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9 Integral Domains

9.1 Factorization in Integral Domains

An integral domain is a unital commutative ring in which the product of any
two non-zero elements is itself a non-zero element.

Lemma 9.1 Let x, y and z be elements of an integral domain. Suppose that
x 6= 0 and xy = xz. Then y = z.

Proof Suppose that these elements x, y and z satisfy xy = xz. Then x(y −
z) = 0. Now the definition of an integral domain ensures that if a product of
elements of an integral domain is zero, then at least one of the factors must
be zero. Thus if x 6= 0 and x(y − z) = 0 then y − z = 0. But then x = y, as
required.

Definition An element u of an integral domain R is said to be a unit if
there exists some element u−1 of R such that uu−1 = 1.

If u and v are units in an integral domain R then so are u−1 and uv.
Indeed (uv)(v−1u−1) = 1, and thus (uv)−1 = v−1u−1. The set of units of R
is thus a group with respect to the operation of multiplication.

Example The units of the ring Z of integers are 1 and −1.

Example Let K be a field. Then the units of the polynomial ring K[x] are
the non-zero constant polynomials.

Definition Elements x and y of an integral domain R are said to be asso-
ciates if y = xu (and x = yu−1) for some unit u.

An ideal of a ring R is a subset I of R with the property that 0 ∈ I,
x + y ∈ I, −x ∈ I, rx ∈ I and xr ∈ I for all x, y ∈ I and r ∈ R. A set X
of elements of the ring R is said to generate the ideal I if there is no ideal J
of R for which X ⊂ J ⊂ I and J 6= I. The ideal generated by a subset X
of R is the intersection of all ideals of R that contain this subset X. The
following lemma characterizes the elements of ideals generated by subsets of
unital commutative rings.

Lemma 9.2 Let R be a unital commutative ring, and let X be a subset of
R. Then the ideal generated by X coincides with the set of all elements of
R that can be expressed as a finite sum of the form r1x1 + r2x2 + · · ·+ rkxk,
where x1, x2, . . . , xk ∈ X and r1, r2, . . . , rk ∈ R.
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Proof Let I be the subset of R consisting of all these finite sums. If J is any
ideal of R which contains the set X then J must contain each of these finite
sums, and thus I ⊂ J . Let a and b be elements of I. It follows immediately
from the definition of I that 0 ∈ I, a + b ∈ I, −a ∈ I, and ra ∈ I for all
r ∈ R. Also ar = ra, since R is commutative, and thus ar ∈ I. Thus I
is an ideal of R. Moreover X ⊂ I, since the ring R is unital and x = 1x
for all x ∈ X. Thus I is the smallest ideal of R containing the set X, as
required.

Definition A principal ideal of an integral domain R is an ideal (x) gener-
ated by a single element x of R.

Let x and y be elements of an integral domain R. We write x | y if and
only if x divides y (i.e., y = rx for some r ∈ R). Now x | y if and only if
y ∈ (x), where (x) is the principal ideal of R generated by x. Thus x | y if
and only if (y) ⊂ (x). Moreover an element u of R is a unit of R if and only
if (u) = R.

Example Non zero integers x and y are associates in the ring Z of integers
if and only if |x| = |y|.

Example Let K be a field. Then non-zero polynomials p(x) and q(x) with
coefficients in the field K are associates in the polynomial ring K[x] if and
only if one polynomial is a constant multiple of the other.

Lemma 9.3 Elements x and y of an integral domain R are associates if and
only if x|y and y|x.

Proof If x and y are associates then clearly each divides the other. Con-
versely suppose that x|y and y|x. If x = 0 or y = 0 there is nothing to
prove. If x and y are non-zero then y = xu and x = yv for some u, v ∈ R. It
follows that x = xuv and thus x(uv − 1) = 0. But then uv = 1, since x 6= 0
and the product of any two non-zero elements of an integral domain is itself
non-zero. Thus u and v are units of R, and hence x and y are associates, as
required.

Lemma 9.4 Elements x and y of an integral domain R are associates if and
only if (x) = (y).

Proof This follows directly from Lemma 9.3.

Definition An element x of an integral domain R is irreducible if x is not
a unit of R and, given any factorization of x of the form x = yz, one of the
factors y and z is a unit of R and the other is an associate of x.
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Example An integer n is an irreducible element of the ring Z of integers if
and only if |n| is a prime number.

Definition An element p of an integral domain R is said to be prime if p is
neither zero nor a unit and, given any two elements r and s of R such that
p | rs, either p | r or p | s.

Lemma 9.5 Any prime element of an integral domain is irreducible.

Proof Let x be a prime element of an integral domain R. Then x is neither
zero nor a unit of R. Suppose that x = yz for some y, z ∈ R. Then either x|y
or x|z. If x|y, then it follows from Lemma 9.3 that x and y are associates,
in which case z is a unit of R. If x|z then x and z are associates and y is a
unit of R. Thus x is irreducible.

Let R be an integral domain, and let I be an ideal of R. A finite list
g1, g2, . . . , gk of elements of I is said to generate the ideal I if

I = {r1g1 + r2g2 + · · ·+ rkgk : r1, r2, . . . , rk ∈ R}.

The ideal I is said to be finitely-generated if there exists a finite list of
elements of I that generate I. Note that if elements g1, g2, . . . , gk of an ideal I
generate that ideal, then any element of R that divides each of g1, g2, . . . , gk
will divide every element of the ideal I.

Proposition 9.6 Let R be an integral domain. Suppose that every ideal of
R is finitely generated. Then any non-zero element of R that is not a unit of
R can be factored as a finite product of irreducible elements of R.

Proof Let R be an integral domain, and let S be the subset of R consisting
of zero, all units of R, and all finite products of irreducible elements of R.
Then xy ∈ S for all x ∈ S and y ∈ S. We shall prove that if R \ S is
non-empty, then R contains an ideal that is not finitely generated.

Let x be an element of R \ S. Then x is non-zero and is neither a unit
nor an irreducible element of R, and therefore there exist elements y and z
of R, such that x = yz and neither y nor z is a unit of R. Then neither y
not z is an associate of x. Moreover either y ∈ R \ S or z ∈ R \ S, since the
product of any two elements of S belongs to S. Thus we may construct, by
induction on n, an infinite sequence x1, x2, x3, . . . of elements of R \ S such
that x1 = x, xn+1 divides xn but is not an associate of xn for all n ∈ N .
Thus if m and n are natural numbers satisfying m < n, then xn divides xm
but xm does not divide xn.
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Let I = {r ∈ R : xn|r for some n ∈ N}. Then I is an ideal of R. We
claim that this ideal is not finitely generated.

Let g1, g2, . . . , gk be a finite list of elements of I. Now there exists some
natural number m large enough to ensure that that xm|gj for j = 1, 2, . . . , k.
If I were generated by these elements g1, g2, . . . , gk, then xm|r for all r ∈ I.
In particular xm would divide all xn for all n ∈ N, which is impossible. Thus
the ideal I cannot be finitely generated.

We have shown that if the set S defined above is a proper subset of some
integral domain R, then R contains some ideal that is not finitely generated.
The result follows.

