = x(y + 0R) = xy + x0R and yx = (y + 0R)x = yx+ 0Rx.

On subtracting xy and yx respectively from both sides of these two equations,
we find that x0R = 0R and 0Rx = 0R. It also follows from the Distributive
Law that

xy + (−x)y = (x+ (−x))y = 0Ry = 0R

and
xy + x(−y) = x(y + (−y)) = x0R = 0R.

Therefore (−x)y = −(xy) and x(−y) = −(xy), as required.
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Definition A subset S of a ring R is said to be a subring of R if 0R ∈ S,
a + b ∈ S, −a ∈ S and ab ∈ S for all a, b ∈ S, where 0R denotes the zero
element of the ring R.

Definition A ring R is said to be commutative if xy = yx for all x, y ∈ R.

Not every ring is commutative: an example of a non-commutative ring is
provided by the ring of n×n matrices with real or complex coefficients when
n > 1.

Definition A ring R is said to be unital if it possesses a (necessarily unique)
non-zero multiplicative identity element 1R satisfying 1Rx = x = x1R for all
x ∈ R.

Definition A unital commutative ring R is said to be an integral domain if
the product of any two non-zero elements of R is itself non-zero.

Let R be an integral domain. We define n.r for all integers n and el-
ements r of R so that 0.r = 0R, where 0R is the zero element of R, and
(n+ 1).r = n.r + r for all integers n. Thus

1.r = r, 2.r = r + r, 3.r = r + r + r, etc.,

and (−n).r = −(n.r) for all integers n. Now {n ∈ Z : n.1R = 0R} is
a subgroup of the group Z of integers. A basic result of number theory
therefore ensures that there exists a unique non-negative integer p such that

{n ∈ Z : n.1R = 0R} = pZ,

where pZ denotes the subgroup of Z consisting of all integers that are di-
visible by the non-negative integer p. This non-negative integer p is the
characteristic charR of the ring.

Lemma 1.2 Let R be an integral domain for which charR = 0, where charR
denotes the characteristic of R. Then n.r 6= 0R for all non-zero elements r
of R, and for all non-zero integers n. Thus if r ∈ R, m,n ∈ N , r 6= 0R and
m 6= n then m.r 6= n.r.

Proof If charR = 0 then n.1R 6= 0R for all non-zero integers n. Now it
follows from the Distributive Law and the definition of n.r that n.r = (n.1R)r
for all n ∈ Z and r ∈ R. Thus if n 6= 0 and r 6= 0R then n.r is the product
of two non-zero elements of the integral-domain R, and therefore n.r 6= 0R.
It follows that if r ∈ R, m,n ∈ N , r 6= 0R and m 6= n then (m− n).r 6= 0R,
and therefore m.r 6= n.r, as required.
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Lemma 1.3 Let R be an integral domain for which charR = p, where p > 0
and where charR denotes the characteristic of R. Then the characteristic p
of R is a prime number. Moreover let m,n ∈ Z and r ∈ R, where r 6= 0R.
Then m.r = n.r if and only if n−m is divisible by the prime number p.

Proof If p > 0, where p = charR then p is the smallest positive integer for
which p.1R = 0R. Suppose that p = jk, where j and k are positive integers.
Then it follows from the Distributive Law that

(j.1R)(k.1R) = (jk).1R = p.1R = 0R.

But R is an integral domain, and therefore the product of two non-zero
elements of R is always non-zero. We conclude therefore that either j.1R =
0R, in which case p divides j, or else k.1R = 0R, in which case p divides k.
Thus p cannot be factored as the product of two positive integers that are
both strictly less than p, and therefore the characteristic p of the integral
domain R is a prime number.

Let m,n ∈ Z and r ∈ R, where r 6= 0R. Then n.r −m.r = (n −m).r =
((n−m).1R)r. Thus if m.r = n.r then ((n−m).1R)r = 0R. But r 6= 0R, and
the product of any two non-zero elements of the integral domain R is always
non-zero. It follows that (n −m).1R = 0R, and therefore n −m is divisible
by the characteristic p of the integral domain R, as required.

Definition A field consists of a set on which are defined operations of ad-
dition and multiplication that satisfy the following properties:

• the field is an Abelian group with respect to the operation of addition;

• the non-zero elements of the field constitute an Abelian group with
respect to the operation of multiplication;

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the field.

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element x−1 of R such that xx−1 = 1R. Moreover a ring R is a
field if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

Lemma 1.4 A field is an integral domain.
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Proof A field is a unital commutative ring. Let x and y be non-zero elements
of a field K. Then there exist elements x−1 and y−1 of K such that xx−1 = 1R
and yy−1 = 1R. Then xyy−1x−1 = 1R. It follows that xy 6= 0R, since
0R(y−1x−1) = 0R and 1R 6= 0R.

The set Z of integers is an integral domain with respect to the usual
operations of addition and multiplication. The sets Q, R and C of rational,
real and complex numbers are fields.

1.2 Left Modules

Definition Let R be a unital ring. A set M is said to be a left module over
the ring R (or left R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and rx of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1Rx = x

are satisfied for all x, y ∈ M and r, s ∈ R, where 1R denotes the
multiplicative identity element of the ring R.

