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4 Determinants and Integral Closures

4.1 Basic Properties of Determinants

Many standard results of linear algebra concerning determinants of matrices
with coefficients in a field can be generalized so as to apply to matrices with
coefficients in a unital commutative ring.

Let R be a unital commutative ring, and let U be an n X n matrix with
coefficients U; ; in R. The element U; ; of the coefficient ring R is then the
coefficient that occurs in the ith row and jth column of the matrix U for
1,7 =1,2,...,n. The determinant det U of the matrix U is then defined so
that

detU = Z € ﬁ Ui,o(i)

TEX, i=1
= Z EO'Ul,U(l)U2,O‘(2) T Un,o(n)a
O'ezn

where ¥,, denotes the group of permutations of the set {1,2,...,n}, and
where €, denotes the parity of a permutation o of {1,2,...,n}, defined such

that
- { +1 if ¢ is an even permutation;
> =

—1 if o is an odd permutation.

Lemma 4.1 Let U be an n xn matriz over a unital commutative ring. Then
det U = detUT, where UT is the transpose of U.

Proof A sum over the elements of the group Y, of permutations of the

set {1,2,...,n} can be expressed as a sum over the inverses of the elements
of that group, and €, = ¢,-1 for all o € ¥,,. Therefore

detU = Z €o ﬁ Ui,a(i) Z €s—1 H U“T

oEYX, =1 TEX,
n
= § €o H ),0 (o (k)) E €o H Ucr
oEY = o€ =
n
— E EO’ H Uk} U(k - det UT
oEY, =

as required. |}
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Lemma 4.2 Let U be an n x n matrix over a unital commutative ring. If
the rows or columns of that matrix U are permuted, then the determinant
det U of that matrix is multiplied by the parity of that permutation. Thus the
determinant is unchanged under even permutations of the rows or columns,
but changes sign under odd permutations of the rows or columns.

Proof In view of Lemma 4.1 it suffices to prove the result when the rows
of the matrix are permuted. Let o be a permutation of the set {1,2,...,n},
and let U7 be the n x n matrix with coefficients U/; where U7; = Us) ;-
Now €,, = €,¢, for all p,o € X,,. Therefore

detU? = Z€THUi ZEPUH zp(o(z

TEY, =1 pES,

= E : €p€o H Us(i),p(0(i)) = €0 E : €p H Uk, p(k)
pPEL, pPEX, k=1

= e, detU,

as required. |}

Lemma 4.3 Let U be an n X n matriz with coefficients in a unital commu-
tative ring R. If two rows of the matriz U are identical, or if two columns of
the matrix U are identical, then det U = Og.

Proof It is sufficient, in view of Lemma 4.1 and Lemma 4.2, to prove the
result when the first two rows of the matrix U are identical, so that U; ; = U, ;
for j = 1,2,...,n. Let A, be the subgroup of ¥, consisting of the even
permutations of the set {1,2,...,n}. Then the odd permutations of that set
are of the form o o 7, where ¢ € U,, and where 7 is the transposition (1, 2)
that interchanges 1 and 2 but fixes the remaining elements of the set. Now

Uij = U@y, fori, j=1,2,. . It follows that
detU = ﬁ Ui (i)

TEX, =1

= 2 100 = > [T Viewwy
ocAy i=1 ocA, i=1

- Z H Uz’p(z Z H U ),0(72(k))
o€A, i=1 oEA, k=1

- Z HUz’,a(i) - Z HUk‘,o(k) = Og,
o€A, i=1 oEA, k=1
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as required.  Jj

Remark It follows from Lemma 4.2 that if two rows or columns of a matrix
Ui; over a unital commutative ring R are identical then detU = —detU.
However it does not follow from this observation that detU = 0Op in all
cases. Indeed if r is an element of the unital commutative ring R, and if
r = —r then 2.r = 0. But some unital commutative rings may contain non-
zero elements r satisfying 2.7 = Og. Indeed this is the case for all non-zero
elements of an integral domain or field of characteristic 2. Thus, in order to
prove that det U = Ogr when two rows or columns of the matrix U coincide,
it is necessary to prove that the terms in the sum defining det U cancel one
another in pairs.

Proposition 4.4 Let U and V be n x n matrices over a unital commutative

ring. Then det(UV') = (det U)(det V).

Proof Let X, denote the group of permutations of the set {1,2,...,n}, and,
for each o € ¥, let €, denote the parity of the permutation o. Let

M, = {(ki, ko, ..., ky) €Z" 1 <k;<nfori=1,2,...,n},

and, for each (ky, ko, ..., k,) € M,, let WFtk2kn) he the n x n matrix
defined such that
W(k17k27---7kn) — ‘/;%7]

1,J
for i,7 =1,2,...,n. Now it follows from Lemma 4.3 that det W (+1-52-kn) —
Or unless ki, ko, ..., k, are distinct. But if kq, ko, ..., k, are distinct, then
there exists p € 3, such that k; = p(i) for i = 1,2,...,n. Lemma 4.2 then

ensures that
det T (P(1):p(2),-.p(n)) — € det V

for all p € ¥,,. It now follows from the definitions of matrix products and
determinants that

det(UV) = Z Z €Utk Vir,o 1)V U2,k0 Vin,o (@) Unien Vien ,o(n)

gEY, (k17k27"-7kn)EMn

= E Ul,kl UQ,kQ e Un,kn Z €G'Vk1,o-(1)V]€270.(2) P Vk‘np'(n)
(k1,k2,....kn)EM,, ot

- Z Ul:kl U2,k2 ce Un,kn det W(kl,kz,...,kn)
(K1,k2,. kn ) €M,

= Z Urp1)Usp(2) - + - Un p(my det W P2(2)p()

pPEX,
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= (Z pUtp1)U2,p(2) - Un,p(m) detV

pEX,
= (detU)(det V),

as required. |}

Lemma 4.5 Let U be an n x n matriz with coefficients in a unital commu-
tative ring. Then

detU = (=1)""U;; det W)

for i = 1,2,...,n, where W) denotes the (n — 1) x (n — 1) minor of
the matriz U obtained on deleting the ith row and the jth column from the
matriz U.

Proof For each integer ¢« between 1 and n let \; denote the permutation of
{1,2,...,n} defined such that

k if k<4
Nilk) =< k+1 ifti<k<mn
? if k =n.

