
Module MA3412: Integral Domains, Modules
and Algebraic Integers

Section 3
Hilary Term 2014

D. R. Wilkins

Copyright c© David R. Wilkins 1997–2014

Contents

3 Noetherian Rings and Modules 49
3.1 Modules over a Unital Commutative Ring . . . . . . . . . . . 49
3.2 Noetherian Modules . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Noetherian Rings and Hilbert’s Basis Theorem . . . . . . . . . 53

i



3 Noetherian Rings and Modules

3.1 Modules over a Unital Commutative Ring

Definition Let R be a unital commutative ring. A set M is said to be a
module over R (or R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and rx of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1x = x

are satisfied for all x, y ∈M and r, s ∈ R.

Example If K is a field, then a K-module is by definition a vector space
over K.

Example Let (M,+) be an Abelian group, and let x ∈M . If n is a positive
integer then we define nx to be the sum x + x + · · · + x of n copies of x. If
n is a negative integer then we define nx = −(|n|x), and we define 0x = 0.
This enables us to regard any Abelian group as a module over the ring Z of
integers. Conversely, any module over Z is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion.

Let R be a unital commutative ring, and let M be an R-module. A
subset L of M is said to be a submodule of M if x + y ∈ L and rx ∈ L for
all x, y ∈ L and r ∈ R. If M is an R-module and L is a submodule of M
then the quotient group M/L can itself be regarded as an R-module, where
r(L + x) ≡ L + rx for all L + x ∈ M/L and r ∈ R. The R-module M/L is
referred to as the quotient of the module M by the submodule L.

Note that a subset I of a unital commutative ring R is a submodule of R
if and only if I is an ideal of R.

Let M and N be modules over some unital commutative ring R. A
function ϕ:M → N is said to be a homomorphism of R-modules if ϕ(x+y) =
ϕ(x)+ϕ(y) and ϕ(rx) = rϕ(x) for all x, y ∈M and r ∈ R. A homomorphism
of R-modules is said to be an isomorphism if it is invertible. The kernel

49



kerϕ and image ϕ(M) of any homomorphism ϕ:M → N are themselves R-
modules. Moreover if ϕ:M → N is a homomorphism of R-modules, and if L
is a submodule of M satisfying L ⊂ kerϕ, then ϕ induces a homomorphism
ϕ:M/L→ N . This induced homomorphism is an isomorphism if and only if
L = kerϕ and N = ϕ(M).

Definition Let M1,M2, . . . ,Mk be modules over a unital commutative ring
R. The direct sum M1 ⊕M2 ⊕ · · · ⊕Mk is defined to be the set of ordered
k-tuples (x1, x2, . . . , xk), where xi ∈ Mi for i = 1, 2, . . . , k. This direct sum
is itself an R-module:

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk),

r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all xi, yi ∈Mi and r ∈ R.

If K is any field, then Kn is the direct sum of n copies of K.

Definition Let M be a module over some unital commutative ring R. Given
any subset X of M , the submodule of M generated by the set X is defined
to be the intersection of all submodules of M that contain the set X. It
is therefore the smallest submodule of M that contains the set X. An R-
module M is said to be finitely-generated if it is generated by some finite
subset of itself.

Lemma 3.1 Let M be a module over some unital commutative ring R, and
let {x1, x2, . . . , xk} be a finite subset of M . Then the submodule of M gener-
ated by this set consists of all elements of M that are of the form

r1x1 + r2x2 + · · ·+ rkxk

for some r1, r2, . . . , rk ∈ R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M . Moreover it is contained in every submodule of M that
contains the set {x1, x2, . . . , xk}. The result follows.

3.2 Noetherian Modules

Definition Let R be a unital commutative ring. An R-module M is said to
be Noetherian if every submodule of M is finitely-generated.
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Proposition 3.2 Let R be a unital commutative ring, and let M be a module
over R. Then the following are equivalent:—

(i) (Ascending Chain Condition) if L1 ⊂ L2 ⊂ L3 ⊂ · · · is an ascending
chain of submodules of M then there exists an integer N such that
Ln = LN for all n ≥ N ;

(ii) (Maximal Condition) every non-empty collection of submodules of M
has a maximal element (i.e., an submodule which is not contained in
any other submodule belonging to the collection);

(iii) (Finite Basis Condition) M is a Noetherian R-module (i.e., every sub-
module of M is finitely-generated).