Let M be a left module over a unital ring R. Then M is an Abelian group
with respect to the operation of addition, and therefore x+(y+z) = (x+y)+z
and x+y = y+x for all x, y ∈M . Also the left module M contains a unique
zero element 0M characterized by the property that x+0M = x for all x ∈M .
Moreover given any element x of M , there exists a unique element −x of M
for which x+ (−x) = 0M . This element −x is the negative of the element x.
An element x of a left module M is said to be non-zero if x 6= 0M .

The operation of subtraction in a left module M is defined such that
x− y = x+ (−y) for all x, y ∈M , where −y is the unique element of M for
which y + (−y) = 0M .

Lemma 1.5 Let M be a left module over a unital ring R, and let and let
0R and 0M be the zero elements of R and M respectively. Then 0Rx = 0M ,
r0M = 0M and (−r)x = r(−x) = −(rx) for all r ∈ R and x ∈M .
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Proof Let r ∈ R and x ∈M . Then

rx = (r + 0R)x = rx+ 0Rx.

On subtracting rx from both sides of this equation, we find that 0Rx = 0M .
Similarly

rx = r(x+ 0M) = rx+ r0M ,

and therefore r0M = 0M . Also

(−r)x+ rx = ((−r) + r)x = 0Rx = 0M

and
r(−x) + rx+ r((−x) + x) = r0M = 0M ,

and therefore (−r)x = r(−x) = −(rx), as required.

1.3 Modules over a Unital Commutative Ring

We have defined the concept of a left module over a unital ring. There is
a corresponding concept of a right module. A right module is an Abelian
group with respect to the operation of addition. Furthermore elements of
a right module M over a unital ring R may be multiplied on the right by
elements of the ring R. Moreover, in order that M be a right module over a
unital ring R, the following identities must be satisfied for all x, y ∈ M and
r, s ∈ R:

(x+ y)r = xr + yr, x(r + s) = xr + xs,

x(rs) = (xr)s and x1R = x,

where 1R denotes the multiplicative identity element of the ring R.
If the multiplication operation on the ring R is non-commutative, then

the concept of right module is essentially distinct from that of left module
over this ring R. But if the unital ring R is commutative then there is no
essential distinction between left modules and right modules over R: in this
case it is purely a question of context, tradition and convenience whether
the product of an element x of the module and an element r of the ring is
denoted by rx or by xr. Accordingly both left and right modules over a
unital commutative ring may be described as modules over that ring.

Example If K is a field, then the definition of a module over the field K
coincides with that of a vector space over K. Thus vector spaces are examples
of modules where the ring of coefficients is a field.
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Example Let (M,+) be an Abelian group, and let x ∈M . If n is a positive
integer then we define nx to be the sum x + x + · · · + x of n copies of x. If
n is a negative integer then we define nx = −(|n|x), and we define 0x = 0M ,
where 0M denotes the zero element of the Abelian group M . This enables
us to regard any Abelian group as a module over the ring Z of integers.
Conversely, any module over the ring Z of integers is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion. The operation of left multiplication of elements
of a unital commutative ring R by elements of R itself coincides with the
operation of multiplication defined on the ring R.

Example Let K be a field, and let K[X] denote the ring of polynomials in
a single indeteminant with coefficients in the field X. The ring K[X] is a
unital commutative ring, and elements of K[X] are polynomials of the form

a0 + a1X + a2X
2 + · · ·+ adX

d,

where a0, a1, . . . , ad ∈ K. The operations of addition, subtraction and mul-
tiplication of such polynomials are defined in the usual fashion. Let V be a
vector space over the field K, and let T :V → V be a linear operator on V .
Define p(X)v = p(T )v for all p(X) ∈ K[X], so that

(a0 + a1X + a2X
2 + · · ·+ adX

d)v = a0v + a1Tv + a2T
2v + · · ·+ adT

dv

for all v ∈ V and a0, a1, . . . , ad ∈ K. Then this operation of multiplication of
elements of the vector space V by polynomials with coefficients in the field K
gives the vector space V the structure of a module over the polynomial ring
K[X]. Moreover any module over the polynomial ring K[X] can be described
in this fashion. For if V is a module over K[X] then V is a vector space over
the field K: each element of the field K may be regarded as a constant poly-
nomial, and therefore the algebraic operation under which elements of the
module V are multiplied on the left by polynomials restricts to an operation
whereby elements of V are multiplied on the left by constant polynomials,
and accordingly by elements of the field K. Moreover the function that sends
v ∈ V to the product Xv obtained on left multiplying v by the polynomial X
(where X = 1RX) is a linear transformation T :V → V , and basic properties
of modules then ensure that p(X)v = p(T )v for all p(X) ∈ K[X].

1.4 Submodules and Quotient Modules

Definition Let R be a unital ring, and let M be a left R-module. A non-
empty subset L of M is said to be a submodule of M if x+y ∈ L and rx ∈ L
for all x, y ∈ L and r ∈ R.
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Let M be a left module over a unital ring R, and let L be a submodule
of M . Then L contains at least one element x, and therefore contains the
zero element 0M of M , because 0M = 0Rx. Thus every submodule of a left
module contains the zero element of that module. Also −x ∈ L for all x ∈ L,
because −x = (−1R)x, where 1R denotes the multiplicative identity element
of the unital ring R.

