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Worked Solutions

1. (a) (4 marks) (bookwork, but proved for any finite number of coprime
polynomials) Let I be the ideal in K[x] generated by f1 and f2.
This ideal I is generated by some polynomial d. Then d divides
all of f1 and f2 and is therefore a constant polynomial, since these
polynomials are coprime. It follows that I = K[x]. But the ideal I
of K[x] generated by f1 and f2 coincides with the subset of K[x]
consisting of all polynomials that may be represented as finite
sums of the form

f1(x)g1(x) + f2(x)g2(x)

for some polynomials g1 and g2. It follows that the constant poly-
nomial with value 1 may be expressed as a sum of this form, as
required.

(b) (4 marks) (bookwork) Suppose that f does not divide g. We must
show that f divides h. Now the only polynomials that divide f
are constant polynomials and multiples of f . No multiple of f
divides g. Therefore the only polynomials that divide both f and
g are constant polynomials. Thus f and g are coprime. It follows
from the result of (a) that there exist polynomials u and v with
coefficients in K such that 1 = ug+vf . Then h = ugh+vfh. But
f divides ugh+ vfh, since f divides gh. It follows that f divides
h, as required.

(c) (6 marks) (bookwork) Let I = (f). Then the quotient ring K[x]/I
is commutative and has a multiplicative identity element I + 1.
Let g ∈ K[x]. Suppose that I + g 6= I. Now the only factors of
f are constant polynomials and constant multiples of f , since f
is irreducible. But no constant multiple of f can divide g, since
g 6∈ I. It follows that the only common factors of f and g are
constant polynomials. Thus f and g are coprime. It follows from
the result of (a) that there exist polynomials h, k ∈ K[x] such
that fh + gk = 1. But then (I + k)(I + g) = I + 1 in K[x]/I,
since fh ∈ I. Thus I + k is the multiplicative inverse of I + g
in K[x]/I. We deduce that every non-zero element of K[x]/I is
invertible, and thus K[x]/I is a field, as required.

(d) (6 marks) (bookwork) Let g(x) = b0 + b1x + b2x
2 + · · · + brx

r

and h(x) = c0 + c1x + c2x
2 + · · · + csx

s, and let g(x)h(x) = a0 +
a1x + a2x

2 + · · ·+ ar+sx
r+s. Let p be a prime number. Then the

polynomials g and h must both have at least one coefficient that
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is not divisible by p. Let j and k be the smallest values of i for
which p does not divide bi and ci respectively. Then aj+k− bjck is

divisible by p, since aj+k− bjck =
j−1∑
i=0

bicj+k−i +
k−1∑
i=0

bj+k−ici, where

p divides bi for all i < j and p divides ci for all i < k. But p does
not divide bjck since p does not divide either bj or ck. Therefore
p does not divide the coefficient aj+k of gh. This shows that the
polynomial gh is primitive, as required.
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2. (a) (3 marks) (definitions) An extension L:K of a field K. of K is an
embedding of K in some larger field L. A field extension L:K is
finite if the larger field L is a finite-dimensional vector space over
the smaller field K. The degree [L:K] of a finite field extension
L:K is defined to be the dimension of L considered as a vector
space over K.

(c) (10 marks) (bookwork)

Tower Law. Let M :L and L:K be field extensions. Then the
extension M :K is finite if and only if M :L and L:K are both
finite, in which case [M :K] = [M :L][L:K].

Proof. Suppose that M :K is a finite field extension. Then L,
regarded as a vector space over K, is a subspace of the finite-
dimensional vector space M , and therefore L is itself a finite-
dimensional vector space over K. Thus L:K is finite. Also there
exists a finite subset of M which spans M as a vector space over
K, since M :K is finite, and this finite subset must also span M
over L, and thus M :L must be finite.

Conversely suppose that M :L and L:K are both finite extensions.
Let x1, x2, . . . , xm be a basis for L, considered as a vector space
over the field K, and let y1, y2, . . . , yn be a basis for M , considered
as a vector space over the field L. Note that m = [L:K] and
n = [M :L]. We claim that the set of all products xiyj with
i = 1, 2, . . . ,m and j = 1, 2, . . . , n is a basis for M , considered as
a vector space over K.