Then W,Sl’j) = Unw for k,l=1,2,...,n—1. Also €y, = (—1)n.

There is an embedding e: ¥, _; — 3, of the group X,,_; of permutations
of the set {1,2,...,n— 1} in X,,, where e(p)(i) = p(i) for 1 <i <n—1 and
e(p)(n) = n. Then, given any permutation o of the set {1,2,...,n}, there
exists a unique integer j satisfying 1 < 7 < n and a unique permutation p of
the set {1,2,...,n — 1} such that 0 = \; o e(p). Moreover if 0 = X, o e(p),
where 1 < j < n and p € ¥,_1, then j = o(n). On applying these results,
together with Lemma 4.2, we find that

detU = ¢y, ZEUHU’\

oEX, =
= "ZZ > E)\ep)HU)\(k
J=1 p€3in_1
= (—1)n_i2(— )" Unim) rs(m) Z EpHU,\ X (p(k)
j=1 pEXn—1 k=1
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ST 3% (I

j=1 Coisi, k4
n

= ) (-1 det W)

Jj=1
for each integer i between 1 and n, as required. |

Definition Let U be an n x n matrix with coefficients in a unital commuta-
tive ring. The adjugate matriz Adj U of U is the n xn matrix whose coefficient
(AdjU);; in the ith row and jth column is (—1)™ det WU where WU is
the (n — 1) x (n — 1) minor of U obtained on deleting the jth row and ith
column from the matrix U.

Proposition 4.6 Let U be an n x n matriz with coefficients in a unital
commutative ring R, and let AdjU be the adjugate matriz of U. Then

U(AdjU) = (AdjU)U = (det U)I,

where I is the identity n X n matrix whose coefficients are equal to 1z on the
leading diagonal and zero elsewhere.

Proof Let V = AdjU. It follows from Lemma 4.5 that

> Uy(AdjU)j, = detU  when i = k.

j=1

It also follows from Lemma 4.5 that if ¢ # k then > U;;(AdjU),x is equal
j=1

to the determinant of the n x n matrix obtained by replacing the kth row

of the matrix U by the ith row of that matrix. The ¢th and kth rows of the

resultant matrix coincide. It follows from Lemma 4.3 that the determinant

of this matrix is zero. Thus

> Uii(AdjU)j, = 0r  when i # k.
j=1
These results establish that U(AdjU) = (det U)I.

Now (AdjU)T = AdjU”, where UT and (AdjU)” denote the transposes
of the matrices U and (AdjU)T. Also detU? = detU (Lemma 4.1) and
(UV)T = VTUT for all n x n matrices U and V with coefficients in the unital
commutative ring R. It follows that U (AdjU”) = (det UT)I, and therefore

(AdjU)U)T = UT(AdjUT) = (det UT)I = (det U)I.
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Thus
UAdjU) = (AdjU)U = (det U)I

for all n x n matrices U with coefficients in the unital commutative ring R,
as required. |

Corollary 4.7 Ann xn matriz U with coefficients in a unital commutative
ring R is invertible in the ring M,(R) of n xn matrices with coefficients in R
if and only if the determinant det U of U is a unit of the coefficient ring R.

Proof If the matrix U is invertible, with inverse U~!, then UU ! = I, where
I is the identity n x n matrix, and therefore (det U)(det U™!) = det I = 1p.
It follows that if the matrix U is invertible then det U is a unit of the ring
R. Conversely it follows from Proposition 4.6 that if det U is a unit of the
ring R then the matrix U is invertible, with inverse (det U)"*AdjU. |}

4.2 The Cayley-Hamilton Theorem

Definition Let U be an n x n matrix with coefficients in a unital commu-
tative ring R. The characteristic polynomial xy(t) of U is the polynomial in
the indeterminate ¢ with coefficients in R defined by the formula

xu(t) =det(tI —U),
where I denotes the identity n x n matrix.

The matrix tI — U is an n X n matrix with coefficients in the ring R]t]
of polynomials in the indeterminate ¢ with coefficients in R. The polynomial
ring R[t] is a unital commutative ring, and therefore results applicable to
square matrices with coefficients in an arbitrary unital commutative ring can
be applied to the matrix t/ —U. In particular, the determinant of this matrix
is a well-defined element of the polynomial ring R[t], and is thus a polynomial
in the indeterminant ¢ with coefficients in R.

Remark Some authors define the characteristic polynomial of the matrix U
to be the determinant det(U — ¢tI). Here we adopt the convention that
ensures that the characteristic polynomial y;(¢) of an n X n matrix U is a
monic polynomial.

Lemma 4.8 Let U be an n x n polynomial with coefficients in a unital com-
mutative ring R, and let

n—1
XU(t) =" + Z aktk,
k=0
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where xy(t) denotes the characteristic polynomial det(tI —U) of U. Suppose
that the coefficients U, j of the matriz U all belong to some ideal J of R.
Then a, € J* % fork=0,1,...,n— 1.

Proof Let d; ; denote the Kronecker delta, equal to the value 1 when i = 7,
and equal to zero otherwise. Then

Xu(t) =det(t] —U) = > € [ [(t0i0()1r = Uiai),

oEY, i=1

where ¥, denotes the group of permutations of the set {1,2,...,n}, and
where €, denotes the parity of a permutation o belonging to 3,,. Multipli-
cation in the coefficient ring R is distributive over addition. It follows that
xv(t) is a sum of polynomials in which the polynomial +t*15 is multiplied
by some product involving n — k coefficients of the matrix U. Thus yy(t) is
a sum of polynomials in which the coefficient of t* belongs to the ideal J"7*.
The result follows. |

Let p(t) be a polynomial with coefficients in a unital commutative ring R,
n

and let p(t) = > axt*. Given any n x n matrix U with coefficients in R, we
k=0

define p(U) = 3 a U*.
k=0

We now prove a version of the classical Cayley-Hamilton theorem, estab-
lishing the result for square matrices with coefficients in any unital commu-
tative ring.

Theorem 4.9 (The Cayley-Hamilton Theorem) Let U be be an n X n ma-
triz with coefficients in a unital commutative ring R and let xy(t) be the
characteristic polynomial of U. Then xy(U) = 0.

Proof Let xy(t) =
k

ant". Thena, € Rfork=0,1,2,...,n,and a, = 15.
0

Now B
xu(t)l =det(tl —U)I = (Adj(tI — U))(tI = U).

