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3 Noetherian Rings and Modules

3.1 Modules over a Unital Commutative Ring

Definition Let R be a unital commutative ring. A set M is said to be a
module over R (or R-module) if

(i) given any z,y € M and r € R, there are well-defined elements z + y
and rz of M,

(ii) M is an Abelian group with respect to the operation + of addition,
(iii) the identities
r(x+y) =rz+ry, (r+s)r =rz+ sz,

(rs)z = r(sx), le=ux

are satisfied for all x,y € M and r, s € R.

Example If K is a field, then a K-module is by definition a vector space
over K.

Example Let (M, +) be an Abelian group, and let x € M. If n is a positive
integer then we define nx to be the sum x + x + - - - + x of n copies of z. If
n is a negative integer then we define nx = —(|n|z), and we define Ox = 0.
This enables us to regard any Abelian group as a module over the ring Z of
integers. Conversely, any module over 7Z is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion.

Let R be a unital commutative ring, and let M be an R-module. A
subset L of M is said to be a submodule of M if x +y € L and rx € L for
all z,y € L and r € R. If M is an R-module and L is a submodule of M
then the quotient group M /L can itself be regarded as an R-module, where
r(L+xz)=L+rzforal L+x € M/Land r € R. The R-module M/L is
referred to as the quotient of the module M by the submodule L.

Note that a subset I of a unital commutative ring R is a submodule of R
if and only if [ is an ideal of R.

Let M and N be modules over some unital commutative ring R. A
function ¢: M — N is said to be a homomorphism of R-modules if p(x+y) =
o(x)+p(y) and p(rz) = re(x) for all x,y € M and r € R. A homomorphism
of R-modules is said to be an isomorphism if it is invertible. The kernel
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ker ¢ and image p(M) of any homomorphism ¢: M — N are themselves R-
modules. Moreover if ¢: M — N is a homomorphism of R-modules, and if L
is a submodule of M satisfying L C ker ¢, then ¢ induces a homomorphism
@: M/L — N. This induced homomorphism is an isomorphism if and only if
L =kery and N = p(M).

Definition Let M, Ms, ..., My be modules over a unital commutative ring
R. The direct sum M, & My @ --- H M, is defined to be the set of ordered
k-tuples (z1, s, ..., 2x), where z; € M; for i = 1,2,... k. This direct sum
is itself an R-module:

(xlaxZa"'axk)+(y17y27"'7yk) = ($1+y17x2+y27"'7wk+yk)7
r(zy,xe,...,x8) = (rey,reg, ..., reE)

for all z;,y; € M; and r € R.
If K is any field, then K™ is the direct sum of n copies of K.

Definition Let M be a module over some unital commutative ring R. Given
any subset X of M, the submodule of M generated by the set X is defined
to be the intersection of all submodules of M that contain the set X. It
is therefore the smallest submodule of M that contains the set X. An R-
module M is said to be finitely-generated if it is generated by some finite
subset of itself.

Lemma 3.1 Let M be a module over some unital commutative ring R, and
let {1, xa,... 2%} be a finite subset of M. Then the submodule of M gener-
ated by this set consists of all elements of M that are of the form

X1 + Tk + -+ + LTy
for some ri,r9,..., 1 € R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M. Moreover it is contained in every submodule of M that
contains the set {x1,xs,...,x;}. The result follows. |}

3.2 Noetherian Modules

Definition Let R be a unital commutative ring. An R-module M is said to
be Noetherian if every submodule of M is finitely-generated.
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Proposition 3.2 Let R be a unital commutative ring, and let M be a module
over R. Then the following are equivalent:—

(i) (Ascending Chain Condition) if Ly C Ly C Lg C --- is an ascending
chain of submodules of M then there exists an integer N such that
L, =Ly foralln > N;

(ii) (Maximal Condition) every non-empty collection of submodules of M
has a mazimal element (i.e., an submodule which is not contained in
any other submodule belonging to the collection);

(ili) (Finite Basis Condition) M is a Noetherian R-module (i.e., every sub-
module of M is finitely-generated).