Proof Suppose that M satisfies the Ascending Chain Condition. Let C be
a non-empty collection of submodules of M . Choose L1 ∈ C. If C were to
contain no maximal element then we could choose, by induction on n, an
ascending chain L1 ⊂ L2 ⊂ L3 ⊂ · · · of submodules belonging to C such that
Ln 6= Ln+1 for all n, which would contradict the Ascending Chain Condition.
Thus M must satisfy the Maximal Condition.

Next suppose that M satisfies the Maximal Condition. Let L be an sub-
module of M , and let C be the collection of all finitely-generated submodules
of M that are contained in L. Now the zero submodule {0} belongs to C,
hence C contains a maximal element J , and J is generated by some finite
subset {a1, a2, . . . , ak} of M . Let x ∈ L, and let K be the submodule gen-
erated by {x, a1, a2, . . . , ak}. Then K ∈ C, and J ⊂ K. It follows from the
maximality of J that J = K, and thus x ∈ J . Therefore J = L, and thus L
is finitely-generated. Thus M must satisfy the Finite Basis Condition.

Finally suppose that M satisfies the Finite Basis Condition. Let L1 ⊂
L2 ⊂ L3 ⊂ · · · be an ascending chain of submodules of M , and let L be the

union
+∞⋃
n=1

Ln of the submodules Ln. Then L is itself an submodule of M .

Indeed if a and b are elements of L then a and b both belong to Ln for some
sufficiently large n, and hence a+ b, −a and ra belong to Ln, and thus to L,
for all r ∈M . But the submodule L is finitely-generated. Let {a1, a2, . . . , ak}
be a generating set of L. Choose N large enough to ensure that ai ∈ LN for
i = 1, 2, . . . , k. Then L ⊂ LN , and hence LN = Ln = L for all n ≥ N . Thus
M must satisfy the Ascending Chain Condition, as required.

Proposition 3.3 Let R be a unital commutative ring, let M be an R-module,
and let L be a submodule of M . Then M is Noetherian if and only if L and
M/L are Noetherian.
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Proof Suppose that the R-module M is Noetherian. Then the submodule L
is also Noetherian, since any submodule of L is also a submodule of M and
is therefore finitely-generated. Also any submodule K of M/L is of the form
{L + x : x ∈ J} for some submodule J of M satisfying L ⊂ J . But J
is finitely-generated (since M is Noetherian). Let x1, x2, . . . , xk be a finite
generating set for J . Then

L+ x1, L+ x2, . . . , L+ xk

is a finite generating set for K. Thus M/L is Noetherian.
Conversely, suppose that L and M/L are Noetherian. We must show that

M is Noetherian. Let J be any submodule of M , and let ν(J) be the image of
J under the quotient homomorphism ν:M →M/L, where ν(x) = L+ x for
all x ∈M . Then ν(J) is a submodule of the Noetherian module M/L and is
therefore finitely-generated. It follows that there exist elements x1, x2, . . . , xk
of J such that ν(J) is generated by

L+ x1, L+ x2, . . . , L+ xk.

Also J ∩ L is a submodule of the Noetherian module L, and therefore there
exists a finite generating set y1, y2, . . . , ym for J ∩ L. We claim that

{x1, x2, . . . , xk, y1, y2, . . . , ym}

is a generating set for J .
Let z ∈ J . Then there exist r1, r2, . . . , rk ∈ R such that

ν(z) = r1(L+x1)+r2(L+x2)+ · · ·+rk(L+xk) = L+r1x1+r2x2+ · · ·+rkxk.

But then z−(r1x1+r2x2+ · · ·+rkxk) ∈ J∩L (since L = ker ν), and therefore
there exist s1, s2, . . . , sm such that

z − (r1x1 + r2x2 + · · ·+ rkxk) = s1y1 + s2y2 + · · ·+ smym,

and thus

z =
k∑

i=1

rixi +
m∑
j=1

siyi.

This shows that the submodule J of M is finitely-generated. We deduce that
M is Noetherian, as required.