Moreover each coefficient of the adjugate matrix Adj(t/ — U) of tI — U is a
polynomial of degree at most n — 1 in the indeterminate ¢, because it can be
expressed as the determinant of an (n— 1) x (n — 1) matrix whose entries are

n—1
polynomials in ¢ of degree at most one. Therefore Adj(t] — U) = > Vig)t*,
k=0
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where V(i) is an n x n matrix with coefficients in R for k = 0,1,...,n — 1.
Then

n—1
Xu(t)I =" Vi (It — Uth),
k=0

and therefore agl = —VyU, apl = Vig—1) — ViU when 1 < k < n, and
I =anl = V). It follows that

xu(U) = Z a, U"
k=0

= Oam,(r);

as required. |

Remark The proof of the Cayley-Hamilton Theorem exploits the identity
xv(t)I =det(tl — U)I = (Adj(t] — U))(tI —U)

which is valid for n x n matrices U with coeflicients in a unital commutative
ring R. This identity involves elements of the ring M, (R[t]) of n x n matrices
with coefficients in the polynomial ring R[t]. Moreover M, (R[t]) = M, (R)]t],
where M,,(R)]t] is the ring of polynomials with coefficients in the ring M,,(R).
Indeed an element of M, (R[t]) can be regarded both as an n x n matrix
with coefficients in the polynomial ring R[t], or else as a polynomial in the
indeterminate ¢ with coefficients in the ring M, (R) of n x n matrices with
coefficients in R. If R is a unital commutative ring then M,(R) is non-
commutative for n > 1. It follows that substituting an arbitrary element of
M,,(R) for t does not give rise to an evaluation homomorphism from M, (R)|[t]
from M, (R).

Let @ be a non-commutative unital ring, and let f(¢) and g(t) be polyno-
mials with coefficients in Q). Then f(t) = JFZO:O a;t' and g(t) = Jio b;t', where a;
and b; are elements of () and a; and b; arel;gn—zem for at mols:toﬁnitely many
values of i. Then f(t)g(t) = Jio c;t’, where ¢; = i a;b;_; for all non-negative
integers i. If ¢ is an elemenfczoof () that commtjlt:eos with a; for all 7, then it
makes sense to define f(q) = Jio a;q*. Moreover if ¢ commutes with the coef-

1=

ficients of the polynomial g(t) tohen f(@)g(q) = h(q), where h(t) = f(t)g(t).
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Now the matrix U determines a unital subring Qy of M,(R) consisting
of all matrices in M, (R) that commute with U. The matrix Adj(t] — U)
commutes with ¢/ — U, because any n X n matrix commutes with its adju-
gate. It clearly commutes with ¢I. Therefore Adj(t/ — U) commutes with
U. Thus Adj(tI —U) € Qult]. Also tI —U € Qult]. There is a unique ring
homomorphism e Qu[t] = M, (R) satistying ey (t) = U. Then

xv(U) = ev(xv(t)]) =eu((AdjtI = U))(t - U))
= €U(Adj(t[ — U))e’—SU(t[ — U) = OMn(R)~

Remark In developing the theory of square matrices with coefficients in a
field K, one can introduce the concept of the minimal polynomial my(t) of
a square matrix U. The minimum polynomial is a monic polynomial with
coefficients in K satisfying the requirement that my (U) be the zero matrix,
and it is the polynomial of smallest degree satisfying this requirement. The
existence of this minimum polynomial follows from the fact that the set of
polynomials p(t) for which p(U) is the zero matrix constitute an ideal of the
polynomial ring K[t]. The minimum polynomial my(U) is then the unique
monic generator of this ideal. The minimum polynomial of U therefore di-
vides the characteristic polynomial of U. However the theory of the minimum
polynomial is based on the fact that the polynomial ring K[t] is a principal
ideal domain. This result is specific to rings of polynomials with coefficients
in a field. The theory of the minimum polynomial cannot therefore be gener-
alized so as to apply to polynomials with coefficients in a unital commutative
ring that is not a field.

4.3 The Endomorphism Ring of a Module

Let M be a module over a unital commutative ring R. An endomorphism of
M is an R-module homomorphism ¢: M — M mapping the module M into
itself. The set Endg(M) of R-module endomorphisms of R is a unital ring
under the operations of addition and composition of endomorphisms. (The
ring Endz(M) is often non-commutative.)

The ring Endg(R") of endomorphisms of R" is naturally isomorphic to
the ring M,,(R) of n x n matrices with coefficients in R. Let e, ea,..., e, be
the basis elements of R™ defined such that

€1 = (1R70R70R7' o aOR)a
€y = (0R7 1R7 0R7 cee 7OR)7

€, = (OR,OR, e ,OR, 13)
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Then, given any endomorphisms ¢: R — R™ and 1: R" — R™ there exist
elements U; ; and V;; of R for 7,5 = 1,2,...,n such that ¢(e;) = > U, je;
i=1

and ¢(e;) = >V, je;. But then
i=1

@ (Z Tj@j) = Z (Z Ui,jrj> €;
j=1 1 \j=t1

i=

for all r1,7ry,...,7, € R. Thus the sum ¢ + ¢ of the endomorphisms ¢ and
1) is then represented by the sum U + V of the matrices U and V. Also

® <¢ <Z Tk%)) = Z (ZZ Ui,j%,ﬂk) €.
=1 i=1 \j=1 k=1

for all r1,79,...,7, € R. Thus the composition ¢ o ¢ of the endomorphisms
@ and v is represented by the product UV of the matrices U and V.

4.4 The Determinant Trick

Given any ideal J of a unital commutative ring R, and given any module M
over R, we denote by JM the submodule of M consisting of all elements of
M that can be expressed in the form

UM + UMy + -+ - + UM
for some uy,us, ..., ux € J and mq, mo,...,my € M.