9.2 Euclidean Domains

Definition Let R be an integral domain, and let R∗ denote the set R\{0} of
non-zero elements of R. An integer-valued function ϕ:R∗ → Z defined on R∗

is said to be a Euclidean function if it satisfies the following properties:—

(i) ϕ(r) ≥ 0 for all r ∈ R∗;

(ii) if x, y ∈ R∗ satisfy x|y then ϕ(x) ≤ ϕ(y);

(iii) given x, y ∈ R∗, there exist q, r ∈ R such that x = qy+ r, where either
r = 0 or ϕ(r) < ϕ(y).

Definition A Euclidean domain is an integral domain on which is defined
a Euclidean function.

Example Let Z∗ denote the set of non-zero integers, and let ϕ: Z∗ → Z be
the function defined such that ϕ(x) = |x| for all non-zero integers x. Then
ϕ is a Euclidean function. It follows that Z is a Euclidean domain.

Example Let K be a field, and let K[x] be the ring of polynomials in a
single indeterminate x with coefficients in the field K. The degree deg p of
each non-zero polynomial p is a non-negative integer. If p and q are non-zero
polynomials in K[x], and if p divides q, then deg p ≤ deg q. Also, given any
non-zero polynomials m and p in K[x] there exist polynomials q, r ∈ K[x]
such that p = qm + r and either r = 0 or else deg r < degm. We conclude
from this that the function that maps each non-zero polynomial in K[x] to
its degree is a Euclidean function for K[x]. Thus K[x] is a Euclidean domain.

Example A Gaussian integer is a complex number of the form x + y
√
−1,

where x and y are integers. The set of all Gaussian integers is a subring of the
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field of complex numbers, and is an integral domain. We denote the ring of
Gaussian integers by Z[

√
−1]. We define ϕ(z) = |z|2 for all non-zero Gaussian

integers z. Then ϕ(z) is an non-negative integer for all non-zero Gaussian
integers z, for if z = x + y

√
−1, where x, y ∈ Z, then ϕ(z) = x2 + y2. If z

and w are non-zero Gaussian integers, and if z divides w in the ring Z[
√
−1],

then there exists a non-zero Gaussian integer t such that w = tz. But then
ϕ(w) = ϕ(t)ϕ(z), where ϕ(t) ≥ 1, and therefore ϕ(z) ≤ ϕ(w).

Let z and w be non-zero Gaussian integers. Then the ratio z/w lies in
some square in the complex plane, where the sides of the square are of unit
length, and the corners of the square are given by Gaussian integers. There
is at least one corner of the square whose distance from z/w does not exceed
1/
√

2. Thus there exists some Gaussian integer q such that∣∣∣ z
w
− q
∣∣∣ ≤ 1√

2
.

Let r = z − qw. Then either r = 0, or else

ϕ(r) = |r|2 =
∣∣∣ z
w
− q
∣∣∣2 |w|2 =

∣∣∣ z
w
− q
∣∣∣2 ϕ(w) ≤ 1

2
ϕ(w) < ϕ(w).

Thus the function that maps each non-zero Gaussian integer z to the positive
integer |z|2 is a Euclidean function for the ring of Gaussian integers. The
ring Z[

√
−1] of Gaussian integers is thus a Euclidean domain.

Each unit of the ring of Gaussian integers divides every other non-zero
Gaussian integer. Thus if u is a unit of this ring then ϕ(u) ≤ ϕ(z) for all non-
zero Gaussian integers z. It follows that ϕ(u) = 1. Now the only Gaussian
integers satisfying this condition are 1, −1, i and −i (where i =

√
−1).

Moreover each of these Gaussian integers is a unit. We conclude from this
that the units of the ring of Gaussian integers are 1, −1, i and −i.

Proposition 9.7 Every ideal of a Euclidean domain is a principal ideal.

Proof Let R be a Euclidean domain, let R∗ be the set of non-zero elements
of R, and let ϕ:R∗ → Z be a Euclidean function. Now the zero ideal of R is
generated by the zero element of R. It remains therefore to show that every
non-zero ideal of R is a principal ideal.

Let I be a non-zero ideal of R. Now

{ϕ(x) : x ∈ I and x 6= 0}

is a set of non-negative integers, and therefore has a least element. It follows
that there exists some non-zero elementm of I with the property that ϕ(m) ≤
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ϕ(x) for all non-zero elements x of I. It then follows from the definition of
Euclidean functions that, given any non-zero element x of the ideal I, there
exist elements q and r of R such that x = qm + r and either r = 0 or
ϕ(r) < ϕ(m). But then r ∈ I, since r = x − qm and x,m ∈ I. But there
are no non-zero elements r of I satisfying ϕ(r) < ϕ(m). It follows therefore
that r = 0. But then x = qm, and thus x ∈ (m). We have thus shown that
I = (m). Thus every non-zero ideal of R is a principal ideal, as required.

9.3 Principal Ideal Domains

Definition An integral domain R is said to be a principal ideal domain (or
PID) if every ideal of R is a principal ideal.

It follows directly from Proposition 9.7 that every Euclidean domain is a
principal ideal domain.

In particular the ring Z of integers is a principal ideal domain, the ring
K[x] of polynomials with coefficients in some field K is a principal ideal
domain, and the ring Z[

√
−1] of Gaussian integers is a principal ideal domain.

Lemma 9.8 Let x1, x2, . . . , xk be elements of a principal ideal domain R,
where these elements are not all zero. Suppose that the units of R are the
only non-zero elements of R that divide each of x1, x2, . . . , xk. Then there
exist elements a1, a2, . . . , ak of R such that a1x1 + a2x2 + · · ·+ akxk = 1.

Proof Let I be the ideal of R generated by x1, x2, . . . , xk. Then I = (d)
for some d ∈ R, since R is a principal ideal domain. Then d divides xi for
i = 1, 2, . . . , k, and therefore d is a unit of R. It follows that I = R. But then
1 ∈ I, and therefore 1 = a1x1 + a2x2 + · · ·+ akxk for some a1, a2, . . . , ak ∈ R,
as required.

Lemma 9.9 Let p be an irreducible element of a principal ideal domain R.
Then the quotient ring R/(p) is a field.

Proof Let x be an element of R that does not belong to (p). Then p does
not divide x, and therefore any common divisor of x and p must be a unit
of R. Therefore there exist elements y and z of R such that xy + pz = 1
(Lemma 9.8). But then y + (p) is a multiplicative inverse of x + (p) in the
quotient ring R/(p), and therefore the set of non-zero elements of R/(p) is
an Abelian group with respect to multiplication. Thus R/(p) is a field, as
required.

Theorem 9.10 An element of a principal ideal domain is prime if and only
if it is irreducible.
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Proof We have already shown that any prime element of an integral domain
is irreducible (Lemma 9.5). Let p be an irreducible element of a principal
ideal domain R. Then p is neither zero nor a unit of R. Suppose that p | yz
for some y, z ∈ R. Now any divisor of p is either an associate of p or a unit
of R. Thus if p does not divide y then any element of R that divides both p
and y must be a unit of R. Therefore there exist elements a and b of R such
that ap+ by = 1 (Lemma 9.8). But then z = apz + byz, and hence p divides
z. Thus p is prime, as required.