Proof Suppose that M satisfies the Ascending Chain Condition. Let C be
a non-empty collection of submodules of M. Choose L; € C. If C were to
contain no maximal element then we could choose, by induction on n, an
ascending chain L; C Ly C L3 C --- of submodules belonging to C such that
L, # L, for all n, which would contradict the Ascending Chain Condition.
Thus M must satisfy the Maximal Condition.

Next suppose that M satisfies the Maximal Condition. Let L be an sub-
module of M, and let C be the collection of all finitely-generated submodules
of M that are contained in L. Now the zero submodule {0} belongs to C,
hence C contains a maximal element .J, and J is generated by some finite
subset {aj,as,...,a;} of M. Let x € L, and let K be the submodule gen-
erated by {z,a1,as,...,ax}. Then K € C, and J C K. It follows from the
maximality of J that J = K, and thus x € J. Therefore J = L, and thus L
is finitely-generated. Thus M must satisfy the Finite Basis Condition.

Finally suppose that M satisfies the Finite Basis Condition. Let L; C
Lo, C L3 C --- be an ascending chain of submodules of M, and let L be the

+o00o

union |J L, of the submodules L,,. Then L is itself an submodule of M.
n=1

Indeed if @ and b are elements of L then a and b both belong to L,, for some

sufficiently large n, and hence a + b, —a and ra belong to L,,, and thus to L,
for all r € M. But the submodule L is finitely-generated. Let {aq,ao, ..., ax}
be a generating set of L. Choose N large enough to ensure that a; € Ly for
1=1,2,...,k. Then L C Ly, and hence Ly = L, = L for all n > N. Thus
M must satisfy the Ascending Chain Condition, as required. |}

Proposition 3.3 Let R be a unital commutative ring, let M be an R-module,
and let L be a submodule of M. Then M is Noetherian if and only if L and
M/L are Noetherian.

o1



Proof Suppose that the R-module M is Noetherian. Then the submodule L
is also Noetherian, since any submodule of L is also a submodule of M and
is therefore finitely-generated. Also any submodule K of M/L is of the form
{L+ =z : x € J} for some submodule J of M satisfying L C J. But J
is finitely-generated (since M is Noetherian). Let xq,xs,..., 2, be a finite
generating set for J. Then

L+x,L+x,...,L+ xg

is a finite generating set for K. Thus M /L is Noetherian.

Conversely, suppose that L and M /L are Noetherian. We must show that
M is Noetherian. Let J be any submodule of M, and let v(.J) be the image of
J under the quotient homomorphism v: M — M/L, where v(z) = L + x for
all z € M. Then v(J) is a submodule of the Noetherian module M/L and is
therefore finitely-generated. It follows that there exist elements z1, o, ..., xy
of J such that v(J) is generated by

L+x,L+x9,..., L+ zy.

Also J N L is a submodule of the Noetherian module L, and therefore there
exists a finite generating set y1, o, ...,y for J N L. We claim that

{xlax%'"vrkaylay%"'aym}

is a generating set for J.
Let z € J. Then there exist r{,7s,...,r, € R such that

v(z) =ri(L+x)+ro(L+ag)+- - +rp(L+ag) = L4z +roxe+- - - +rpxy.

But then z— (ryzy +roxg+- - - +rpxx) € JNL (since L = ker v), and therefore
there exist sq, So,...,S,, such that

z— (ray 4+ romo + - A TRTE) = S1Y1 + SaYo + -+ S,

and thus .

m
z = E r;XT; -+ SiYi-
i=1 7=1

This shows that the submodule J of M is finitely-generated. We deduce that
M is Noetherian, as required. |

Corollary 3.4 The direct sum M; & My @ - -- & My of Noetherian modules
My, My, ... My over some unital commutative ring R is itself a Noetherian
module over R.
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Proof The result follows easily by induction on k& once it has been proved
in the case k = 2.