Lemma 4.10 Let M be a finitely-generated module over a unital commuta-
tive ring R, and let J be an ideal of R. Let by,by, ... b, be elements of M
that generate M as an R-module. Then

JMZ{Ulb1+U2b2+"'+UnbnZU1,U2,...,URE J}

Proof It follows from the definition of JM that > v;b; € JM for all elements
i=1

V1, Vg, ..., Uy Of J.
Let m € JM. Then there exist elements wuy, us, ..., u; of J and elements
¢
my,ma, . ..,my of M such that m = > u,m,. There then exist elements r;

q=1
of Rfor ¢ =1,2,...,r and i = 1,2,...,n such that m, = > r,b;. But

then =
t n n
m = Z Z uqrqibi = Z vibia
=1

g=1 i=1
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t
where v; = Y ugry for i =1,2,...,n. The result follows. |
g=1

The following proposition yields a number of results in the theory of rings
and modules related to the Cayley-Hamilton Theorem of linear algebra. The
method used to prove it is often referred to as the ‘determinant trick’.

Proposition 4.11 (The Determinant Trick) Let M be a finitely-generated
module over a unital commutative ring R, let J be an ideal of R, and let
©: M — M be an endomorphism of the R-module M. Suppose that (M) C
JM . Then there exist elements ag, a, .. .,an_1 of R such that a;, € J** for
k=12 ...,n—1 and

n—1

Q"+ Z arp" = Opndp(1)-
k=0

Proof Let by, b, ..., b, be elements of M that generate M as an R-module,
and let m: R™ — M be the R-module homomorphism that maps each n-tuple

(r1,7r9,...,r,) of elements of R to Y r;b;. The homomorphism 7: R* — M
i=1

is surjective. Moreover it follows directly from Lemma 4.10 that JM = 7(J)
where .
J = {(Tl,TQ,...,Tn) c R"™: r; € J for 1 = 1,2,___771}_

Let e, es,...,e, be the standard basis of R", defined such that the ith
component of e; is equal to 1z and the remaining components are equal to
O0r. Then

n
(r1,79,y oy Ty) = Zriei
i=1

for all ry,79,...,7, € R. Now (M) C =n(J). It follows that there exist
elements U;; of J for 7,5 = 1,2,...,n such that

(p(b]) =T <Z Uz-jei) .
i=1
Then

i=1 j=1

for all (ry,r9,...,7,) € R™
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For each element r of R", where r = (ry,73,...,7,), let Ur denote the

element of R" whose ith component is ) U;;r;. Then ¢(n(r)) = 7(Ur) for
j=1

all r € R". It follows that ¢*(n(r)) = m(U*r) for all r € R", and thus
p(@)(m(r)) = m(p(U)r) for all polynomials p with coefficients in R.

Let xu(t) be the characteristic polynomial of the n x n matrix U, defined
such that yy(t) = det(t/ —U). It follows from the Cayley-Hamilton Theorem
(valid for matrices with coefficients in any unital commutative ring) that
xv(U) is the zero matrix (see Theorem 4.9). Therefore

xul(p)m(r) = n(xu(U)r) = m(0gn) = On

for all r € R™. Also the homomorphism 7: R" — M is surjective. It follows
that xu(p)(m) = 0y for all m € M.

Let )
XU(t) =t"+ Z aktk.
k=0
Then .
" + Z app" = OBndp(a)-
k=0
Alsoay, € J* #for k =0,1,...,n—1, because the coefficients of the matrix U

all belong to the ideal J (see Lemma 4.8). The result follows. |

Corollary 4.12 (Nakayama'’s Lemma) Let M be a finitely-generated module
over a unital commutative ring R, and let J be an ideal of R. Suppose that
JM = M. Then there ezists an element a of J with the property that am = m
forallme M.

Proof This result follows directly on applying Proposition 4.11 in the special
case in which the endomorphism ¢ in the statement of that proposition is
the identity automorphism of M. |}

Corollary 4.13 Let R be an integral domain, let I be a finitely-generated
non-zero ideal of R and let J be a proper ideal of R. Then IJ # 1.

Proof Let I be a finitely-generated non-zero ideal of R, and let J be an
ideal of R satisfying IJ = I. The ideal I is then a finitely-generated module
over R. It therefore follows from Nakayama’s Lemma (Corollary 4.12) that
there exists some element a of .J such that (1g —a)v = O for all v € I. But
I is a non-zero ideal of the integral domain R. It follows that 1z — a = Og,
and thus 1z € J and J = R. Thus if [ is a finitely-generated non-zero ideal
of R then no proper ideal J of R has the property that I.J = I. The result
follows. |}
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An automorphism of a module M is an isomorphism from the module to
itself.

Corollary 4.14 Let M be a finitely-generated module over a unital commu-
tative ring. Then every surjective endomorphism of M is an automorphism

of M.

Proof We apply Nakayama’s Lemma. Let M be a finitely-generated module
over a unital commutative ring R, and let p: M — M be a surjective endo-
morphism of M. Then M can be regarded as a finitely-generated module
over the polynomial ring R[z], where f(z)m = f(¢)m for all m € M. More-
over tM = M, because the endomorphism ¢ of M is surjective. Let J be
the ideal of R[z] generated by the polynomial . Then JM = M. It follows
from Nakayama’s Lemma (Corollary 4.12) that there exists some polynomial
f(x) with coefficients in R such that f(x)z.m = m for all m € M. Let
Y(m) = f(p)(m) for all m € M. Then

b(p(m)) = fx)em =m = xf(x)m = p(P(m))

for all m € M, and therefore p: M — M is an automorphism of M with
inverse ¢: M — M. |}

Corollary 4.15 Let M be a finitely-generated module over a unital commu-
tative ring R, and let p: M — M be an endomorphism of the R-module M.
Then there exists a positive integer n and elements ag, aq, ..., an_1 of R such
that

n—1
Q"+ Z arp" = Opndp(aa)-
k=0

Proof This result is the special case of Proposition 4.11 in which the ideal J
in the statement of that proposition is the ring R itself. [}

4.5 Integral Closures of Subrings

Let T" be a unital commutative ring, and let R be a unital subring of 7". Given
elements aq, ag, ..., a4 of T, we denote by R[ay, as, ..., «,] the subring of T
generated by the set RU {a, a9, ..., ar}. This is the smallest subring of T’
that contains aq, g, ..., ay together with all the elements of R.

Let T be a unital commutative ring, let R be a unital subring of 7', and
let o be an element of 7. The there is then a homomorphism e,: R[z] — T
from the polynomial ring R[x] to T defined such that ¢, (f) = f(«) for all
polynomials f(z) with coefficients in R. The image of this homomorphism
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is a subring of R, and it is the smallest subring containing the set R U {«}.
It follows that e,(R[z]) = R[a]. Thus, given any element 5 of R[a], there
exists some polynomial f(x) with coefficients in R such that § = f(«).