First we show that the elements xiyj are linearly independent over

K. Suppose that
m∑

i=1

n∑
j=1

λijxiyj = 0, where λij ∈ K for all i and

j. Then
m∑

i=1

λijxi ∈ L for all j, and y1, y2, . . . , yn are linearly

independent over L, and therefore
m∑

i=1

λijxi = 0 for j = 1, 2, . . . , n.

But x1, x2, . . . , xm are linearly independent over K. It follows
that λij = 0 for all i and j. This shows that the elements xiyj are
linearly independent over K.

Now y1, y2, . . . , yn span M as a vector space over L, and therefore

any element z of M can be written in the form z =
n∑

j=1

µjyj, where

µj ∈ L for all j. But each µj can be written in the form µj =
m∑

i=1

λijxi, where λij ∈ K for all i and j. But then z =
m∑

i=1

n∑
j=1

λijxiyj.
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This shows that the products xiyj span M as a vector space over
K, and thus

{xiyj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}

is a basis of M , considered as a vector space over K. We conclude
that the extension M :K is finite, and

[M :K] = mn = [M :L][L:K],

as required.

(c) (7 marks) (not bookwork) Let α be a root of the polynomial p(x)
belonging to L. If the polynomial p(x) were irreducible then it
would be a constant multiple of the minimum polynomial of α
and therefore [K(α):K] = deg p(x) = 4. But the Tower Law
would ensure that [L:K] was divisible by [K(α):K], and this is
not possible, because [L:K] is not divisible by 4.

If the polynomial p(x) were to have an irreducible cubic factor then
this cubic factor could not have any roots in L. Indeed if α ∈ L
were a root of an irreducible cubic factor of p(x) then [K(α):K] =
3 and [K(α):K] would divide [L:K], which is impossible. Thus
if the polynomial p(x) were to have an irreducible cubic factor
then it could have at most one root in the field L. But this is not
possible, as the polynomial has at least two roots in L. Thus the
polynomial p(x) cannot have an irreducible cubic factor.

The polynomial p(x) factors as a product of polynomials that are
irreducible over K. We have excluded the possibility that these
irreducible factors could be of degree 3 or 4. So they must all be
of degree at most 2.
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3. (a) (3 marks) (definitions) The element α of L is algebraic over K if
it is the root of some non-zero polynomial with coefficients in K.
If α is algebraic over K then the minimum polynomial of α over
K is the monic polynomial of lowest degree with coefficients in K
that has α as a root. (This minimum polynomial divides every
other polynomial with coefficients in K that has α as a root.)

(a) (6 marks) (bookwork, but as part of longer proofs) A polynomial in
K[x] has α as a root if and only if it is divisible by the minimum
polynomial of α over K. Thus f(α) = g(α) if and only if f(x) −
g(x) has α as a root, and this happens if and only if m(x) divides
f(x)− g(x). But then f(β) = g(β), since m(β) = 0. It follows, on
interchanging α and β in the above argument, that f(α) = g(α)
if and only if f(β) = g(β). Now every element of K(α) is of the
form f(α) for some f ∈ K[x]. It follows that there is a well-defined
function σ:K(α)→ K(β) with the property that σ(f(α)) = f(β)
for all f ∈ K[x]. Let λ, µ ∈ K(α). Then there exist f, g ∈ K[x]
such that λ = f(α) and µ = g(α). Then

σ(λ+µ) = σ((f+g)(α)) = (f+g)(β) = f(β)+g(β) = σ(λ)+σ(µ),

σ(λµ) = σ((f · g)(α)) = (f · g)(β) = f(β)g(β) = σ(λ)σ(µ).

Also if c ∈ K then c is the value, at both α and β, of some
constant polynomial in K[x], and therefore σ(c) = c. It follows
that σ:K(α) → K(β) is a K-homomorphism. On interchanging
the roles of α and β we see that this homomorphism has a well-
defined inverse σ−1, where σ−1(f(β)) = f(α) for all f ∈ K[x].
Thus σ:K(α)→ K(β) is a K-isomorphism.