9.4 Unique Factorization in Principal Ideal Domains

A direct application of Proposition 9.6 shows that any non-zero element of a
principal ideal domain that is not a unit can be factored as a finite product
of irreducible elements of the domain. Moreover Theorem 9.10 ensures that
these irreducible factors are prime elements of the domain. The following
proposition ensures that these prime factors are essentially unique. Indeed
this proposition guarantees that if some element x of the domain satisfies

x = p1p2 · · · pk = q1q2, · · · , ql,

where p1, p2, . . . , pk and q1, q2, . . . , ql are prime elements of R, then l = k, and
moreover q1, q1, . . . , qk may be reordered and relabelled to ensure that, given
any value i between 1 and k, the corresponding prime factors pi and qi are
associates. There will then exist units u1, u2, . . . , uk of R such that qi = uipi
for i = 1, 2, . . . , k.

Proposition 9.11 Let R be a principal ideal domain, and let x be an non-
zero element of R that is not a unit of R. Suppose that

x = p1p2 · · · pk = q1q2, · · · , ql,

where p1, p2, . . . , pk and q1, q2, . . . , ql are prime elements of R. Then l = k,
and there exists some permutation σ of {1, 2, . . . , k} such that qi and pσ(i)

are associates for i = 1, 2, . . . , k.

Proof Let k be an integer greater than 1, and suppose that the stated result
holds for all non-zero elements of R that are not units of R and that can be
factored as a product of fewer than k prime elements of R. We shall prove
that the result then holds for any non-zero element x of R that is not a unit
of R and that can be factored as a product p1p2 · · · pk of k prime elements
p1, p2, . . . , pk of R. The required result will then follow by induction on k.
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So, suppose that x is an non-zero element of R that is not a unit of R,
and that

x = p1p2 · · · pk = q1q2, · · · , ql,
where p1, p2, . . . , pk and q1, q2, . . . , ql are prime elements of R. Now p1 divides
the product q1q2, · · · , ql, and therefore p1 divides at least one of the factors qi
of this product. We may reorder and relabel the prime elements q1, q2, . . . ql
to ensure that p1 divides q1. The irreducibility of q1 then ensures that p1

is an associate of q1, and therefore there exists some unit u in R such that
q1 = p1u. But then p1(p2p3 · · · pk) = p1(uq2q3 · · · ql) and p1 6= 0, and therefore
p2p3 · · · pk = (uq2)q3 · · · ql. (see Lemma 9.1). Moreover uq2 is a prime element
of R that is an associate of q2. Now it follows from the induction hypothesis
that the desired result holds for the product p2p3 · · · pk. Therefore l = k and
moreover q2, q3, . . . , qk can be reordered and relabeled so that pi and qi are
associates for i = 2, 3, . . . , k. The stated result therefore follows by induction
on the number of prime factors occuring in the product p1p2 · · · pk.

10 Modules

10.1 Modules over a Unital Commutative Ring

Definition Let R be a unital commutative ring. A set M is said to be a
module over R (or R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and rx of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1x = x

are satisfied for all x, y ∈M and r, s ∈ R.

Example If K is a field, then a K-module is by definition a vector space
over K.

Example Let (M,+) be an Abelian group, and let x ∈M . If n is a positive
integer then we define nx to be the sum x + x + · · · + x of n copies of x. If
n is a negative integer then we define nx = −(|n|x), and we define 0x = 0.
This enables us to regard any Abelian group as a module over the ring Z of
integers. Conversely, any module over Z is also an Abelian group.
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Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion.

Let R be a unital commutative ring, and let M be an R-module. A
subset L of M is said to be a submodule of M if x + y ∈ L and rx ∈ L for
all x, y ∈ L and r ∈ R. If M is an R-module and L is a submodule of M
then the quotient group M/L can itself be regarded as an R-module, where
r(L + x) ≡ L + rx for all L + x ∈ M/L and r ∈ R. The R-module M/L is
referred to as the quotient of the module M by the submodule L.

Note that a subset I of a unital commutative ring R is a submodule of R
if and only if I is an ideal of R.

Let M and N be modules over some unital commutative ring R. A
function ϕ:M → N is said to be a homomorphism of R-modules if ϕ(x+y) =
ϕ(x)+ϕ(y) and ϕ(rx) = rϕ(x) for all x, y ∈M and r ∈ R. A homomorphism
of R-modules is said to be an isomorphism if it is invertible. The kernel
kerϕ and image ϕ(M) of any homomorphism ϕ:M → N are themselves R-
modules. Moreover if ϕ:M → N is a homomorphism of R-modules, and if L
is a submodule of M satisfying L ⊂ kerϕ, then ϕ induces a homomorphism
ϕ:M/L→ N . This induced homomorphism is an isomorphism if and only if
L = kerϕ and N = ϕ(M).

Definition Let M1,M2, . . . ,Mk be modules over a unital commutative ring
R. The direct sum M1 ⊕M2 ⊕ · · · ⊕Mk is defined to be the set of ordered
k-tuples (x1, x2, . . . , xk), where xi ∈ Mi for i = 1, 2, . . . , k. This direct sum
is itself an R-module:

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk),

r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all xi, yi ∈Mi and r ∈ R.

If K is any field, then Kn is the direct sum of n copies of K.

Definition Let M be a module over some unital commutative ring R. Given
any subset X of M , the submodule of M generated by the set X is defined
to be the intersection of all submodules of M that contain the set X. It
is therefore the smallest submodule of M that contains the set X. An R-
module M is said to be finitely-generated if it is generated by some finite
subset of itself.
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Lemma 10.1 Let M be a module over some unital commutative ring R,
and let {x1, x2, . . . , xk} be a finite subset of M . Then the submodule of M
generated by this set consists of all elements of M that are of the form

r1x1 + r2x2 + · · ·+ rkxk

for some r1, r2, . . . , rk ∈ R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M . Moreover it is contained in every submodule of M that
contains the set {x1, x2, . . . , xk}. The result follows.

10.2 Noetherian Modules

Definition Let R be a unital commutative ring. An R-module M is said to
be Noetherian if every submodule of M is finitely-generated.

Proposition 10.2 Let R be a unital commutative ring, and let M be a mod-
ule over R. Then the following are equivalent:—

(i) (Ascending Chain Condition) if L1 ⊂ L2 ⊂ L3 ⊂ · · · is an ascending
chain of submodules of M then there exists an integer N such that
Ln = LN for all n ≥ N ;

(ii) (Maximal Condition) every non-empty collection of submodules of M
has a maximal element (i.e., an submodule which is not contained in
any other submodule belonging to the collection);

(iii) (Finite Basis Condition) M is a Noetherian R-module (i.e., every sub-
module of M is finitely-generated).

Proof Suppose that M satisfies the Ascending Chain Condition. Let C be
a non-empty collection of submodules of M . Choose L1 ∈ C. If C were to
contain no maximal element then we could choose, by induction on n, an
ascending chain L1 ⊂ L2 ⊂ L3 ⊂ · · · of submodules belonging to C such that
Ln 6= Ln+1 for all n, which would contradict the Ascending Chain Condition.
Thus M must satisfy the Maximal Condition.