More generally, given elements oy, s, ..., i of the unital commutative
ring 7', there exists a homomorphism €4, ay,. a,: R[T1, 22, ..., 2] = T de-
fined on the ring R|xi,za,..., x| of polynomials in &k independent inde-
terminates with coefficients in the unital subring R of T" which sends each
polynomial f(zq,xs,...,zx) in R[zy,xe, ..., Tk to its value f(ay, aq, ..., o)
obtained on evaluating the polynomial with x; = a; for ¢ = 1,2,... k. It
follows that

Rlag, ag, ..., o) = €ay 00,0 (R[T1, T2, oo 2]

Definition Let T be a unital commutative ring, and let R be a unital subring
of T'. An element « of T is said to be integral over R if « is the root of some
monic polynomial with coefficients in R.

Lemma 4.16 Let T' be a unital commutative ring, let R be a unital subring
of T, and let a be an element of T that is the root of a monic polynomial
of degree n with coefficients in R. Then the ring R|a] is generated as an
R-module by the elements 15, o, 0, ... o™

Proof There exist elements cg, ¢y, ..., c,_1 of R such that
n—1
o + Z cpa® = 0.
k=0

It follows that

m—1

m k
o = — § Ck—m+4nC

k=m—n

for all integers m satisfying m > n, and therefore o™ belongs to the sub-
module of R[a] generated by 1g,a,a?, ..., a™ ! whenever m > n. It then
follows by induction on m that o™ belongs to the submodule of R[a] gen-
erated by 1x,a,a?,...,a" ! for all non-negative integers m. Every element
of R[a] can be represented as the value at « of some polynomial with coef-
ficients in R. It follows that R[] is generated as an R-module by the set
{1r,,a?,...,a" 1} and is thus finitely generated. |}

Lemma 4.17 Let T be a unital commutative ring, let R be a unital subring
of T, and let aq,aq, ..., ap be an element of T that is are integral over R.
Then Rlay, s, ..., ax is finitely-generated as a module over the ring R.
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Proof There exist integers ni, no,...,n, such that a; is a root of a monic
polynomial of degree n; with coefficients in R for ¢ = 1,2,... k. It fol-
lows from Lemma 4.16 that each element of R[aq, s, ..., ax] can be ex-
pressed as a linear combination of 1g,,a?,...,a™ 1 with coefficients in
Rloy, g, ... ap_q]. A straighforward proof by induction on k then shows
that R is generated as an n-module by the elements of the set

{af:lgigkand0§j<ni}.
The result follows. |}

Proposition 4.18 LetT be a unital commutative ring, let R and S be unital
subrings of T', where R C S C T'. Suppose that S is finitely generated as a
module over the subring R. Then every element of S is integral over R.

Proof Let a be an element of S. Then a determines an endomorphism
: S — S of the finitely-generated R-module S, where ¢(5) = a3 for all g €
S. It then follows from Corollary 4.15 that there exist elements cg, ¢, ..., ¢, 1
of R such that

©" + Z k" = Opndp(ar)-
It follows that )
o" B+ Z ca®B = 0r
k=0

for all g € S. In particular this identity holds when 5 = 1, and therefore

n—1

n k _

o + E cpa” = Op.
k=0

Thus « is integral over R, as required. |}

Proposition 4.19 Let T be a unital commutative ring, let R be a unital
subring of T, and let R be the set consisting of all elements of T that are
integral over R. Then R is a subring of T. Moreover every element of T that
is integral over R belongs to the subring R.

Proof Let o, 5 € R. Then « and 3 are integral over R. It therefore follows
from Lemma 4.17 that R[a, ] is finitely generated as a module over the
subring R. It then follows from Proposition 4.18 that every element of R[a, ]
is integral over R. Thus R[a, 3] C R, and therefore a + 3 € R and a3 € R.
Thus R is a subring of 7.
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Now let v be an element of 7 that is integral over R. Then there ex-
ists some positive integer n and elements oy, s, ...,a,_1 of R such that

"4 Z apy® = 07. Let S = Rlay, as, ..., a, 1]. Lemma 4.17 ensures that S

is a ﬁmtely generated R-module, and thus there exist elements (1, (s, ..., 5
of S that generate S as a module over the subring R. It also follows
from Lemma 4.16 that 17,v,+% ...,7""! generate S[y] as a module over
S. Thus each element of S[y] can be represented as a linear combination
of 17,7,72,...,v" 1 with coefficients in S, and moreover each of these co-
efficients can be represented as a linear combination of 3y, 5, ..., 3; with
coefficients in R. It follows that S[y] is generated as an R-module by the
elements v*3; for k = 0,1,...,n — 1 and j = 1,2,...,t. It now follows
from Proposition 4.18 that each element of S[] is integral over R, and thus
S[y] € R. In particular, v € R. Thus every element of T that is integral
over R belongs to the subring R, as required. |

Definition Let 7" be a unital commutative ring, let R be a unital subring
of T'. The integral closure R of R in T is the subring of R consisting of all
elements of 1" that are integral over R.

Definition Let 7" be a unital commutative ring, and let R be a unital subring
of T'. The subring R of T is said to be integrally closed in T if every element
of T" that is integal over R is an element of R.

Let T be a unital commutative ring, let R be a unital subring of 7', and
let R be the integral closure of R in T. It follows from Proposition 4.19 that
R is an integrally-closed subring of 7. . We see from these definitions that
the subring R of T Moreover R is integrally closed in 7" if and only if R = R.

An integral domain is said to be integrally closed if it is integrally closed
in its field of fractions.

4.6 Algebraic Integers

Definition A complex number z is said to be an algebraic number if it is
the root of some non-zero polynomial with integer coefficients.

If a complex number is the root of a non-zero polynomial with rational
coefficients, then the coefficients of that polynomial can be multiplied by
some positive integer so as to clear the denominators to yield a non-zero
polynomial with integer coefficients. Thus every complex number that is
a root of a non-zero polynomial with rational coefficients is an algebraic
number.
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Definition A complex number z is said to be an algebraic integer if it is the
root of some monic polynomial with integer coefficients.

Example It follows from the above definition that a complex number is an
algebraic integer if and only if it is integral over the ring of integers.