Corollary 3.4 The direct sum M1 ⊕M2 ⊕ · · · ⊕Mk of Noetherian modules
M1,M2, . . .Mk over some unital commutative ring R is itself a Noetherian
module over R.
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Proof The result follows easily by induction on k once it has been proved
in the case k = 2.

Let M1 and M2 be Noetherian R-modules. Then M1⊕{0} is a Noetherian
submodule of M1 ⊕M2 isomorphic to M1, and the quotient of M1 ⊕M2 by
this submodule is a Noetherian R-module isomorphic to M2. It follows from
Proposition 3.3 that M1 ⊕M2 is Noetherian, as required.

One can define also the concept of a module over a non-commutative
ring. Let R be a unital ring (not necessarily commutative), and let M be an
Abelian group. We say that M is a left R-module if each r ∈ R and m ∈M
determine an element rm of M , and the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx, (rs)x = r(sx), 1x = x

are satisfied for all x, y ∈M and r, s ∈ R. Similarly we say that M is a right
R-module if each r ∈ R and m ∈M determine an element mr of M , and the
identities

(x+ y)r = xr + yr, x(r + s) = xr + xs, x(rs) = (xr)s, x1 = x

are satisfied for all x, y ∈ M and r, s ∈ R. (If R is commutative then the
distinction between left R-modules and right R-modules is simply a question
of notation; this is not the case if R is non-commutative.)

3.3 Noetherian Rings and Hilbert’s Basis Theorem

Let R be a unital commutative ring. We can regard the ring R as an R-
module, where the ring R acts on itself by left multiplication (so that r . r′

is the product rr′ of r and r′ for all elements r and r′ of R). We then find
that a subset of R is an ideal of R if and only if it is a submodule of R. The
following result therefore follows directly from Proposition 3.2.

Proposition 3.5 Let R be a unital commutative ring. Then the following
are equivalent:—

(i) (Ascending Chain Condition) if I1 ⊂ I2 ⊂ I3 ⊂ · · · is an ascending
chain of ideals of R then there exists an integer N such that In = IN
for all n ≥ N ;

(ii) (Maximal Condition) every non-empty collection of ideals of R has a
maximal element (i.e., an ideal which is not contained in any other
ideal belonging to the collection);
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(iii) (Finite Basis Condition) every ideal of R is finitely-generated.

Definition A unital commutative ring is said to be a Noetherian ring if every
ideal of the ring is finitely-generated. A Noetherian domain is a Noetherian
ring that is also an integral domain.

Note that a unital commutative ring R is Noetherian if it satisfies any
one of the conditions of Proposition 3.5.

Corollary 3.6 Let M be a finitely-generated module over a Noetherian ring
R. Then M is a Noetherian R-module.

Proof Let {x1, x2, . . . , xk} be a finite generating set for M . Let Rk be the
direct sum of k copies of R, and let ϕ:Rk → M be the homomorphism of
R-modules sending (r1, r2, . . . , rk) ∈ Rk to

r1x1 + r2x2 + · · ·+ rkxk.

It follows from Corollary 3.4 that Rk is a Noetherian R-module (since the
Noetherian ring R is itself a Noetherian R-module). Moreover M is isomor-
phic to Rk/ kerϕ, since ϕ:Rk → M is surjective. It follows from Proposi-
tion 3.3 that M is Noetherian, as required.

If I is a proper ideal of a Noetherian ring R then the collection of all
proper ideals of R that contain the ideal I is clearly non-empty (since I
itself belongs to the collection). It follows immediately from the Maximal
Condition that I is contained in some maximal ideal of R.

Lemma 3.7 Let R be a Noetherian ring, and let I be an ideal of R. Then
the quotient ring R/I is Noetherian.

Proof Let L be an ideal of R/I, and let J = {x ∈ R : I + x ∈ L}. Then J
is an ideal of R, and therefore there exists a finite subset {a1, a2, . . . , ak} of
J which generates J . But then L is generated by I + ai for i = 1, 2, . . . , k.
Indeed every element of L is of the form I + x for some x ∈ J , and if

x = r1a1 + r2a2 + · · ·+ rkak

, where r1, r2, . . . , rk ∈ R, then

I + x = r1(I + a1) + r2(I + a2) + · · ·+ rk(I + ak),

as required.
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Hilbert showed that if R is a field or is the ring Z of integers, then every
ideal of R[x1, x2, . . . , xn] is finitely-generated. The method that Hilbert used
to prove this result can be generalized to yield the following theorem.