Example A subset L of a ring R is said to be a left ideal of R if 0R ∈ L,
−x ∈ L, x + y ∈ L and rx ∈ L for all x, y ∈ L and r ∈ R. Any unital
ring R may be regarded as a left R-module, where multiplication on the left
by elements of R is defined in the obvious fashion using the multiplication
operation on the ring R itself. A subset of R is then a submodule of R (when
R is regarded as a left module over itself) if and only if this subset is a left
ideal of R.

Given any submodule L of the left R-module M , we denote by M/L the
set of cosets of L in M . These cosets are the subsets of M that are of the
form L+ x for some x ∈M , where

L+ x = {l + x : l ∈ L}.

Let x and y be elements of M . If y ∈ L+ x then y = ly + x for some ly ∈ L.
But then x = (−ly) + y, and therefore x ∈ L+ y. Moreover

l + y = l + ly + x ∈ L+ x

and
l + x = l + (−ly) + y ∈ L+ y

for all l ∈ L. Thus if y ∈ L + x then L + y = L + x. It follows that
L+ x = L+ y if and only if x− y ∈ L.

Let x, x′, y, y′ ∈ M and r ∈ R. Suppose that L + x = L + x′ and
L+ y = L+ y′. Then x′ − x ∈ L and y′ − y ∈ L. But then

(x+ y)− (x′ + y′) = (x− x′) + (y − y′) ∈ L,

because the operation of addition on M is both commutative and associative,
and

rx− rx′ = r(x− x′) ∈ L,

and therefore L + (x + y) = L + (x′ + y′) and L + rx = L + rx′. It follows
that there is a well-defined operation of addition on the set M/L of cosets of
L in M , where

(L+ x) + (L+ y) = L+ (x+ y)
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for all x, y ∈M . This addition operation on M/L is associative and commu-
tative. Also L+(L+x) = (L+0M)+(L+x) = L+x and (L+(−x))+(L+x) =
L + ((−x) + x) = L + 0M = L for all x ∈ M . It follows that the set M/L
of cosets of L in M is an Abelian group with respect to the operation of
addition of cosets. We define r(L+ x) = L+ rx for all r ∈ R. Then

r((L+ x) + (L+ y)) = r(L+ (x+ y)) = L+ r(x+ y)

= L+ (rx+ ry) = (L+ rx) + (L+ ry)

= r(L+ x) + r(L+ y),

(r + s)(L+ x) = L+ (r + s)x = L+ (rx+ sx)

= (L+ rx) + (L+ sx)

= r(L+ x) + s(L+ x),

(rs)(L+ x) = L+ (rs)x = L+ r(sx) = r(L+ sx)

= r(s(L+ x)),

and
1R(L+ x) = L+ 1Rx = L+ x

for all r, s ∈ R and x, y ∈ M . It follows that the set M/L of left cosets of L
in M is itself a left module over the unital ring R.

Definition Let M be a left module over a unital ring R, and let L be a
submodule of M . The corresponding quotient module M/L is the left R-
module M/L whose elements are the cosets of L in M , with operations of
addition of cosets and left multiplication of cosets by elements of the ring R
defined such that

(L+ x) + (L+ y) = L+ x+ y and r(L+ x) = L+ rx

for all x, y ∈M and r ∈ R.

1.5 Homomorphisms of Left Modules

Definition Let M and N be left modules over some unital ring R. A
function ϕ:M → N is said to be a homomorphism of left R-modules if
ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(rx) = rϕ(x) for all x, y ∈ M and r ∈ R. A
homomorphism of R-modules is said to be an isomorphism if it is invertible.

Let M and N be left modules over a unital ring R. A homomorphism
ϕ:M → N from M to N is said to be a monomorphism if it is injective. A
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homomorphism ϕ:M → N from M to N is said to be a epimorphism if it
is surjective. A homomorphism ϕ:M → N from M to N is said to be an
isomorphism if it is bijective. A homomorphism ϕ:M →M from M to itself
is referred to as an endomorphism of M . An isomorphism ϕ:M → M from
M to itself is referred to as an automorphism of M .

Let ϕ:M → N be an isomorphism from M to N . Then the function ϕ
has a well-defined inverse ϕ−1:N → M . Let u, v ∈ N , and let x = ϕ−1(u)
and y = ϕ−1(v). Then ϕ(x) = u and ϕ(y) = v, and therefore

ϕ(x+ y) = ϕ(x) + ϕ(y) = u+ v and ϕ(rx) = rϕ(x) = ru.

It follows that

ϕ−1(u+ v) = ϕ−1(u) + ϕ−1(v) and ϕ−1(ru) = rϕ−1(u).

Thus the inverse ϕ−1:N →M of any left R-module isomorphism ϕ:M → N
is itself a left R-module isomorphism.