(c) (5 marks) (definitions) A field extension L:K is said to be normal
if every irreducible polynomial in K[x] with at least one root in
L splits over L. An algebraic field extension L:K is said to be
separable over K if the minimum polynomial of each element of
L is separable over K. (An irreducible polynomial is separable if
and only if it has no repeated roots.) The Galois group Γ(L:K)
of a field extension L:K is the group of all automorphisms of the
field L that fix all elements of the subfield K.

(d) (6 marks) (essentially bookwork, but worded differently as part of
longer proof ) Let m(x) be the minimum polynomial of α over
K. Then all roots of m(x) belong to K(α), because the simple
extension is normal. Moreover m(x) has no repeated roots, be-
cause the simple extension is separable. Let the roots of m(x) be
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α1, α2, . . . , αd, where α1 = α and d = degm. It follows from (b)
that there is a K-automorphism σi of K(α) that sends α1 to αi, for
i = 1, 2, . . . , d. This K-automorphism σi is uniquely determined,
since σi(f(α)) = f(αi) for all f ∈ K[x], and belongs to the Galois
group of the extension.

Γ(K(α):K) = {σi : i = 1, 2, . . . , d},

and thus |Γ(K(α):K)| = d. But d = degm(x) = [K(α):K]. The
result follows.
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4. (a) (3 marks) (bookwork) Let σ ∈ Γ(L:K), and let M be the fixed
field of σ. Suppose that σ fixed α, β, γ and δ. Then K ⊂M and
α, β, γ, δ ⊂ M . However it follows from the definition of splitting
fields that L has no proper subfield that contains K ⊂ {α, β, γ, δ}.
Therefore M = L, and therefore σ is the identity automorphism
of L.

(b) (3 marks) (not bookwork)

τστ(α) = τσ(β) = τ(γ) = δ,

τστ(β) = τσ(α) = τ(β) = α,

τστ(γ) = τσ(δ) = τ(α) = β,

τστ(δ) = τσ(γ) = τ(δ) = γ.

It follows that τστ = σ3.

(c) (6 marks) (not bookwork) Note that

σ(λ) = ν, σ(µ) = µ, σ(ν) = λ,

τ(λ) = λ, τ(µ) = µ, τ(ν) = ν.

It follows that λ, µ and ν are fixed by ι, τ , σ2, and σ2τ . These
are the elements of the subgroup of Γ(L:K) whose fixed field is
K(λ, µ, ν):K. Now the Galois Correspondence ensures that

[L:M ] = |Γ(L:M)|,

for all fields M satisfying K:M :L. Now if M = K(λ, µ, ν) then

Γ(L:M) = {ι, τ, σ2, σ2τ}.

It follows that [L:M ] = 4. But [L:K] = [L:M ][M :K] by the
Tower Law. Also [L:K] = |Γ(L:K)| = 8. It follows that

[K(λ, µ, ν):K] = [M :K] = 2.

(d) (2 marks) (not bookwork) The Galois Correspondence ensures that
K is the fixed field of the Galois group Γ(L:K). It follows that
an element of L belongs to K if and only if it is fixed by both σ
and τ . Clearly µ ∈ K, but λ and ν do not belong to K.

11



(e) (6 marks) (not bookwork)

σ(λ) = β + iγ − δ − iα = −iλ.

It follows that σ(λ4) = λ4, and thus λ4 belongs to the fixed field
of σ. Moreover this fixed field is the fixed field of the subgroup
of Γ(L:K) generated by σ: this subgroup is of order 4. Thus
λ4 ∈ F , where F is the fixed field of σ. Moreover [L:F ]| = 4
and thus [F :K] = 2. Now the Tower Law ensures that [K(λ4):K]
divides [F :K]. Moreover [K(λ4):K] is the degree of the minimum
polynomial of λ4 over K. Therefore this minimum polynomial is
of degree 1 or 2, as required.
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SECTION B

5. [Note that this question is not literal bookwork. It is however basically
a re-working of the ideas in the proof of one of the propositions in the
course material that is an essential step in the proof that a polynomial
is solvable by radicals if its Galois group is a solvable group. In par-
ticular, the linear operators Tm and the vector subspaces Vm did not
appear explicitly in the proof of the proposition referred to. However
the quantities whose values are here denoted by Tm(α) did appear in
that proof.]