It follows from the relevant definitions that a complex number is an alge-
braic number if and only if it is integral over the field Q of rational numbers.
Also a complex number is an algebraic integer if and only if it is integral over
the ring Z of (rational) integers.

In algebraic number theory, elements of the ring Z are often referred to
as rational integers to distinguish them from algebraic integers.

The number /2 is an algebraic integer, since it is a root of the monic
polynomial z2 —2. More generally, {/m is an algebraic integer for all positive
integers n and m, since this number is a root of the polynomial ™ —m. The
complex numbers ¢ and —% + \/7§ i are also algebraic integers, where i = /—1,
since they are roots of the polynomials 2 + 1 and 2® — 1 respectively.

Lemma 4.20 The ring Z of rational integers is integrally closed in the
field Q of rational numbers.

Proof The ring Z is a unique factorization domain, and any unique factoriza-
tion domains is integrally closed in its field of fractions (Proposition 2.47). |}

It follows from Lemma 4.20 that every algebraic integer that belongs to
the field Q of rational numbers is a rational integer.

Proposition 4.21 The set of all algebraic integers constitutes a subring of
the field C of complex numbers that is integrally closed in C.

Proof The result follows directly on applying Proposition 4.19. |}

Lemma 4.22 Let a be an algebraic number. Then there exists some non-
zero integer m such that ma is an algebraic integer.

Proof Let a be an algebraic number. Then there exist rational numbers
qo 41,42, - - -, 4n—1 such that

0" 4 10"+ 20 oo = 0.

Let m be a non-zero integer with the property that mg; is an integer for
j=0,1,...,n—1, and let a; = mg; for j =0,1,...,n — 1. Then

O — mnan + mnqn_lan—l + mnqn_zan—Q et mnqo
= (ma)" + a,_1(ma)" " + ma,_o(ma)” %+ +m" tag.

Therefore ma the root of a monic polynomial with integer coefficients, and
is therefore an algebraic integer. The result follows. |}
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Let K be a field. The ring K[z| of polynomials with coefficients in K is
a principal ideal domain. Moreover, given any ideal I of K[z], there exists a
unique monic polynomial with coefficients in K that generates the ideal. If
« is an element of some extension field of K, and if

I=A{f € Klz]: f(a) =0},

then I is an ideal of K[z], and therefore there exists a unique monic polyno-
mial m(z) with coefficients in K that generates the ideal I. This polynomial
m(x) is the unique irreducible monic polynomial with coefficients in K that
has « as a root, and it divides every other polynomial in K[z]| that has « as
a root. The polynomial m(z) is referred to as the minimum polynomial of «
over the field K.

In particular, given any algebraic number «, there exists a unique irre-
ducible monic polynomial m(x) with rational coefficients that has a as a root.
Any polynomial with rational coefficients that has « as a root is divisible by
m(z) in the polynomial ring Q[z]. This polynomial m(x) is the minimum
polynomial of a over the field Q of rational numbers.

Proposition 4.23 An algebraic number is an algebraic integer if and only
if the coefficients of its minimum polynomial over the field Q of rational
numbers are rational integers.

Proof Let a be an algebraic number. The minimum polynomial of o over
the field of rational numbers is the monic polynomial of lowest degree with
rational coefficients that has a as a root. Thus if the coefficients of the
minimum polynomial of « are rational integers then « is an algebraic integer.

Conversely suppose that « is an algebraic integer. Then there exists a
monic polynomial f(z) with integer coefficients satisfying f(a) = 0. Any
monic polynomial with integer coefficients is primitive, because any integer
that divides all the coefficients of the polynomial must divide the leading
coefficient of f(z) and must therefore be equal to +1 or —1. Any primi-
tive polynomial with integer coefficients factorizes as a product of irreducible
primitive polynomials with integer coefficients (see Lemma 2.29). Moreover
these irreducible primitive polynomials are irreducible elements of both the
ring Z[z] of polynomials with integer coefficients and the ring Q[z] of polyno-
mials with rational coefficients (see Lemma 2.29 and Proposition 2.48). The
leading coefficient of f(x) is equal to the product of the leading coefficients
of its irreducible factors. But the polynomial f(z) is monic. It follows that
the leading coefficient of each irreducible factor of f(x) must be 1 or —1. Tt
follows that the monic polynomial f(x) factors as a product of irreducible
monic polynomials, and moreover the irreducible monic factors of f(z) have
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integer coefficients and are irreducible elements of the ring Q[z]. One of these
irreducible factors of f(z) has « as a root. Let that factor be m(z). Then
m(x) is an irreducible monic polynomial with integer coefficients that has «
as a root. It must therefore be the minimum polynomial of o over the field
of rational numbers. The result follows. |

4.7 The Ring of Integers of an Algebraic Number Field

Definition An algebraic number field is a subfield of the field C of complex
numbers that is a finite-dimensional vector space over the field Q of rational
numbers.

Definition The degree of an algebraic number field K is the dimension
[K: Q] of K considered as a vector space over the field Q of rational numbers.

Definition The ring Dy of integers of an algebraic number field K is the
subring of K consisting of all algebraic integers that belong to the algebraic
number field K.

Lemma 4.24 The ring Ok of integers of an algebraic number field K is an
integrally closed integral domain whose field of fractions is K.

Proof Any subring of a field is an integral domain. Therefore Ok is an
integral domain. It follows from Proposition 4.21 that any element of K that
is a root of a monic polynomial with coefficients in O is an algebraic integer,
and must therefore belong to Dg. Therefore O is integrally closed in K.
It follows from Lemma 4.22 that, given any element z of K, there exists a
positive rational integer m and an algebraic integer o such that mz = a.
Then o € K, and therefore o € Og. Also m € Oy, because Z C Ok. It
follows that every element of K can be expressed as a quotient m =« of two
elements of Dy, and therefore K is the field of fractions of Ox. Thus the
integral domain O is integrally closed in its field of fractions, and is thus
an integrally closed domain. |

Remark More pedantically, if we regard the field of fractions Frac(O)
of O as a set of equivalence classes of ordered pairs belonging to the set
O X O, then we could assert more precisely that the algebraic number
field K is naturally isomorphic to the field of fractions Frac(Og) of Ok.
Specifically, the inclusion homomorphism i: Oy < K extends uniquely to
a homomorphism #: Frac(Og) — K (Lemma 2.45). This homomorphism is
a natural isomorphism that sends the equivalence class a/f of an ordered
pair (o, ) to the element o~ of K for all « € O and § € O%. It makes
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sense to identify Frac(9Dy) with K by means of this natural isomorphism.
This allows us to describe the algebraic number field K itself as the field of
fractions of the corresponding ring of integers O.