Next suppose that M satisfies the Maximal Condition. Let L be an sub-
module of M , and let C be the collection of all finitely-generated submodules
of M that are contained in L. Now the zero submodule {0} belongs to C,
hence C contains a maximal element J , and J is generated by some finite
subset {a1, a2, . . . , ak} of M . Let x ∈ L, and let K be the submodule gen-
erated by {x, a1, a2, . . . , ak}. Then K ∈ C, and J ⊂ K. It follows from the
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maximality of J that J = K, and thus x ∈ J . Therefore J = L, and thus L
is finitely-generated. Thus M must satisfy the Finite Basis Condition.

Finally suppose that M satisfies the Finite Basis Condition. Let L1 ⊂
L2 ⊂ L3 ⊂ · · · be an ascending chain of submodules of M , and let L be the

union
+∞⋃
n=1

Ln of the submodules Ln. Then L is itself an submodule of M .

Indeed if a and b are elements of L then a and b both belong to Ln for some
sufficiently large n, and hence a+ b, −a and ra belong to Ln, and thus to L,
for all r ∈M . But the submodule L is finitely-generated. Let {a1, a2, . . . , ak}
be a generating set of L. Choose N large enough to ensure that ai ∈ LN for
i = 1, 2, . . . , k. Then L ⊂ LN , and hence LN = Ln = L for all n ≥ N . Thus
M must satisfy the Ascending Chain Condition, as required.

Proposition 10.3 Let R be a unital commutative ring, let M be an R-
module, and let L be a submodule of M . Then M is Noetherian if and only
if L and M/L are Noetherian.

Proof Suppose that the R-module M is Noetherian. Then the submodule L
is also Noetherian, since any submodule of L is also a submodule of M and
is therefore finitely-generated. Also any submodule K of M/L is of the form
{L + x : x ∈ J} for some submodule J of M satisfying L ⊂ J . But J
is finitely-generated (since M is Noetherian). Let x1, x2, . . . , xk be a finite
generating set for J . Then

L+ x1, L+ x2, . . . , L+ xk

is a finite generating set for K. Thus M/L is Noetherian.
Conversely, suppose that L and M/L are Noetherian. We must show that

M is Noetherian. Let J be any submodule of M , and let ν(J) be the image of
J under the quotient homomorphism ν:M →M/L, where ν(x) = L+ x for
all x ∈M . Then ν(J) is a submodule of the Noetherian module M/L and is
therefore finitely-generated. It follows that there exist elements x1, x2, . . . , xk
of J such that ν(J) is generated by

L+ x1, L+ x2, . . . , L+ xk.

Also J ∩ L is a submodule of the Noetherian module L, and therefore there
exists a finite generating set y1, y2, . . . , ym for J ∩ L. We claim that

{x1, x2, . . . , xk, y1, y2, . . . , ym}

is a generating set for J .
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Let z ∈ J . Then there exist r1, r2, . . . , rk ∈ R such that

ν(z) = r1(L+x1)+r2(L+x2)+ · · ·+rk(L+xk) = L+r1x1 +r2x2 + · · ·+rkxk.

But then z−(r1x1 +r2x2 + · · ·+rkxk) ∈ J∩L (since L = ker ν), and therefore
there exist s1, s2, . . . , sm such that

z − (r1x1 + r2x2 + · · ·+ rkxk) = s1y1 + s2y2 + · · ·+ smym,

and thus

z =
k∑
i=1

rixi +
m∑
j=1

siyi.

This shows that the submodule J of M is finitely-generated. We deduce that
M is Noetherian, as required.

Corollary 10.4 The direct sum M1⊕M2⊕ · · ·⊕Mk of Noetherian modules
M1,M2, . . . Nk over some unital commutative ring R is itself a Noetherian
module over R.

Proof The result follows easily by induction on k once it has been proved
in the case k = 2.

Let M1 and M2 be Noetherian R-modules. Then M1⊕{0} is a Noetherian
submodule of M1 ⊕M2 isomorphic to M1, and the quotient of M1 ⊕M2 by
this submodule is a Noetherian R-module isomorphic to M2. It follows from
Proposition 10.3 that M1 ⊕M2 is Noetherian, as required.

One can define also the concept of a module over a non-commutative
ring. Let R be a unital ring (not necessarily commutative), and let M be an
Abelian group. We say that M is a left R-module if each r ∈ R and m ∈M
determine an element rm of M , and the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx, (rs)x = r(sx), 1x = x

are satisfied for all x, y ∈M and r, s ∈ R. Similarly we say that M is a right
R-module if each r ∈ R and m ∈M determine an element mr of M , and the
identities

(x+ y)r = xr + yr, x(r + s) = xr + xs, x(rs) = (xr)s, x1 = x

are satisfied for all x, y ∈ M and r, s ∈ R. (If R is commutative then the
distinction between left R-modules and right R-modules is simply a question
of notation; this is not the case if R is non-commutative.)

12



10.3 Noetherian Rings and Hilbert’s Basis Theorem

Let R be a unital commutative ring. We can regard the ring R as an R-
module, where the ring R acts on itself by left multiplication (so that r . r′

is the product rr′ of r and r′ for all elements r and r′ of R). We then find
that a subset of R is an ideal of R if and only if it is a submodule of R. The
following result therefore follows directly from Proposition 10.2.

Proposition 10.5 Let R be a unital commutative ring. Then the following
are equivalent:—

(i) (Ascending Chain Condition) if I1 ⊂ I2 ⊂ I3 ⊂ · · · is an ascending
chain of ideals of R then there exists an integer N such that In = IN
for all n ≥ N ;

(ii) (Maximal Condition) every non-empty collection of ideals of R has a
maximal element (i.e., an ideal which is not contained in any other
ideal belonging to the collection);

(iii) (Finite Basis Condition) every ideal of R is finitely-generated.

Definition A unital commutative ring is said to be a Noetherian ring if every
ideal of the ring is finitely-generated. A Noetherian domain is a Noetherian
ring that is also an integral domain.

Note that a unital commutative ring R is Noetherian if it satisfies any
one of the conditions of Proposition 10.5.

Corollary 10.6 Let M be a finitely-generated module over a Noetherian ring
R. Then M is a Noetherian R-module.

Proof Let {x1, x2, . . . , xk} be a finite generating set for M . Let Rk be the
direct sum of k copies of R, and let ϕ:Rk → M be the homomorphism of
R-modules sending (r1, r2, . . . , rk) ∈ Rk to

r1x1 + r2x2 + · · ·+ rkxk.

It follows from Corollary 10.4 that Rk is a Noetherian R-module (since the
Noetherian ring R is itself a Noetherian R-module). Moreover M is isomor-
phic to Rk/ kerϕ, since ϕ:Rk → M is surjective. It follows from Proposi-
tion 10.3 that M is Noetherian, as required.