(a) (6 marks) (not bookwork) Let α, β ∈ L. Then σj(α+β) = σj(α)+
σj(β) σj(cα) = cσj(α) for all c ∈ K, and for all non-negative
integers j, σj is a K-automorphism of L. It follows that Tm(α +
β) = Tm(α) + Tm(β) and Tm(cα) = cTm(α) for all α, β ∈ L and
c ∈ K. Thus Tm is a linear operator on L. Also

p−1∑
m=0

Tm(α) = ηp

p−1∑
m=0

(
p−1∑
j=0

ωjmσj(α)

)
= ηp

p−1∑
j=0

sjσ
j(α),

where

sj =

p−1∑
m=0

ωjm.

However it follows from (a) that s0 = p and sj = 0 for 0 < j < p.
Therefore

p−1∑
m=0

Tm(α) = ηppσ
0(α) = α

for all α ∈ L.

(b) (6 marks) (not bookwork) If β ∈ Vm then β = Tm(α) for some
α ∈ L. Then

σ(β) = σ

(
ηp

p−1∑
j=0

ωjmσj(α)

)
= ηp

p−1∑
j=0

σ(ωjmσj(α))

= ηp

p−1∑
j=0

ωjmσj+1(α) = ω−mηp

p−1∑
j=0

ω(j+1)mσj+1(α)

= ω−mηp

(
p−2∑
j=0

ω(j+1)mσj+1(α) + ωpmσp(α)

)

13



= ω−mηp

(
α +

p−1∑
j=1

ωjmσj(α)

)
= ω−mTm(α) = ω−mβ.

(c) (4 marks) (not bookwork) If α, β ∈M then

σ(α + β) = σ(α) + σ(β) = α + β,

σ(αβ) = σ(α)σ(β) = αβ,

and therefore α + β ∈ M and αβ ∈ M . Also K ⊂ M . Thus

M is a subfield of L. If α ∈ M then T0(α) = ηp

p−1∑
j=0

α = α, and

therefore α ∈ V0. Conversely if α ∈ V0 then it follows from (b)
that σ(α) = α and thus α ∈ M . Thus M = V0. Also if β ∈ Vm

then σ(β) = ω−mβ, by (c), and therefore σ(βp) = (ω−mβ)p =
ω−mpβp = βp, and thus βp ∈M .

(d) (4 marks) (result is bookwork, approach is modified) If σ 6= ι then
M 6= L. Choose γ ∈ L \ M . Then γ =

∑p−1
m=0 Tm(γ). Now

T0(γ) ∈ M , because M = V0. But γ 6∈ M . It follows that
Tm(γ) 6= 0 for some m satisfying 0 < m < p. Let α = Tm(γ).
Then α 6∈M and αp ∈M by the results of (d).
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6. (a) (3 marks) (not bookwork, but implicit in course material) Note
that fg ∈ IJ for all f ∈ I and g ∈ I. In particular 0 ∈ IJ ,
since the zero polynomial belongs to I (and to J). The sum of
two polynomials expressible in the given form is expressible in this
form. Let h ∈ IJ . Then

h = f1g1 + f2g2 + · · ·+ fkgk

for some f1, f2, . . . , fk ∈ I and g1, g2, . . . , gk ∈ J . Then

rh = (rf1)g1 + (rf2)g2 + · · ·+ (rfk)gk

and rf1, rf2, . . . , rfk ∈ I. It follows that rh ∈ IJ for all r ∈ R
and h ∈ IJ . In particular, on applying this result when r is the
constant polynomial with value −1K , we see that −h ∈ IJ . This
completes the verification that IJ is an ideal of R.

(b) (6 marks) (bookwork) If x is a point of An which does not belong
to either V (I) or V (J) then there exist polynomials f ∈ I and
g ∈ J such that f(x) 6= 0 and g(x) 6= 0. But then fg ∈ IJ
and f(x)g(x) 6= 0, and therefore x 6∈ V (IJ). Therefore V (IJ) ⊂
V (I) ∪ V (J).

But I∩J ⊂ I, I∩J ⊂ J and IJ ⊂ I∩J , and thus V (I) ⊂ V (I∩J),
V (J) ⊂ V (I ∩ J) and V (I ∩ J) ⊂ V (IJ). Therefore

V (I) ∪ V (J) ⊂ V (I ∩ J) ⊂ V (IJ).