Given a subfield of the field C of complex numbers, and given com-
plex numbers aq,aq,...,q, we denote by K(aj,as,...,ax) the subfield
of the complex numbers which is the smallest subfield containing the set
K U{aj,as,...,ar}. The subfield K(aq,as,...,ax) C is well-defined, be-
cause it can be characterized as the intersection of all subfields L of C for
which K U{ay,aq,...,ar} C L. The field K(ay,as,...,q) is referred of
as the field obtained by adjoining the complex numbers aq, as, ..., a; to the
field K.

In particular, given algebraic numbers a1, as, ..., ay, there is a subfield
Q(aq,ag, ..., a4) of the field C of complex numbers obtained on adjoining
the complex numbers aq, as, ..., a; to the field Q of rational numbers.

Proposition 4.25 Let aq, s, ...,ar be algebraic numbers. Then the field
Q(aq, ag, ..., ax) is an algebraic number field, and moreover

Q(Oéba?a <. ,Oék) = Q[a17a27 .o ,Oék],

where Q[ay, ag, . .., ag] is the smallest subring of C that contains the field Q
of rational numbers and also contains «; fori=1,2,... k.

Proof Let S = Q[ay, s, . .., ax]. A module over a field is a vector space, and
a set of generators for such a module span the vector space. Each algebraic
number «; is integral over the field QQ of rational numbers. It follows from
Lemma 4.17 that there exists a finite subset of S spans the ring .S as a vector
space over the field of rational numbers. Thus S is a finite-dimensional vector
space over the field of rational numbers. Let n denote the dimension of this
vector space.

Let 3 be a non-zero element of S. Then the elements 1,3, 5%, ..., 3" are
linearly dependent. It follows that [ is a root of a polynomial of degree
n or less with rational coefficients, and therefore 3 is an algebraic number.

h—1
Let m(z) be the minimum polynomial of 8. Then m(z) = 2" + Y g2,
=0

=
where qo, q1,...,qn_1 are rational numbers. Moreover gy # 0, because the
polynomial m(z) is irreducible. But then

h—1
B = =g (6h—1 + Zqiﬂi*) ,

i=1
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and therefore 371 € S. Therefore S is a subfield of C. It follows that
Q(aq,an,...,a4) = S, and thus K is an algebraic number field of degree n,
as required. |}

4.8 The Ring of Integers of a Quadratic Field

Definition A quadratic field is an algebraic number field of degree 2.

Let K be a quadratic number field. Then K is a two-dimensional vector
space over the field Q of rational numbers. Thus if we choose any element « of
K\Q then the elements 1 and « are linearly independent over Q and therefore
constitute a basis of the vector space K over Q. It follows that any element of
K is of the form ¢g + g« for some rational numbers gy and ¢;. The elements
1, o and o2 must be linearly dependent over the field Q of rational numbers.
But the algebraic number « is not a root of any polynomial of degree less
than two with rational coefficients, because a@ € Q. Therefore there exists
some monic polynomial m(z) of degree 2 with rational coefficients for which
m(a) = 0. Moreover this polynomial m(z) is the minimum polynomial of «
over the field Q of rational numbers.

Now let @ be an algebraic number whose minimum polynomial is of de-
gree 2. The field Q(«) is the field obtained on adjoining the algebraic num-
ber « to the field of Q of rational numbers, and is by definition the smallest
subfield K of the complex numbers for which Q C K and a € K.

Lemma 4.26 Let o be an algebraic number whose minimum polynomaial is
of degree 2. Then the field Q(«) is an quadratic field, and any element of
Q(«) can be represented in the form qy + quov where qo and g, are rational
numbers.

Proof It follows from Proposition 4.25 that the field Q(«) coincides with
the ring Q[a] whose elements are of the form g(a) for some polynomial g(x)
with rational coefficients. The algebraic number « is integral over the field Q
of rational numbers. It follows from Lemma 4.16 that the elements 1 and
« constitute a basis for the field Q(«), on considering this field as a vector
space over the field Q of rational numbers. The result follows. |}

Definition An integer d is said to be square-free if there is no integer k
other than 41 for which k? divides d.

Any integer can be represented in the form k?d, where k and d are integers
and d is square-free.
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Lemma 4.27 Let K be a quadratic field. Then there exists a unique square-
free integer d, distinct from 0 and 1, such that K = Q(v/d).

Proof let a be an element of K\ Q. Then the elements 1, @ and o* must be
linearly dependent over the field QQ, because K is a two-dimensional vector
space over QQ, and therefore « is the root of a quadratic polynomial with
coefficients in Q. Let 2 + bx + ¢ be the minimum polynomial of o over the
field Q. Then o is of the form 1(—b =+ v/b?> — 4c), where b and ¢ are rational
numbers. Moreover /b2 — 4ac cannot be a rational number, because a does
not belong to Q. Now there exists a non-zero integer m for which m?(b?—4ac)
is also an integer. There then exists a non-zero integer k and a square-free
integer d, distinct from 0 and 1, such that m?(b* — 4ac) = k*d. Then « is of
the form %(—b + km~'/d). Tt follows from this that the quadratic field K is

of the form Q(v/d) for some square-free integer d distinct from 0 and 1.