Let M; and M; be Noetherian R-modules. Then M;&{0} is a Noetherian
submodule of M; & M, isomorphic to M7, and the quotient of M; & M, by
this submodule is a Noetherian R-module isomorphic to M. It follows from
Proposition 3.3 that M; @ M is Noetherian, as required. |

One can define also the concept of a module over a non-commutative
ring. Let R be a unital ring (not necessarily commutative), and let M be an
Abelian group. We say that M is a left R-module if each r € R and m € M
determine an element rm of M, and the identities

r(z+vy) =rz+ry, (r 4+ s)x = ra + sx, (rs)z =r(sz), lr=ux

are satisfied for all x,y € M and r,s € R. Similarly we say that M is a right
R-module if each r € R and m € M determine an element mr of M, and the
identities

(x +y)r = xr + yr, x(r+s) =ar+ xs, x(rs) = (zr)s, xl ==z

are satisfied for all z,y € M and r,s € R. (If R is commutative then the
distinction between left R-modules and right R-modules is simply a question
of notation; this is not the case if R is non-commutative.)

3.3 Noetherian Rings and Hilbert’s Basis Theorem

Let R be a unital commutative ring. We can regard the ring R as an R-
module, where the ring R acts on itself by left multiplication (so that r . r/
is the product rr’ of r and 7’ for all elements r and 7’ of R). We then find
that a subset of R is an ideal of R if and only if it is a submodule of R. The
following result therefore follows directly from Proposition 3.2.

Proposition 3.5 Let R be a unital commutative ring. Then the following
are equivalent:—

(i) (Ascending Chain Condition) if [y C Iy C I3 C --- is an ascending
chain of ideals of R then there exists an integer N such that I, = Iy
for alln > N;

(ii) (Maximal Condition) every non-empty collection of ideals of R has a
mazximal element (i.e., an ideal which is not contained in any other
ideal belonging to the collection);
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(iii) (Finite Basis Condition) every ideal of R is finitely-generated.

Definition A unital commutative ring is said to be a Noetherian ring if every
ideal of the ring is finitely-generated. A Noetherian domain is a Noetherian
ring that is also an integral domain.

Note that a unital commutative ring R is Noetherian if it satisfies any
one of the conditions of Proposition 3.5.

Corollary 3.6 Let M be a finitely-generated module over a Noetherian ring
R. Then M 1is a Noetherian R-module.

Proof Let {z1,7s,...,2;} be a finite generating set for M. Let R* be the
direct sum of k copies of R, and let ¢: R¥ — M be the homomorphism of
R-modules sending (r1,79,...,7) € R¥ to

Ty +1roXo + - -+ LT

It follows from Corollary 3.4 that RF is a Noetherian R-module (since the
Noetherian ring R is itself a Noetherian R-module). Moreover M is isomor-
phic to RF/ker o, since ¢: R¥ — M is surjective. It follows from Proposi-
tion 3.3 that M is Noetherian, as required. |}

If I is a proper ideal of a Noetherian ring R then the collection of all
proper ideals of R that contain the ideal I is clearly non-empty (since [
itself belongs to the collection). It follows immediately from the Maximal
Condition that I is contained in some maximal ideal of R.

Lemma 3.7 Let R be a Noetherian ring, and let I be an ideal of R. Then
the quotient ring R/I is Noetherian.

Proof Let L be an ideal of R/I, and let J={x € R: [ +x € L}. Then J
is an ideal of R, and therefore there exists a finite subset {ay,as, ..., a} of
J which generates J. But then L is generated by I + a; for : = 1,2,... k.
Indeed every element of L is of the form I + x for some x € J, and if

T =1riay +reao + - -+ rrag
, where r1,7r5,...,1r € R, then
I+z=r(I+a)+r(l+a)+- - +r(Il+ag),

as required. |
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Hilbert showed that if R is a field or is the ring Z of integers, then every
ideal of R[zy,xs,. .., x,] is finitely-generated. The method that Hilbert used
to prove this result can be generalized to yield the following theorem.