Lemma 1.6 Let M and N be left modules over a unital ring R, and let
ϕ:M → N be a left R-module homomorphism from M to N . Then ϕ(0M) =
0N , where 0M and 0N denote the zero elements of the left modules M and N
respectively. Moreover ϕ(−x) = −ϕ(x) for all x ∈M .

Proof Let x ∈M . Then

ϕ(x) = ϕ(x+ 0M) = ϕ(x) + ϕ(0M).

On subtracting ϕ(x) from both sides of this identity, we find that 0N =
ϕ(0M). It follows that

ϕ(x) + ϕ(−x) = ϕ(x+ (−x)) = ϕ(0M) = 0N ,

and therefore ϕ(−x) = −ϕ(x), as required.

Definition Let M and N be left modules over some unital ring R, and let
ϕ:M → N be a left R-module homomorphism. The kernel kerϕ of the
homomorphism ϕ is defined so that

kerϕ = {x ∈M : ϕ(x) = 0N},

where 0N denotes the zero element of the module N .
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The kernel kerϕ of a left R-module homomorphism ϕ:M → N is itself a
left R-module. Indeed let x, y ∈ kerϕ and r ∈ R. Then

ϕ(x+ y) = ϕ(x) + ϕ(y) = 0N + 0N = 0N

and
ϕ(rx) = rϕ(x) = r0N = 0N ,

and therefore x+ y ∈ kerϕ and rx ∈ kerϕ.
The image or range ϕ(M) of a left R-module homomorphism ϕ:M → N

is defined such that
ϕ(N) = {ϕ(x) : x ∈M}.

The image of any left R-module homomorphism is itself a left R-module.

Proposition 1.7 Let M and N be left modules over a unital ring R, let
ϕ:M → N be a left R-module homomorphism from M and N , and let L
be a submodule of M . Suppose that L ⊂ kerϕ. Then ϕ:M → N induces
a homomorphism ϕ:M/L→ N defined on the quotient module M/L, where
ϕ(L + x) = ϕ(x) for all x ∈ M . This induced homomorphism is injective if
and only if L = kerϕ.

Proof Let x, x′ ∈ M . Then L + x = L + x′ if and only if x′ − x ∈ L. Also
ϕ(x′ − x) = ϕ(x′)− ϕ(x), and therefore ϕ(x) = ϕ(x′) if and only if x′ − x ∈
kerϕ. But L ⊂ kerϕ. It follows that if L+x = L+x′ then ϕ(x) = ϕ(x′), and
therefore there exists a well-defined function ϕ:M/L → N characterized by
the property that ϕ(L + x) = ϕ(x) for all x ∈ M . The function from M/L
to N characterized by this property is uniquely determined. Moreover the
function ϕ is injective if and only if L + x = L + x′ whenever ϕ(x) = ϕ(x′).
It follows that ϕ:M/L→ N is injective if and only if L = kerϕ.

Let x, y ∈M . Then

ϕ((L+ x) + (L+ y)) = ϕ(L+ x+ y) = ϕ(x+ y) = ϕ(x) + ϕ(y)

= ϕ(L+ x) + ϕ(L+ y).

Also
ϕ(r(L+ x)) = ϕ(L+ rx) = ϕ(rx) = rϕ(x)

for all r ∈ R. It follows that ϕ:M/L → N is a homomorphism of left
R-modules with the required properties.

The following corollary follows immediately on applying Proposition 1.7.

Corollary 1.8 Let M and N be left modules over a unital ring R, and let
ϕ:M → N be a left R-module homomorphism from M and N . Then ϕ(M) ∼=
M/ kerϕ.
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1.6 Direct Sums of Left Modules

Definition Let M1,M2, . . . ,Mk be left modules over a unital ring R. The
direct sum M1⊕M2⊕· · ·⊕Mk of the modules M1,M2, . . . ,Mk is defined to be
the set of ordered k-tuples (x1, x2, . . . , xk), where xi ∈Mi for i = 1, 2, . . . , k.
This direct sum is itself a left R-module, where

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk),

r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all xi, yi ∈Mi and r ∈ R.

Definition Let R be a unital ring, and let n be a positive integer. We define
the left R-module Rn to be the direct sum of n copies of the ring R. The ele-
ments of this leftR-moduleRn are thus represented as n-tuples (r1, r2, . . . , rn)
whose components are elements of the ring R.

Definition Let M be a left module over some unital ring R. Given any
subset X of M , the submodule of M generated by the set X is defined to be
the intersection of all submodules of M that contain the set X. It is therefore
the smallest submodule of M that contains the set X. A left R-module M is
said to be finitely-generated if it is generated by some finite subset of itself.

Lemma 1.9 Let M be a left module over some unital ring R. Then the
submodule of M generated by some finite subset {x1, x2, . . . , xk} of M consists
of all elements of M that are of the form

r1x1 + r2x2 + · · ·+ rkxk

for some r1, r2, . . . , rk ∈ R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M . Moreover it is contained in every submodule of M that
contains the set {x1, x2, . . . , xk}. The result follows.