We conclude that

V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

(c) (2 marks) (definition) The Zariski topology on an algebraic set V
in An is the topology whose open sets are of the form V \V (I) for
some ideal I of K[X1, X2, . . . , Xn].

(d) (5 marks) (bookwork) We can write

V = {(x1, x2, . . . , xn) ∈ An : f(x1, x2, . . . , xn) = 0 for all f ∈ S},

where S is some subset of the polynomial ring K[X1, X2, . . . , Xn].
Now either each polynomial belonging to S is zero throughout L,
in which case L ⊂ V , or else there is some f ∈ S which is non-zero
at some point of L. Define g ∈ K[t] by the formula

g(t) = f(v1 + w1t, v2 + w2t, . . . , vn + wnt)
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(where vi and wi denote the ith components of the vectors v and
w for i = 1, 2, . . . , n). Then g is a non-zero polynomial in the
indeterminate t, and therefore g has at most finitely many zeros.
But g(t) = 0 whenever the point v + wt of L lies in V . Therefore
L ∩ V is finite, as required.

(e) (4 marks) (not bookwork, similar problems on past papers)

(i) Algebraic. Note that if z−3 = 1 + x2 + y2 then z3 > 0, and
therefore z > 0. The given set is therefore identical to the
hypersurface

{(x, y, z) ∈ A3(R) : z3(1 + x2 + y2)− 1 = 0},

and is therefore an algebraic set.

(ii) Not algebraic. Let V be the given set, and let L be the line

{(x, y, z) ∈ A(R) : z = x and y = 0}.

Then L 6⊂ V and L ∩ V is an infinite set. (Indeed V ∩ L =
{(x, y, z) ∈ L : z ≥ 0}.) It follows from the result of (d) that
V is not an algbraic set.
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7. (a) (2 marks) (definition) A unital commutative ring is said to be a
Noetherian ring if every ideal of the ring is finitely-generated.

(b) (18 marks) (bookwork) Let I be an ideal of R[x], and, for each non-
negative integer n, let In denote the subset of R consisting of those
elements of R that occur as leading coefficients of polynomials of
degree n belonging to I, together with the zero element of R. Then
In is an ideal of R. Moreover In ⊂ In+1, for if p(x) is a polynomial
of degree n belonging to I then xp(x) is a polynomial of degree
n+ 1 belonging to I which has the same leading coefficient. Thus
I0 ⊂ I1 ⊂ I2 ⊂ · · · is an ascending chain of ideals of R. But
the Noetherian ring R satisfies the Ascending Chain Condition.
Therefore there exists some natural number m such that In = Im
for all n ≥ m.

Now each ideal In is finitely-generated, hence, for each n ≤ m,
we can choose a finite set {an,1, an,2, . . . , an,kn} which generates
In. Moreover each generator an,i is the leading coefficient of some
polynomial qn,i of degree n belonging to I. Let J be the ideal
of R[x] generated by the polynomials qn,i for all 0 ≤ n ≤ m and
1 ≤ i ≤ kn. Then J is finitely-generated. We shall show by
induction on deg p that every polynomial p belonging to I must
belong to J , and thus I = J . Now if p ∈ I and deg p = 0 then p is
a constant polynomial whose value belongs to I0 (by definition of
I0), and thus p is a linear combination of the constant polynomials
q0,i (since the values a0,i of the constant polynomials q0,i generate
I0), showing that p ∈ J . Thus the result holds for all p ∈ I of
degree 0.

Now suppose that p ∈ I is a polynomial of degree n and that
the result is true for all polynomials p in I of degree less than
n. Consider first the case when n ≤ m. Let b be the leading
coefficient of p. Then there exist c1, c2, . . . , ckn ∈ R such that

b = c1an,1 + c2an,2 + · · ·+ cknan,kn ,

since an,1, an,2, . . . , an,kn generate the ideal In of R. Then

p(x) = c1qn,1(x) + c2qn,2(x) + · · ·+ ckqn,k(x) + r(x),

where r ∈ I and deg r < deg p. It follows from the induction
hypothesis that r ∈ J . But then p ∈ J . This proves the result for
all polynomials p in I satisfying deg p ≤ m.