If I is a proper ideal of a Noetherian ring R then the collection of all
proper ideals of R that contain the ideal I is clearly non-empty (since I
itself belongs to the collection). It follows immediately from the Maximal
Condition that I is contained in some maximal ideal of R.
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Lemma 10.7 Let R be a Noetherian ring, and let I be an ideal of R. Then
the quotient ring R/I is Noetherian.

Proof Let L be an ideal of R/I, and let J = {x ∈ R : I + x ∈ L}. Then J
is an ideal of R, and therefore there exists a finite subset {a1, a2, . . . , ak} of
J which generates J . But then L is generated by I + ai for i = 1, 2, . . . , k.
Indeed every element of L is of the form I + x for some x ∈ J , and if

x = r1a1 + r2a2 + · · ·+ rkak

, where r1, r2, . . . , rk ∈ R, then

I + x = r1(I + a1) + r2(I + a2) + · · ·+ rk(I + ak),

as required.

Hilbert showed that if R is a field or is the ring Z of integers, then every
ideal of R[x1, x2, . . . , xn] is finitely-generated. The method that Hilbert used
to prove this result can be generalized to yield the following theorem.

Theorem 10.8 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then
so is the polynomial ring R[x].

Proof Let I be an ideal of R[x], and, for each non-negative integer n, let
In denote the subset of R consisting of those elements of R that occur as
leading coefficients of polynomials of degree n belonging to I, together with
the zero element of R. Then In is an ideal of R. Moreover In ⊂ In+1, for if
p(x) is a polynomial of degree n belonging to I then xp(x) is a polynomial of
degree n+1 belonging to I which has the same leading coefficient. Thus I0 ⊂
I1 ⊂ I2 ⊂ · · · is an ascending chain of ideals of R. But the Noetherian ring
R satisfies the Ascending Chain Condition (see Proposition 10.5). Therefore
there exists some natural number m such that In = Im for all n ≥ m.

Now each ideal In is finitely-generated, hence, for each n ≤ m, we can
choose a finite set {an,1, an,2, . . . , an,kn} which generates In. Moreover each
generator an,i is the leading coefficient of some polynomial qn,i of degree n
belonging to I. Let J be the ideal of R[x] generated by the polynomials qn,i
for all 0 ≤ n ≤ m and 1 ≤ i ≤ kn. Then J is finitely-generated. We shall
show by induction on deg p that every polynomial p belonging to I must
belong to J , and thus I = J . Now if p ∈ I and deg p = 0 then p is a constant
polynomial whose value belongs to I0 (by definition of I0), and thus p is a
linear combination of the constant polynomials q0,i (since the values a0,i of
the constant polynomials q0,i generate I0), showing that p ∈ J . Thus the
result holds for all p ∈ I of degree 0.
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Now suppose that p ∈ I is a polynomial of degree n and that the result
is true for all polynomials p in I of degree less than n. Consider first the
case when n ≤ m. Let b be the leading coefficient of p. Then there exist
c1, c2, . . . , ckn ∈ R such that

b = c1an,1 + c2an,2 + · · ·+ cknan,kn ,

since an,1, an,2, . . . , an,kn generate the ideal In of R. Then

p(x) = c1qn,1(x) + c2qn,2(x) + · · ·+ ckqn,k(x) + r(x),

where r ∈ I and deg r < deg p. It follows from the induction hypothesis that
r ∈ J . But then p ∈ J . This proves the result for all polynomials p in I
satisfying deg p ≤ m.

Finally suppose that p ∈ I is a polynomial of degree n where n > m, and
that the result has been verified for all polynomials of degree less than n.
Then the leading coefficient b of p belongs to In. But In = Im, since n ≥ m.
As before, we see that there exist c1, c2, . . . , ckm ∈ R such that

b = c1am,1 + c2am,2 + · · ·+ cknam,km ,

since am,1, am,2, . . . , am,km generate the ideal In of R. Then

p(x) = c1x
n−mqm,1(x) + c2x

n−mqm,2(x) + · · ·+ ckx
n−mqm,k(x) + r(x),

where r ∈ I and deg r < deg p. It follows from the induction hypothesis that
r ∈ J . But then p ∈ J . This proves the result for all polynomials p in I
satisfying deg p > m. Therefore I = J , and thus I is finitely-generated, as
required.

Theorem 10.9 Let R be a Noetherian ring. Then the ring R[x1, x2, . . . , xn]
of polynomials in the indeterminates x1, x2, . . . , xn with coefficients in R is a
Noetherian ring.

Proof It is easy to see to see that R[x1, x2, . . . , xn] is naturally isomorphic
to R[x1, x2, . . . , xn−1][xn] when n > 1. (Any polynomial in the indeter-
minates x1, x2, . . . , xn with coefficients in the ring R may be viewed as a
polynomial in the indeterminate xn with coefficients in the polynomial ring
R[x1, x2, . . . , xn−1].) The required results therefore follows from Hilbert’s
Basis Theorem (Theorem 10.8) by induction on n.

Corollary 10.10 Let K be a field. Then every ideal of the polynomial ring
K[x1, x2, . . . , xn] is finitely-generated.
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11 Algebraic Sets and the Zariski Topology

11.1 Polynomial Rings in Several Variables

A monomial in the independent indeterminates X1, X2, . . . , Xn is by defini-
tion an expression of the form X i1

1 X
i2
2 · · ·X in

n , where i1, i2, . . . , in are non-
negative integers. Such monomials are multiplied according to the rule(

X i1
1 X

i2
2 · · ·X in

n

) (
Xj1

1 X
j2
2 · · ·Xjn

n

)
= X i1+j1

1 X i2+j2
2 · · ·X in+jn

n .

A polynomial p in the independent indeterminates with coefficients in some
ring R is by definition a formal linear combination of the form

r1m1 + r2m2 + · · ·+ rkmk

where r1, r2, . . . , rk ∈ R andm1,m2, . . . ,mk are monomials inX1, X2, . . . , Xn.
The coefficients r1, r2, . . . , rk of this polynomial are uniquely determined,
provided that the monomials m1,m2, . . . ,mk are distinct. Such polynomials
are added and multiplied together in the obvious fashion. In particular(

k∑
i=1

rimi

)(
l∑

j=1

sjm
′
j

)
=

k∑
i=1

l∑
j=1

(risj)(mim
′
j),

where the product mim
′
j of the monomials mi and m′j is defined as de-

scribed above. The set of all polynomials in the independent indeterminates
X1, X2, . . . , Xn with coefficients in the ring R is itself a ring, which we denote
by R[X1, X2, . . . , Xn].

Example The polynomial 2X1X
3
2 − 6X1X2X

2
3 is the product of the poly-

nomials 2X1X2 and X2
2 − 3X2

3 in the ring Z[X1, X2, X3] of polynomials in
X1, X2, X3 with integer coefficients.

Lemma 11.1 Let R be an integral domain. Then the ring R[x] of polynomi-
als in the indeterminate x with coefficients in R is itself an integral domain,
and deg(pq) = deg p+ deg q for all non-zero polynomials p, q ∈ R[x].

Proof The integral domain R is commutative, hence so is R[x]. Moreover
R[x] is unital, and the multiplicative identity element of R[x] is the constant
polynomial whose coefficient is the multiplicative identity element 1 of the
unital ring R.