1.7 Right Modules

Definition Let R be a unital ring. A set M is said to be a right module
over R (or right R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and xr of M ,

(ii) M is an Abelian group with respect to the operation + of addition,
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(iii) the identities

(x+ y)r = xr + yr, x(r + s) = xr + xs,

x(rs) = (xr)s, x1R = x

are satisfied for all x, y ∈ M and r, s ∈ R, where 1R denotes the
multiplicative identity element of the ring R.

Let R be a unital ring that is not necessarily commutative, and let +
and × denote the operations of addition and multiplication defined on R.
We denote by Rop the ring (R,+,×op), where the underlying set of Rop is R
itself, the operation of addition on Rop coincides with that on R, but where
the operation of multiplication in the ring Rop is the operation ×op defined
so that r×op s = s×r for all r, s ∈ R. Note that the multiplication operation
on the ring Rop coincides with that on the ring R if and only if the ring R is
commutative.

Any right module over the ring R may be regarded as a left module over
the ring Rop. Indeed let MR be a right R-module, and let r.x = xr for all
x ∈MR and r ∈ R. Then

r.(s.x) = r.(xs) = (xs)r = x(s× r) = x(r ×op s) = (r ×op s).x

for all x ∈MR and r, s ∈ R. Also all other properties required of left modules
over the ring Rop are easily seen to be satisfied. It follows that any general
results concerning left modules over unital rings yield corresponding results
concerning right modules over unital rings.

Note that if the unital ringR is commutative then r×ops = s×r = r×s for
all r, s ∈ R, and therefore the multiplication operations ×op and × coincide.
Thus if R is a unital commutative ring then the identity function of R is an
isomorphism between the rings R and Rop, and thus Rop is the same ring
as R. It follows that any right module over the ring R may be regarded as a
left module over R, and vice versa.

12



2 Free Modules

2.1 Linear Independence in Modules

Let M be a left module over a unital ring R, and let x1, x2, . . . , xk be elements
of M . A linear combination of the elements x1, x2, . . . , xk with coefficients
r1, r2, . . . , rk is an element of M that is represented by means of an expression
of the form

r1x1 + r2x2 + · · ·+ rkxk,

where r1, r2, . . . , rk are elements of the ring R.

Definition Let M be a left module over a unital ring R. The elements of a
subsetX ofM are said to be linearly dependent if there exist distinct elements
x1, x2, . . . , xk of X (where xi 6= xj for i 6= j) and elements r1, r2, . . . , rk of the
ring R, not all zero, such that

r1x1 + r2x2 + · · ·+ rkxk = 0M ,

where 0M denotes the zero element of the module M .
The elements of a subset X of M are said to be linearly independent over

the ring R if they are not linearly dependent over R.

Let M be a left module over a unital ring R, and let X be a (finite or
infinite) subset of M . The set X generates M as a left R-module if and only
if, given any non-zero element m of M , there exist x1, x2, . . . , xk ∈ X and
r1, r2, . . . , rk ∈ R such that

m = r1x1 + r2x2 + · · ·+ rkxk

(see Lemma 1.9). In particular, a left module M over a unital ring R is
generated by a finite set {x1, x2, . . . , xk} if and only if any element of M can
be represented as a linear combination of x1, x2, . . . , xk with coefficients in
the ring R.

A left module over a unital ring is freely generated by the empty set if
and only if it is the zero module.

Definition Let M be a left module over a unital ring R, and let X be a
subset of M . The left module M is said to be freely generated by the set X
if the following conditions are satisfied:

(i) the elements of X are linearly independent over the ring R;

(ii) the module M is generated by the subset X.
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Definition A left module over a unital ring is said to be free if there exists
some subset of the module which freely generates the module.

Definition Let M be a left module over a unital ring R. Elements

x1, x2, . . . , xk

of M are said to constitute a free basis of M if these elements are distinct,
and if the left R-module M is freely generated by the set {x1, x2, . . . , xk}.

Example Let K be a field, let V be a finite-dimensional vector space over K,
and let b1, b2, . . . , bn be a basis of V . Then V is a left K-module, and moreover
V is freely generated by the set B, where B = {b1, b2, . . . , bn}. Indeed, given
any vector space W over K, and given any function f :B → W , there is a
unique linear transformation ϕ:V → W that extends f . Moreover

ϕ

(
n∑
j=1

xjbj

)
=

n∑
j=1

xjf(bj)

for all x1, x2, . . . , xn ∈ K. This linear transformation is a homomorphism of
left modules over the field K.

Lemma 2.1 Let M be a left module over an unital ring R. Elements

x1, x2, . . . , xk

of M constitute a free basis of that left module if and only if, given any
element m of M , there exist uniquely determined elements r1, r2, . . . , rk of
the ring R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Proof First suppose that x1, x2, . . . , xk is a list of elements of M with the
property that, given any element m of M , there exist uniquely determined
elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Then the elements x1, x2, . . . , xk generate M . Also the uniqueness of the
coefficients r1, r2, . . . , rk ensures that the zero element 0M of M cannot be
expressed as a linear combination of x1, x2, . . . , xk unless the coeffients in-
volved are all zero. Therefore these elements are linearly independent and
thus constitute a free basis of the left module M .
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Conversely suppose that x1, x2, . . . , xk is a free basis of M . Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
r1, r2, . . . , rk and s1, s2, . . . , sk be elements of the coefficient ring R satisfying

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk.