Theorem 3.8 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then so
is the polynomial ring R[z].

Proof Let I be an ideal of R[z], and, for each non-negative integer n, let
I,, denote the subset of R consisting of those elements of R that occur as
leading coefficients of polynomials of degree n belonging to I, together with
the zero element of R. Then [, is an ideal of R. Moreover I, C I, for if
p(z) is a polynomial of degree n belonging to I then zp(z) is a polynomial of
degree n+1 belonging to I which has the same leading coefficient. Thus Iy C
I C I, C --- is an ascending chain of ideals of R. But the Noetherian ring
R satisfies the Ascending Chain Condition (see Proposition 3.5). Therefore
there exists some natural number m such that I,, = I,, for all n > m.

Now each ideal I, is finitely-generated, hence, for each n < m, we can
choose a finite set {a,1,an2,-..,ank, } which generates I,,. Moreover each
generator a,; is the leading coefficient of some polynomial ¢, ; of degree n
belonging to I. Let J be the ideal of R[z] generated by the polynomials g, ;
forall 0 <n <mand 1 <4 <k, Then J is finitely-generated. We shall
show by induction on degp that every polynomial p belonging to I must
belong to J, and thus [ = J. Now if p € [ and degp = 0 then p is a constant
polynomial whose value belongs to Iy (by definition of Ij), and thus p is a
linear combination of the constant polynomials qo; (since the values ag; of
the constant polynomials qq; generate Iy), showing that p € J. Thus the
result holds for all p € I of degree 0.

Now suppose that p € I is a polynomial of degree n and that the result
is true for all polynomials p in I of degree less than n. Consider first the
case when n < m. Let b be the leading coefficient of p. Then there exist
c1,Co,...,C, € R such that

b= cian1 + Colna + -+ + Cp, An i,
since @n 1,an2, ..., 0y, generate the ideal I, of R. Then
p(x) = c1n1 () + c2gna(z) + - + crqnr(x) + 1(2),

where r € I and degr < degp. It follows from the induction hypothesis that
r € J. But then p € J. This proves the result for all polynomials p in [
satisfying degp < m.

Finally suppose that p € [ is a polynomial of degree n where n > m, and
that the result has been verified for all polynomials of degree less than n.
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Then the leading coefficient b of p belongs to I,,. But I,, = I,,,, since n > m.
As before, we see that there exist ¢y, ¢, ..., ¢k, € R such that

b= cC1am1 + Colma + -+ + Cr, Ok,
since 1, Am 2, - - -, A, generate the ideal I, of R. Then
p(r) = 18" " g (@) + 2" Mg (x) + -+ " g p(z) + (),

where r € I and degr < degp. It follows from the induction hypothesis that
r € J. But then p € J. This proves the result for all polynomials p in [
satisfying degp > m. Therefore I = J, and thus [ is finitely-generated, as
required. ||

Theorem 3.9 Let R be a Noetherian ring. Then the ring Rlzy,xo,. .., xy)
of polynomials in the indeterminates x1, To, . . ., T, with coefficients in R is a
Noetherian ring.

Proof It is easy to see that R[xri,zs,...,x,] is naturally isomorphic to
R[x1,%9,...,2n_1][x,] when n > 1. (Any polynomial in the indeterminates
X1, To, ..., T, with coefficients in the ring R may be viewed as a polyno-
mial in the indeterminate x,, whose coefficients are in the polynomial ring
Rlxy,z9,...,2,1].) The required results therefore follows from Hilbert’s
Basis Theorem (Theorem 3.8) by induction on n. |

Corollary 3.10 Let K be a field. Then every ideal of the polynomial ring
Kz, x9,...,x,] is finitely-generated.
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