Let p and q be polynomials in R[x], and let ak and bl be the leading
coefficients of p and q respectively, where k = deg p and l = deg q. Now

p(x)q(x) = akblx
k+l + terms of lower degree.
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Moreover akbl 6= 0, since ak 6= 0, bl 6= 0, and the ring R of coefficients is an
integral domain. Thus if p 6= 0 and q 6= 0 then pq 6= 0, showing that R[x] is
an integral domain, and deg(pq) = k + l = deg p+ deg q, as required.

Let p be a polynomial in the indeterminates X1, X2, . . . , Xn with coeffi-
cients in the ring R, where n > 1. By collecting together terms involving Xj

n

for each non-negative integer j, we can write the polynomial p in the form

p(X1, X2, . . . , Xn) =
k∑
j=0

pj(X1, X2, . . . , Xn−1)Xj
n

where pj ∈ R[X1, X2, . . . , Xn−1] for j = 0, 1, . . . , k. Now the right hand side
of the above identity can be viewed as a polynomial in the indeterminate Xn

with coefficients p1, p2, . . . , pk in the ring R[X1, . . . , Xn−1]. Moreover the
polynomial p uniquely determines and is uniquely determined by the polyno-
mials p1, p2, . . . , pk. It follows from this that the rings R[X1, X2, . . . , Xn] and
R[X1, X2, . . . , Xn−1][Xn] are naturally isomorphic and can be identified with
one another. We can use the identification in order to prove results concern-
ing the structure of the polynomial ring R[X1, X2, . . . , Xn] by induction on
the number n of independent indeterminates X1, X2, . . . , Xn. For example,
the following result follows directly by induction on n, using Lemma 11.1.

Lemma 11.2 Let R be an integral domain. Then the ring R[X1, X2, . . . , Xn]
is also an integral domain.

A monomial X i1
1 X

i2
2 · · ·X in

n is said to be of degree d, where d is some
non-negative integer, if i1 + i2 + · · ·+ in = d.

Definition Let R be a ring. A polynomial p ∈ R[X1, X2, . . . , Xn] is said to
be homogeneous of degree d if it can be expressed as a linear combination of
monomials of degree d with coefficients in the ring R.

Any polynomial p ∈ R[X1, X2, . . . , Xn] can be decomposed as a sum of
the form

p(0) + p(1) + · · ·+ p(k),

where k is some sufficiently large non-negative integer and each polynomial
p(i) is a homogeneous polynomial of degree i. The homogeneous polynomial
p(i) is referred to as the homogeneous component of p of degree i; it is uniquely
determined by p. A non-zero polynomial p is said to be of degree d if p(d) 6= 0
and p(i) = 0 for all i > d. The degree of a non-zero polynomial p is denoted
by deg p.
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Lemma 11.3 Let R be a ring, and let p and q be non-zero polynomials
belonging to R[X1, X2, . . . , Xn]. Then

deg(p+ q) ≤ max(deg p, deg q), provided that p+ q 6= 0,

deg(pq) ≤ deg p+ deg q, provided that pq 6= 0.

Moreover if R is an integral domain then pq 6= 0 and deg(pq) = deg p+deg q.

Proof The inequality (p+ q) ≤ max(deg p, deg q) is obvious. Also p(i)q(j) is
homogeneous of degree i+ j for all i and j, since the product of a monomial
of degree i and a monomial of degree j is a monomial of degree i + j. The
inequality deg(pq) ≤ deg p+ deg q follows immediately.

Now suppose that R is an integral domain. Let k = deg p and l = deg q.
Then the homogeneous component (pq)(k+l) of pq of degree k + l is given
by (pq)(k+l) = p(k)q(l). But R[X1, X2, . . . , Xn] is an integral domain (see
Lemma 11.2), and p(k) and q(l) are both non-zero. It follows that (pq)(k+l) 6= 0,
and thus deg(pq) = deg p+ deg q, as required.

11.2 Algebraic Sets and the Zariski Topology

Throughout this section, let K be a field.

Definition We define affine n-space An over the field K to be the set Kn

of all n-tuples (x1, x2, . . . , xn) with x1, x2, . . . , xn ∈ K.

Where it is necessary to specify explicitly the field K involved, we shall
denote affine n-space over the field K by An(K). Thus An(R) = Rn, and
An(C) = Cn.

Definition A subset of n-dimensional affine space An is said to be an alge-
braic set if it is of the form

{(x1, x2, . . . , xn) ∈ An : f(x1, x2, . . . , xn) = 0 for all f ∈ S}

for some subset S of the polynomial ring K[X1, X2, . . . , Xn].

Example Any point of An is an algebraic set. Indeed, given any point
(a1, a2, . . . , an) of An, let fi(X1, X2, . . . , Xn) = Xi − ai for i = 1, 2, . . . , n.
Then the given point is equal to the set

{(x1, x2, . . . , xn) ∈ An : fi(x1, x2, . . . , xn) = 0 for i = 1, 2, . . . , n}.
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Example The circle {(x, y) ∈ A2(R) : x2 + y2 = 1} is an algebraic set in the
plane A2(R).

Let λ:Kn → K be a linear functional on the vector space Kn (i.e., a linear
transformation from Kn to K). It follows from elementary linear algebra that
there exist b1, b2, . . . , bn ∈ K such that

λ(x1, x2, . . . , xn) = b1x1 + b2x2 + · · ·+ bnxn

for all (x1, x2, . . . , xn) ∈ Kn. Thus if λ1, λ2, . . . , λk are linear functionals on
Kn, and if c1, c2, . . . , ck are suitable constants belonging to the field K then

{(x1, x2 . . . , xn) ∈ An : λi(x1, x2, . . . , xn) = ci for i = 1, 2, . . . , k}

is an algebraic set in An. A set of this type is referred to as an affine subspace
of An. It is said to be of dimension n−k, provided that the linear functionals
λ1, λ2, . . . , λk are linearly independent. It follows directly from elementary
linear algebra that, if we we identify affine n-space An with the vector space
Kn, then a subset of An is an m-dimensional affine subspace if and only if it
is a translate of some m-dimensional vector subspace of Kn (i.e., it is of the
form v + W where v is a point of An and W is some m-dimensional vector
subspace of Kn).

Lemma 11.4 Let V be an algebraic set in An, and let L be a one-dimen-
sional affine subspace of An. Then either L ⊂ V or else L ∩ V is a finite
set.

Proof The affine subspace L is a translate of a one-dimensional subspace
of Kn, and therefore there exist vectors v and w in Kn such that L =
{v + wt : t ∈ K} (on identifying n-dimensional affine space An with the
vector space Kn). Now we can write

V = {(x1, x2, . . . , xn) ∈ An : f(x1, x2, . . . , xn) = 0 for all f ∈ S},

where S is some subset of the polynomial ring K[X1, X2, . . . , Xn]. Now either
each polynomial belonging to S is zero throughout L, in which case L ⊂ V ,
or else there is some f ∈ S which is non-zero at some point of L. Define
g ∈ K[t] by the formula

g(t) = f(v1 + w1t, v2 + w2t, . . . , vn + wnt)

(where vi and wi denote the ith components of the vectors v and w for
i = 1, 2, . . . , n). Then g is a non-zero polynomial in the indeterminate t, and
therefore g has at most finitely many zeros. But g(t) = 0 whenever the point
v + wt of L lies in V . Therefore L ∩ V is finite, as required.
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Example The sets
{(x, y) ∈ A2(R) : y = sinx}

and
{(x, y) ∈ A2(R) : x ≥ 0}

are not algebraic sets in A2(R), since the line y = 0 is not contained in either
of these sets, yet the line intersects these sets at infinitely many points of the
set.