Then
(r1 − s1)x1 + (r2 − s2)x2 + · · ·+ (rk − sk)xk = 0M .

But then rj−sj = 0 and thus rj = sj for j = 1, 2, . . . , n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M , as required.

Proposition 2.2 Let M be a free left module over a unital ring R, and let X
be a subset of M that freely generates M . Then, given any left R-module N ,
and given any function f :X → N from X to N , there exists a unique left
R-module homomorphism ϕ:M → N such that ϕ|X = f .

Proof We first prove the result in the special case where M is freely gen-
erated by a finite set X. Thus suppose that X = {x1, x2, . . . , xk}, where
the elements x1, x2, . . . , xk are distinct. Then these elements are linearly
independent over R and therefore, given any element m of M , there exist
uniquely-determined elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

(see Lemma 2.1). It follows that, given any left R-module N , and given any
function f :X → N from X to N , there exists a function ϕ:M → N from M
to N which is characterized by the property that

ϕ(r1x1 + r2x2 + · · ·+ rkxk) = r1f(x1) + r2f(x2) + · · ·+ rkf(xk).

for all r1, r2, . . . , rk. Moreover this function is an R-module homomorphism,
and is the unique R-module homomorphism from M to N that extends
f :X → N .

Now consider the case whenM is freely generated by an infinite setX. Let
N be an R-module, and let f :X → N be a function from X to N . For each
finite subset Y of X, let MY denote the submodule of M that is generated
by Y . Then the result we have just proved for modules freely generated
by finite sets ensures that there exists a unique R-module homomorphism
ϕY :MY → N from MY to N such that ϕY (x) = f(x) for all x ∈ Y .
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Let Y and Z be finite subsets of X, where Y ∩ Z 6= ∅. We claim that
MY ∩MZ = MY ∩Z . Clearly MY ∩Z ⊂ MY and MY ∩Z ⊂ MZ . Let Y ∪ Z =
{x1, x2, . . . , xk}, where x1, x2, . . . , xk are distinct. Then, given any element m
of MY ∩MZ , there exist uniquely-determined elements r1, r2, . . . , rk of R such
that

m = r1x1 + r2x2 + · · ·+ rkxk.

But this element m is expressible as a linear combination of elements of
Y alone, and as a linear combination of elements of Z alone. Therefore,
for each index i between 1 and k, the corresponding coefficient ri is zero
unless both xi ∈ Y and xi ∈ Z. But this ensures that x is expressible as
a linear combination of elements that belong to Y ∩ Z. This verifies that
MY ∩MZ = MY ∩Z .

Now there exist unique left R-module homomorphisms ϕY :MY → N and
ϕZ :MZ → N from MY and MZ respectively to N such that ϕY (x) = f(x)
for all x ∈ Y and ϕZ(x) = f(x) for all x ∈ Z. Then the restrictions of these
left R-module homomorphisms to MY ∩Z are left R-module homomorphisms
from MY ∩Z to N that extend f |Y ∩Z:Y ∩Z → N . But we have shown that
any extension of this function to an R-module homomorphism from MY ∩Z
to N is uniquely-determined. But MY ∩Z = MY ∩MZ . Therefore

ϕY |MY ∩MZ = ϕZ |MY ∩MZ = ϕY ∩Z .

Let m ∈ M . Then m can be represented as a linear combination of the
elements of some finite subset Y of X with coefficients in the ring R. But
then m ∈ MY . It follows that M is the union of the submodules MY as Y
ranges over all finite subsets of the generating set X.

Now there is a well-defined function ϕ:M → N characterized by the
property that ϕ(m) = ϕY (m) whenever m belongs to MY for some finite
subset Y of X. Indeed suppose that some element m of M belongs to both
MY and MZ , where Y and Z are finite subsets of M . Then m ∈MY ∩Z , since
we have shown that MY ∩MZ = MY ∩Z . But then ϕY (m) = ϕY ∩Z(m) =
ϕZ(m). This result ensures that the homomorphisms ϕ:MY → N defined on
the submodules MY of M generated by finite subsets Y of X can be pieced
together to yield the required function ϕ:M → N . Moreover, given elements
x and y of M , there exists some finite subset Y of M such that x ∈MY and
y ∈MY . Then

ϕ(x+ y) = ϕY (x+ y) = ϕY (x) + ϕY (y) = ϕ(x) + ϕ(y),

and
ϕ(rx) = ϕY (rx) = rϕY (x) = rϕ(x)
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for all r ∈ R. Thus the function ϕ:M → N is a left R-module homo-
morphism. The uniqueness of the left R-module homomorphisms ϕY then
ensures that ϕ:M → N is the unique left R-module homomorphism from M
to N that extends f :X → N , as required.

Proposition 2.3 Let R be a unital ring, let M and N be left R-modules,
let F be a free left R-module, let π:M → N be a surjective left R-module
homomorphism, and let ϕ:F → N be a left R-module homomorphism. Then
there exists an left R-module homomorphism ψ:F →M such that ϕ = π ◦ψ.