Let o = qo + 1V/d, where gy, 1 € Q. Suppose that o € Q. Then
gt + dgt + 2001Vd € Q, and therefore either gy = 0 or ¢ = 0. Thus if
Q(vd) = Q(y/n) for some integer n then n = ¢?d for some rational number .
It follows that d is the unique square-free integer for which K = @(\/8) |

Proposition 4.28 Let d be a square-free integer distinct from 0 and 1. Then
the ring of integers of the quadratic field Q(\/E) 18 determined as follows:

(1) ifd # 1 (mod. 4) then the ring of integers of the quadratic field Q(\/d)
is the additive subgroup of Q(\/d) generated by 1 and \/d;

(ii) if d =1 (mod. 4) then the ring of integers of the quadratic field Q(+/d)
is the additive subgroup of Q(v/d) generated by 1 and %(1 +Vd);

Proof Let o be an algebraic number belonging to @(\/E), where a ¢ Q.
Then o = gy 4+ ¢1v/d for some rational numbers gy and ¢1, and ¢; # 0. Then

(g0 + Ch\/ﬂ_i)(CJo — Q1\/E) = qg - dQ%-

Let m(z) = 2*—2qox+q2 —dq?. Then m(a) = 0. Moreover m(«) must be the
minimum polynomial of «, because a ¢ Q. The algebraic number af is an
algebraic integer if and only if the coefficients of its minimum polynomial are
rational integers (Proposition 4.23). It follows that g + ¢1V/d is an algebraic
integer if and only if 2qy € Z and ¢¢ — d¢? € Z.

The number ¢y + ¢v/d is an algebraic integer whenever g and ¢; are
rational integers. Also if gy + ¢1V/d is an algebraic integer then 2¢, must be
an integer. But then 4dq? — 4¢? € 47, and therefore 4dg; must also be an
integer. But, because d is square-free, this is not possible unless 4¢7 is an
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integer. Indeed if 2¢; were expressed as a fraction in which numerator and
denominator were coprime, and if some prime number p were then to divide
the denominator of 2¢; then p? would have to divide the square-free integer d,
which is impossible. It follows that if ¢y + ¢1v/d is an algebraic integer then
both 2¢y and 2¢; must be rational integers.

Thus let sy and s; are rational integers, Then %(so +51V/d) is an algebraic

integer if and only if s3 — ds? = 0 (mod. 4). Now d is not divisible by 4,
because it is non-zero and square-free, and therefore d is congruent to 1, 2
or 3 modulo 4. Also s7 = 0 (mod. 4) when s; is even, and s7 = 1 (mod. 4)

when s is odd. If sq is even then s2 = 0 (mod. 4). It then follows that s? # 1
(mod. 4) and therefore s; is also even. Next suppose that d # 1 (mod. 4).
Then ds? # 1 (mod. 4) for all integers s;. It follows that if d # 1 (mod. 4)
then there are no algebraic integers of the form %(so + s1v/d) for which s
is an odd integer. Thus if d Z 1 (mod. 4) then all algebraic integers in the
quadratic field Q(\/E) are of the form gy + ¢;v/d where o and ¢, are rational
integers.
1

Finally consider the case of algebraic integers of the form 5(so + 51 Vd)

where d = 1 (mod. 4) and sy is odd. In that case 3(so+ s1V/d) is an algebraic
integer if and only if 1—s? = 0 (mod. 4), and this is the case if and only if s is
an odd integer. It follows that, in the case where d = 1 (mod. 4), the algebraic
integers contained in Q(v/d) are the numbers of the form T(so+s1 Vd), where
so and s; are integers that are either both even or both odd. Thus the ring
of integers of Q consists of those algebraic numbers that can be represented
in the form ry + %7’1(1 ++/d) for some integers ry and ;. (Note in particular
that v/d can be represented in this form, on taking 7, = 2 and ro = —1.)
The results follow. |

Example The ring of integers of the number field Q(1/—3) is the ring
Ogy=3) of Eisenstein integers generated by the algebraic integers 1 and
w, where w = (=1 +iv/3) = ¢*™/% and i = /—1. This algebraic integer w
satisfies the identities w® = 1 and 1 4+ w + w? = 0, and the integral domain
Og(y—3 has six units which are £1, +w and +w*. Let N(a) = |a|? for all
Eisenstein integers a. Now

Iro + rw|* = (ro + rw)(ro + m1w?) = rg + 17 +rery(w + w?) =g + 17 — 17y

for all integers ro and r;. It follows that N(a) € Z and N(a) > 0. for all
Eisenstein integers «. If o and f are non-zero Eisenstein integers, and if «

divides § in the ring Og(,/=3), then N(a) < N(j3). Also, given any complex

number z, there exists an Eisenstein integer ~ satisfying |z — | < % It

follows that if & and 8 are Eisenstein integers, and if § # 0, then there exists
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an Eisenstein integer v such that |af™' — 7> < 1. Let p = o — /. Then
o = vB + p and either p = 0 or else N(p) < $N(B). These results show
that the function sending o to N(«) is a Euclidean function on the integral
domain Og/=3), and thus this integral domain is a Euclidean domain. It
follows from Proposition 2.6 that the ring DQ( v=3) of Eisenstein integers is a
principal ideal domain.

Proposition 4.29 The ring of integers of a quadratic field is an integrally
closed Noetherian domain in which every non-zero prime ideal is maximal.

Proof Let d be a square-free integer distinct from 0 and 1, and let K =
@(\/3) The ring of integers O of K is generated as an additive subgroup
of K by elements 1 and v/d in the case where d #Z 1 (mod. 4), and by
elements 1 and (1 + v/d) in the case when d = 1 (mod. 4). It follows that
Ok is isomorphic as an additive group to the group Z?. Now it follows from
Corollary 3.4 that Z? is a Noetherian Z-module, and thus every subgroup of
7?2 is finitely generated as a module over the ring Z of rational integers. It
follows from this that every ideal of O is finitely generated, and thus Og
is a Noetherian domain. It follows from Lemma 4.24 that O is integrally
closed. It only remains to prove that every non-zero prime ideal of O is a
maximal ideal of this ring.

Let P be a non-zero prime ideal of Oy, and let o € P. Suppose that
« is not a rational integer. Then « satisfies a quadratic equation of the
form o? + ba + ¢ = 0, where b and c¢ are rational integers and ¢ # 0. Then
¢ = —a(a + b), and therefore ¢ € P. Thus P contains non-zero rational
integers.

Let m € PNZ, where m > 0. Then mO g C P, and therefore O /P is iso-
morphic to a quotient ring of Ox/mO k. But Ox/mO is a finite ring with
m? elements, because Dk is isomorphic as an additive group to the group
Z?, and therefore O /mO is isomorphic as an additive group to (Z/mZ)>.
It follows that the integral domain O /P has finitely many elements, and
is thus a field, and therefore the non-zero prime ideal P is maximal (see
Lemma 2.17 and Lemma 2.18). Thus O is an integrally-closed Noetherian
domain in which every non-zero prime ideal is maximal, as required. |
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