Theorem 3.8 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then so
is the polynomial ring R[x].

Proof Let I be an ideal of R[x], and, for each non-negative integer n, let
In denote the subset of R consisting of those elements of R that occur as
leading coefficients of polynomials of degree n belonging to I, together with
the zero element of R. Then In is an ideal of R. Moreover In ⊂ In+1, for if
p(x) is a polynomial of degree n belonging to I then xp(x) is a polynomial of
degree n+1 belonging to I which has the same leading coefficient. Thus I0 ⊂
I1 ⊂ I2 ⊂ · · · is an ascending chain of ideals of R. But the Noetherian ring
R satisfies the Ascending Chain Condition (see Proposition 3.5). Therefore
there exists some natural number m such that In = Im for all n ≥ m.

Now each ideal In is finitely-generated, hence, for each n ≤ m, we can
choose a finite set {an,1, an,2, . . . , an,kn} which generates In. Moreover each
generator an,i is the leading coefficient of some polynomial qn,i of degree n
belonging to I. Let J be the ideal of R[x] generated by the polynomials qn,i
for all 0 ≤ n ≤ m and 1 ≤ i ≤ kn. Then J is finitely-generated. We shall
show by induction on deg p that every polynomial p belonging to I must
belong to J , and thus I = J . Now if p ∈ I and deg p = 0 then p is a constant
polynomial whose value belongs to I0 (by definition of I0), and thus p is a
linear combination of the constant polynomials q0,i (since the values a0,i of
the constant polynomials q0,i generate I0), showing that p ∈ J . Thus the
result holds for all p ∈ I of degree 0.

Now suppose that p ∈ I is a polynomial of degree n and that the result
is true for all polynomials p in I of degree less than n. Consider first the
case when n ≤ m. Let b be the leading coefficient of p. Then there exist
c1, c2, . . . , ckn ∈ R such that

b = c1an,1 + c2an,2 + · · ·+ cknan,kn ,

since an,1, an,2, . . . , an,kn generate the ideal In of R. Then

p(x) = c1qn,1(x) + c2qn,2(x) + · · ·+ ckqn,k(x) + r(x),

where r ∈ I and deg r < deg p. It follows from the induction hypothesis that
r ∈ J . But then p ∈ J . This proves the result for all polynomials p in I
satisfying deg p ≤ m.

Finally suppose that p ∈ I is a polynomial of degree n where n > m, and
that the result has been verified for all polynomials of degree less than n.
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Then the leading coefficient b of p belongs to In. But In = Im, since n ≥ m.
As before, we see that there exist c1, c2, . . . , ckm ∈ R such that

b = c1am,1 + c2am,2 + · · ·+ cknam,km ,

since am,1, am,2, . . . , am,km generate the ideal In of R. Then

p(x) = c1x
n−mqm,1(x) + c2x

n−mqm,2(x) + · · ·+ ckx
n−mqm,k(x) + r(x),

where r ∈ I and deg r < deg p. It follows from the induction hypothesis that
r ∈ J . But then p ∈ J . This proves the result for all polynomials p in I
satisfying deg p > m. Therefore I = J , and thus I is finitely-generated, as
required.

Theorem 3.9 Let R be a Noetherian ring. Then the ring R[x1, x2, . . . , xn]
of polynomials in the indeterminates x1, x2, . . . , xn with coefficients in R is a
Noetherian ring.

Proof It is easy to see that R[x1, x2, . . . , xn] is naturally isomorphic to
R[x1, x2, . . . , xn−1][xn] when n > 1. (Any polynomial in the indeterminates
x1, x2, . . . , xn with coefficients in the ring R may be viewed as a polyno-
mial in the indeterminate xn whose coefficients are in the polynomial ring
R[x1, x2, . . . , xn−1].) The required results therefore follows from Hilbert’s
Basis Theorem (Theorem 3.8) by induction on n.

Corollary 3.10 Let K be a field. Then every ideal of the polynomial ring
K[x1, x2, . . . , xn] is finitely-generated.
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