Proof Let X be a subset of the free left R-module F that freely generates
F . Now, because the left R-module homomorphism π:M → N is surjec-
tive, there exists a function f :F → M such that π(f(x)) = ϕ(x) for all
x ∈ X. It then follows from Proposition 2.2 that there exists a left R-module
homomorphism ψ:F → M such that ψ(x) = f(x) for all x ∈ X. Then
π(ψ(x)) = π(f(x)) = ϕ(x) for all x ∈ X. But it also follows from Proposi-
tion 2.2 that any left R-module homomorphism from F to N that extends
ϕ|X → X → N is uniquely determined. Therefore π◦ψ = ϕ, as required.

Proposition 2.4 Let R be a unital ring, let M be a left R-module, let F
be a free left R-module and let π:M → F be a surjective left R-module
homomorphism. Then M ∼= kerπ ⊕ F .

Proof It follows from Proposition 2.3 (applied to the identity automorphism
of F ) that there exists a left R-module homomorphism ψ:F → M with the
property that π(ψ(f)) = f for all f ∈ F . Let θ: ker π ⊕ F → M be defined
so that θ(k, f) = k + ψ(f) for all f ∈ F . Then θ: ker π ⊕ F → M is a left
R-module homomorphism. Now

π(m− ψ(π(m))) = π(m)− (π ◦ ψ)(π(m)) = π(m)− π(m) = 0F ,

where 0F denotes the zero element of F . Therefore m − ψ(π(m)) ∈ kerπ
for all m ∈ M . But then m = θ(m − ψ(π(m)), π(m)) for all m ∈ M . Thus
θ: ker π ⊕ F →M is surjective.

Now let (k, f) ∈ ker θ, where k ∈ kerπ and f ∈ F . Then ψ(f) = −k. But
then f = π(ψ(f)) = −π(k) = 0F . Also k = ψ(OF ) = 0M , where 0M denotes
the zero element of the module M . Therefore the homomorphism θ: ker π ⊕
F → M has trivial kernel and is therefore injective. This homomorphism
is also surjective. It is therefore an isomorphism between kerπ ⊕ F and M .
The result follows.

Lemma 2.5 Let F be a left module over a unital ring R, let X be a set, and
let i:X → F be a function. Suppose that this function i:X → F satisfies the
following universal property:
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given any left R-module M , and given any function f :X → M ,
there exists a unique R-module homomorphism ϕ:F → M such
that ϕ ◦ i = f .

Then the function i:X → F is injective, and F is freely generated by i(X).

Proof The ring R has at least two elements, since the zero element 0R and
the multiplicative identity element 1R are distinct elements of the unital
ring R. Let x and y be distinct elements of the set X, and let f :X → R be a
function satisfying f(x) = 0R and f(y) = 1R. The ring R may be regarded as
a left R-module over itself. It follows from the universal property of i:X → F
described above that there exists a unique R-module homomorphism θ:F →
R such that θ ◦ i = f . Then θ(i(x)) = 0R and θ(i(y)) = 1R. But 0R 6= 1R. It
follows that i(x) 6= i(y). Thus the function i:X → F is injective.

Let M be a left R-module, and let g: i(X) → M be a function defined
on i(X). Then there exists a unique homomorphism ϕ:F → M such that
ϕ ◦ i = g ◦ i. But then ϕ|i(X) = g. Thus the function g: i(X) → M
extends uniquely to a homomorphism ϕ:F → M . This shows that F is
freely generated by i(X), as required.

2.2 Construction of Free Modules

Let X be a set, and let R be a unital ring with zero element 0R and multi-
plicative identity element 1R. We say that a function σ:X → R has at most
finitely many non-zero values if the subset suppσ of X is finite, where

suppσ = {x ∈ X : σ(x) 6= 0R}.

Let σ and τ be functions from X to R that have at most finitely many
non-zero values. Then the sum σ + τ of the functions σ and τ also has at
most finitely many non-zero values, where (σ + τ)(x) = σ(x) + τ(x) for all
x ∈ X. Indeed

supp(σ + τ) ⊂ suppσ ∪ supp τ.

Also the function rσ has at most finitely many non-zero values for all r ∈ R,
where (rσ)(x) = rσ(x) for all x ∈ X, since supp(rσ) ⊂ suppσ. Moreover the
set FRX of functions from X to R that have at most finitely many non-zero
values, with these operations of addition and of multiplication by elements
of R, is a left R-module. Indeed FRX is an Abelian group with respect to
the operation of addition of functions, and

(r + s)σ = rσ + sσ, r(σ + τ) = rσ + rτ,

r(sσ) = (rs)σ and 1Rσ = σ

for all r, s ∈ R and σ, τ ∈ FRX.
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Proposition 2.6 Let R be a unital ring, let X be a set, and let FRX be the
left R-module whose elements are functions from X to R with only finitely
many non-zero values. For each element x of X, let λx:X → R be the
function defined such that

λx(y) =

{
1R if y = x;
0R if y 6= x.

.

Then the left R-module FRX is freely generated by the set {λx : x ∈ X}.