Given any subset S ofK[X1, X2, . . . , Xn], we denote by V (S) the algebraic
set in An defined by

V (S) = {x ∈ An : f(x) = 0 for all f ∈ S}.

Also, given any f ∈ K[X1, X2, . . . , Xn], we define V (f) = V ({f}).
Given any subset Z of An, we define

I(Z) = {f ∈ K[X1, X2, . . . , Xn] : f(x) = 0 for all x ∈ Z}.

Clearly S ⊂ I(V (S)) for all subsets S of K[X1, X2, . . . , Xn], and Z ⊂
V (I(Z)) for all subsets Z of An. If S1 and S2 are subsets of K[X1, X2, . . . , Xn]
satisfying S1 ⊂ S2 then V (S2) ⊂ V (S1). Similarly, if Z1 and Z2 are subsets
of An satisfying Z1 ⊂ Z2 then I(Z2) ⊂ I(Z1).

Lemma 11.5 V (I(V (S))) = V (S) for all subsets S of K[X1, X2, . . . , Xn],
and similarly I(V (I(Z))) = I(Z) for all subsets Z of An.

Proof It follows from the observations above that V (S) ⊂ V (I(V (S))),
since Z ⊂ V (I(Z)) for all subsets Z of An. But also S ⊂ I(V (S)), and
hence V (I(V (S))) ⊂ V (S). Therefore V (I(V (S))) = V (S). An analogous
argument can be used to show that I(V (I(Z))) = I(Z) for all subsets Z of
An.

Let I and J be ideals of a unital commutative ring R. We denote by
IJ the ideal of R consisting of those elements of R that can be expressed
as finite sums of the form i1j1 + i2j2 + · · · + irjr with i1, i2, . . . , ir ∈ I and
j1, j2, . . . , jr ∈ J . (One can readily verify that IJ is indeed an ideal of R.)

Proposition 11.6 Let R = K[X1, X2, . . . , Xn] for some field K. Then

(i) V ({0}) = An and V (R) = ∅;

(ii)
⋂
λ∈Λ V (Iλ) = V

(∑
λ∈Λ Iλ

)
for every collection {Iλ : λ ∈ Λ} of ideals

of R;
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(iii) V (I) ∪ V (J) = V (I ∩ J) = V (IJ) for all ideals I and J of R.

Thus there is a well-defined topology on An (known as the Zariski topology)
whose closed sets are the algebraic sets in An.

Proof (i) is immediate.
If µ ∈ Λ then Iµ ⊂

∑
λ∈Λ Iλ, and therefore V

(∑
λ∈Λ Iλ

)
⊂ V (Iµ). Thus

V
(∑

λ∈Λ Iλ
)
⊂
⋂
λ∈Λ V (Iλ). Conversely if x is a point of

⋂
λ∈Λ V (Iλ) then

f(x) = 0 for all λ ∈ Λ and f ∈ Iλ, and therefore f(x) = 0 for all f ∈∑
λ∈Λ Iλ. Thus

⋂
λ∈Λ V (Iλ) ⊂ V

(∑
λ∈Λ Iλ

)
. It follows that

⋂
λ∈Λ V (Iλ) =

V
(∑

λ∈Λ Iλ
)
. This proves (ii).

Let I and J be ideals of R. Then I∩J ⊂ I, I∩J ⊂ J and IJ ⊂ I∩J , and
thus V (I) ⊂ V (I ∩ J), V (J) ⊂ V (I ∩ J) and V (I ∩ J) ⊂ V (IJ). Therefore

V (I) ∪ V (J) ⊂ V (I ∩ J) ⊂ V (IJ).

If x is a point of An which does not belong to V (I) ∪ V (J) then there exist
polynomials f ∈ I and g ∈ J such that f(x) 6= 0 and g(x) 6= 0. But
then fg ∈ IJ and f(x)g(x) 6= 0, and therefore x 6∈ V (IJ). Therefore
V (IJ) ⊂ V (I) ∪ V (J). We conclude that

V (I) ∪ V (J) = V (I ∩ J) = V (IJ).

This proves (iii).
Let us define a topology on An whose open sets in An are the complements

of algebraic sets. We see from (i) that ∅ and An are open. Moreover it follows
from (ii) that any union of open sets is open, and it follows from (iii), using
induction on the number of sets, that any finite intersection of open sets is
open. Thus the topology is well-defined.

Definition The Zariski topology on an algebraic set V in An is the topology
whose open sets are of the form V \V (I) for some ideal I ofK[X1, X2, . . . , Xn].

It follows from Proposition 11.6 that the Zariski topology on an algebraic
set V is well-defined and is the subspace topology on V induced by the
topology on An whose closed sets are the algebraic sets in An. Moreover a
subset V1 of V is closed if and only if V1 is itself an algebraic set. (This
follows directly from the fact that the intersection of two algebraic sets is
itself an algebraic set.)

Example Any finite subset of An is an algebraic set. This follows from the
fact that any point in An is an algebraic set, and any finite union of algebraic
sets is an algebraic set.
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In general, the Zariski topology on an algebraic set V is not Hausdorff.
It can in fact be shown that an algebraic set in An is Hausdorff (with respect
to the Zariski topology) if and only if it consists of a finite set of points in
An.

11.3 The Structure of Algebraic Sets

LetK be a field. We shall apply Hilbert’s Basis Theorem in order to study the
structure of algebraic sets in n-dimensional affine space An over the field K.
We shall continue to use the notation for algebraic sets in An and correspond-
ing ideals of the polynomial ring that was established earlier.

The following result is a direct consequence of the Hilbert Basis Theorem.

Proposition 11.7 Let V be an algebraic set in An. Then there exists a finite
collection f1, f2, f3, . . . of polynomials in n independent indeterminates such
that

V = {x ∈ An : fi(x) = 0 for i = 1, 2, . . . , k}.

Proof The set V is an algebraic set, and therefore V = V (I) for some
ideal I of K[X1, X2, . . . , Xn]. Moreover it follows from Corollary 10.10 that
I is generated by some finite set {f1, f2, . . . , fk} of polynomials. But then
V = V ({f1, f2, . . . , fk}), and thus V is of the required form.

A algebraic hypersurface in An is a algebraic set of An of the form V (f)
for some non-constant polynomial f ∈ K[X1, X2, . . . , Xn], where

V (f) = {x ∈ An : f(x) = 0}.

Corollary 11.8 Every proper algebraic set in An is the intersection of a
finite number of algebraic hypersurfaces.