Finally suppose that p ∈ I is a polynomial of degree n where
n > m, and that the result has been verified for all polynomials of
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degree less than n. Then the leading coefficient b of p belongs to
In. But In = Im, since n ≥ m. As before, we see that there exist
c1, c2, . . . , ckm ∈ R such that

b = c1am,1 + c2am,2 + · · ·+ cknam,km ,

since am,1, am,2, . . . , am,km generate the ideal In of R. Then

p(x) = c1x
n−mqm,1(x)+c2x

n−mqm,2(x)+· · ·+ckxn−mqm,k(x)+r(x),

where r ∈ I and deg r < deg p. It follows from the induction
hypothesis that r ∈ J . But then p ∈ J . This proves the result for
all polynomials p in I satisfying deg p > m. Therefore I = J , and
thus I is finitely-generated, as required.
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8. (a) (3 marks) (definitions) A principal ideal of an integral domain R
is an ideal (x) generated by a single element x of R. An integral
domain R is said to be a principal ideal domain if every ideal of
R is a principal ideal.

(b) (4 marks) (bookwork) Let M be generated as an R-module by
m1,m2, . . . ,mk. Then there exist non-zero elements r1, r2, . . . , rk

such that rimi = 0M for i = 1, 2, . . . , k. Let t = r1r2 · · · rk. Now
the product of any finite number of non-zero elements of an in-
tegral domain is non-zero. Therefore t 6= 0. Also tmi = 0M for
i = 1, 2, . . . , k, because ri divides t. Let m ∈M . Then

m = s1m1 + s2m2 + · · ·+ skmk

for some s1, s2, . . . , sk ∈ R. Then

tm = t(s1m1 + s2m2 + · · ·+ skmk)

= s1(tm1) + s2(tm2) + · · ·+ sk(tmk) = 0M ,

as required.

(c) (3 marks) (definition) A module M over an integral domain R
is said to be a free module of finite rank if there exist elements
b1, b2, . . . , bk ∈ M that constitute a free basis for M . These ele-
ments constitute a free basis if and only if, given any element m
of M , there exist uniquely-determined elements r1, r2, . . . , rk of R
such that

m = r1b1 + r2b2 + · · ·+ rkbk.

The rank of a free module is the number of elements in any free
basis for the free module.

(d) (10 marks) (bookwork) We prove the result by induction on the
rank of the free module.

Let M be a free module of rank 1. Then there exists some ele-
ment b of M that by itself constitutes a free basis of M . Then,
given any element m of M , there exists a uniquely-determined el-
ement r of R such that m = rb. Given any non-zero submodule N
of M , let

I = {r ∈ R : rb ∈ N}.

Then I is an ideal of R, and therefore there exists some element s
of R such that I = (s). Then, given n ∈ N , there is a uniquely
determined element r of R such that n = rsb. Thus N is freely
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generated by sb. The result is therefore true when the module M
is free of rank 1.

Suppose that the result is true for all modules over R that are
free of rank less than k. We prove that the result holds for free
modules of rank k. Let M be a free module of rank k over R.
Then there exists a free basis b1, b2, . . . , bk for M . Let ν:M → R
be defined such that

ν(r1b1 + r2b2 + · · ·+ rkbk) = r1.

Then ν:M → R is a well-defined homomorphism of R-modules,
and ker ν is an R-module of rank k − 1.

Let N be a submodule of M . If N ⊂ ker ν the result follows
immediately from the induction hypothesis. Otherwise ν(N) is a
non-zero submodule of a free R-module of rank 1, and therefore
there exists some element n1 ∈ N such that ν(N) = {rν(n1) : r ∈
R}. Now N ∩ ker ν is a submodule of a free module of rank k− 1,
and therefore it follows from that induction hypothesis that there
exist elements n2, . . . , np of N ∩ ker ν that constitute a free basis
for N ∩ ker ν. Let n ∈ N . Then there is a uniquely-determined
element r1 of R such that ν(n) = r1ν(n1). Then n − r1n1 ∈
N ∩ ker ν, and therefore there exist uniquely-determined elements
r2, . . . , rp of R such that

n− r1n1 = r2n2 + · · · rpnp.

It follows directly from this that n1, n2, . . . , np freely generate N .
The result therefore follows by induction on the rank of M .
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