Proof Let x1, x2, . . . , xk be distinct elements of X, let r1, r2, . . . , rk be ele-

ments of the ring R, and let σ =
k∑
j=1

rjλxj
. Then σ(xi) = ri for i = 1, 2, . . . , r.

Also σ(x) = 0 for all x ∈ X \ {x1, x2, . . . , xk}. It follows that if

k∑
j=1

rjλxj
= 0

then r1 = r2 = · · · = rk = 0. Thus the elements λx1 , λx2 , . . . , λxk
of FRX are

linearly independent over the ring R.
Let B = {λx : x ∈ R}. We have shown that the elements of every finite

subset of B are linearly independent over R. It follows that the elements of
B itself are linearly independent over R. Now any element of FRX can be
represented as a linear combination of elements of B. Indeed

σ =
∑

x∈suppσ

σ(x)λx

for all σ ∈ FRX, where

suppσ = {x ∈ X : σ(x) 6= 0R}.

It follows that the subset B of FRX generates FRX. Thus B is a free basis
of FRX, as required.

Corollary 2.7 Let R be a unital ring, let X be a set, and let FRX be the
left R-module whose elements are functions from X to R with only finitely
many non-zero values. iX :X → FRX the function that sends x to λx for all
x ∈ X, where

λx(y) =

{
1R if y = x;
0R if y 6= x.
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Then, given any left R-module M , and given any function f :X →M , there
exists a unique left R-module homomorphism ϕ:FRX →M such that ϕ◦iX =
f . Moreover

ϕ(σ) =
∑

x∈suppσ

σ(x)f(x)

for all σ ∈ FRX, where

suppσ = {x ∈ X : σ(x) 6= 0R}.

Proof The existence and uniqueness of the left R-module homomorphism
ϕ:FRX →M follows on combining the results of Proposition 2.6 and Propo-
sition 2.2.

Let σ ∈ FRX. Then
σ =

∑
x∈suppσ

σ(x)λx

and therefore

ϕ(σ) =
∑

x∈suppσ

σ(x)ϕ(λx) =
∑

x∈suppσ

σ(x)f(x),

as required.

Definition Let X be a set, and let R be a unital ring. We define the free left
R-module on the set X to be the module FRX whose elements are represented
as functions from X to R with at most finitely many non-zero values, where
(σ+ τ)(x) = σ(x) + τ(x) and (rσ)(x) = rσ(x) for all σ, τ ∈ FRX, r ∈ R and
x ∈ X.

Abelian groups are modules over the ring Z of integers. The construction
of free modules therefore associates to any set X a corresponding free Abelian
group FZX.

Definition Let X be a set. The free Abelian group on the set X is the
module FZX whose elements can be represented as functions from X to Z
that have only finitely many non-zero values.

2.3 The Rank of a Free Module over an Integral Do-
main

Let M be a free module over a unital commutative ring R. A subset of M is
said to be a free basis of M if it freely generates M .
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A free module M over a unital commutative ring is said to be of finite
rank if there exists a finite subset of M that freely generates M .

Suppose that the unital ring R is a field. Then any module over R is
a vector space over R. It follows from the basic theorems of linear algebra
that any finitely generated R-module is a finite-dimensional vector space over
R. Moreover any two bases of this vector space have the same number of
elements. The number of elements in any basis of the vector space is the
dimension of the vector space. We see therefore that the number of elements
in any free basis of an R-module of finite rank does not depend on the choice
of free basis in the particular case where the coefficient ring R is a field.

Now let us consider the case of Abelian groups. An Abelian group is a
module over the ring Z of integers. The ring of integers is an integral domain.
Let d be a non-negative integer, let m be a positive integer, and let

mZd = {z ∈ Zd : z = mw for some w ∈ Zd}.

Then any element of the quotient group Zd/mZd is a coset of mZd in Zd of
the form

mZd + (n1, n2, . . . , nd),

where nj ∈ {0, 1, . . . ,m − 1} for j = 1, 2, . . . , d, and therefore Zd/mZd is a
finite group of order md. It follows that if d and e are non-negative integers,
and if Zd ∼= Ze then d = e. We conclude from this that if M is a free module
of finite rank over the ring Z (i.e., if M is a free Abelian group of finite
rank), then any two free bases of M have the same number of elements. The
number of elements in any free basis of M is the rank of M .

It can be proved that if R is an integral domain, and if M is a free module
of finite rank over the integral domain R then any two free bases of M have
the same number of elements.

Definition Let M be a free module of finite rank over an integral domain R.
The rank of M is the number of elements in any free basis of M .

Let M be a free module of rank d over an integral domain R. Then
M ∼= Rd. Indeed let b1, b2, . . . , bd be elements of M that constitute a free
basis of M . Then, given any element x of M , there exist uniquely-determined
elements r1, r2, . . . , rd of the coefficient ring R such that

x = r1b1 + r2b2 + · · ·+ rdbd.

It follows that there exists an R-module isomorphism θ:M → Rd defined
such that

θ(r1b1 + r2b2 + · · ·+ rdbd) = (r1, r2, . . . , rd)

for all r1, r2, . . . , rd ∈ R.
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