Proof The empty set in An can be represented as an intersection of two
hyperplanes (e.g., x1 = 0 and x1 = 1). Suppose therefore that the proper
algebraic set V is non-empty. It follows from Proposition 11.7 that there
exists a finite set {f1, f2, . . . , fk} polynomials belonging to K[X1, X2, . . . , Xn]
such that V = V ({f1, f2, . . . , fk}). Moreover the polynomials f1, f2, . . . , fk
cannot all be zero, since V 6= An; we can therefore assume (by removing
the zero polynomials from the list) that the polynomials f1, f2, . . . , fk are
non-zero. They must then all be non-constant, since V is non-empty. But
then

V = V (f1) ∩ V (f2) ∩ · · · ∩ V (fk),

as required.
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Proposition 11.9 Let C be a collection of subsets of An that are open with
respect to the Zariski topology on An. Then there exists a finite collection
D1, D2, . . . , Dk of open sets belonging to C such that D1 ∪ D2 ∪ · · · ∪ Dk is
the union

⋃
D∈C D of all the open sets D belonging to C.

Proof It follows from the definition of the Zariski topology that, for each
open set D belonging to C, there exists an ideal ID of K[X1, X2, . . . , Xn] such
that D = An \ V (ID). Let I =

∑
D∈C ID. Then⋃

D∈C
D =

⋃
D∈C

(An \ V (ID)) = An \
⋂

D∈C
V (ID)

= An \ V
(∑

D∈C
ID

)
= An \ V (I)

(see Proposition 11.6). Now the ideal I is finitely-generated (Corollary 10.10).
Moreover there exists a finite generating set {f1, f2, . . . , fk} for I with the
property that each generator fi belongs to one of the ideals ID, since if we
are given any finite generating set for I, then each of the generators can
be expressed as a finite sum of elements taken from the ideals ID, and the
collection of all these elements constitutes a finite generating set for I which
is of the required form. Choose D1, D2, . . . , Dk ∈ C such that fi ∈ IDi

for
i = 1, 2, . . . , k. Then

I = ID1 + ID2 + · · ·+ IDk
,

and thus

⋃
D∈C

D = An − V (I) = An − V

(
k∑
i=1

IDi

)
=

k⋃
i=1

Di,

as required.

We recall that a topological space is compact if and only if every open
cover of that space has a finite subcover. The following result therefore
follows directly from Proposition 11.9.

Corollary 11.10 Every subset of An is compact with respect to the Zariski
topology.

11.4 Maximal Ideals and Zorn’s Lemma

Definition Let R be a ring. A proper ideal I of R is said to be maximal if
the only ideals J of R satisfying I ⊂ J ⊂ R are J = I and J = R.
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Lemma 11.11 A unital commutative ring R is a field if and only if the only
ideals of R are {0} and R.

Proof Suppose that R is a field. Let I be a non-zero ideal of R. Then
there exists x ∈ I satisfying x 6= 0. Moreover there exists x−1 ∈ R satisfying
xx−1 = 1 = x−1x. Therefore 1 ∈ I, and hence I = R. Thus the only ideals
of R are {0} and R.

Conversely, suppose that R is a unital commutative ring with the property
that the only ideals of R are {0} and R. Let x be a non-zero element of R,
and let Rx denote the subset of R consisting of all elements of R that are of
the form rx for some r ∈ R. It is easy to verify that Rx is an ideal of R. (In
order to show that yr ∈ Rx for all y ∈ Rx and r ∈ R, one must use the fact
that the ring R is commutative.) Moreover Rx 6= {0}, since x ∈ Rx. We
deduce that Rx = R. Therefore 1 ∈ Rx, and hence there exists some element
x−1 of R satisfying x−1x = 1. This shows that R is a field, as required.

Lemma 11.12 A proper ideal I of a unital commutative ring R is maximal
if and only if the quotient ring R/I is a field.

Proof Let I be a proper ideal of the unital commutative ring R. Then the
quotient ring R/I is unital and commutative. Moreover there is a one-to-
one correspondence between ideals L of R/I and ideals J of R satisfying
I ⊂ J ⊂ R: if J is any ideal of R satisfying I ⊂ J ⊂ R, and if L is the
corresponding ideal of R/I then I + x ∈ L if and only if x ∈ J . We deduce
that I is a maximal ideal of R if and only if the only ideals of R/I are the zero
ideal {I} and R/I itself. It follows from Lemma 11.11 that I is a maximal
ideal of R if and only if R/I is a field.

We claim that every proper ideal of a ring R is contained in at least one
maximal ideal. In order to prove this result we shall make use of Zorn’s
Lemma concerning the existence of maximal elements of partially ordered
sets.

Definition Let S be a set. A partial order ≤ on S is a relation on S
satisfying the following conditions:—

(i) x ≤ x for all x ∈ S (i.e., the relation ≤ is reflexive),

(ii) if x, y, z ∈ S satisfy x ≤ y and y ≤ z then x ≤ z (i.e., the relation ≤ is
transitive),

(iii) if x, y ∈ S satisfy x ≤ y and y ≤ x then x = y (i.e., the relation ≤ is
antisymmetric).
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Neither of the conditions x ≤ y or y ≤ x need necessarily be satisfied by
arbitrary elements x and y of a partially ordered set S. A subset C of S is
said to be totally ordered if one or other of the conditions x ≤ y and y ≤ x
holds for each pair {x, y} of elements of C.

Example Let S be a collection of subsets of some given set. Then S is
partially ordered with respect to the relation ⊂ (where A,B ∈ S satisfy
A ⊂ B if and only if A is a subset of B).

Example The set N of natural numbers is partially ordered with respect to
the relation |, where n|m if and only if n divides m.

Let ≤ be the ordering relation on a partially ordered set S. An element u
of S is said to be an upper bound for a subset B of S if x ≤ u for all x ∈ B.
An element m of S is said to be maximal if the only element x of S satisfying
m ≤ x is m itself.

The following result is an important theorem in set theory.

Zorn’s Lemma. Let S be a non-empty partially ordered set.
Suppose that there exists an upper bound for each totally ordered
subset of S. Then S contains a maximal element.

We use Zorn’s lemma in order to prove the following existence theorem
for maximal ideals.

Theorem 11.13 Let R be a unital ring, and let I be a proper ideal of R.
Then there exists a maximal ideal M of R satisfying I ⊂M ⊂ R.

Proof Let S be the set of all proper ideals J of R satisfying I ⊂ J . The set S
is non-empty, since I ∈ S, and is partially ordered by the inclusion relation⊂.
We claim that there exists an upper bound for any totally ordered subset C
of S.

Let L be the union of all the ideals belonging to some totally ordered
subset C of S. We claim that L is itself a proper ideal of R. Let a and b be
elements of L. Then there exist proper ideals J1 and J2 belonging to C such
that a ∈ J1 and b ∈ J2. Moreover either J1 ⊂ J2 or else J2 ⊂ J1, since the
subset C of S is totally ordered. It follows that a+ b belongs either to J1 or
else to J2, and thus a + b ∈ L. Similarly −a ∈ L, ra ∈ L and ar ∈ L for
all r ∈ R. We conclude that L is an ideal of R. Moreover 1 6∈ L, since the
elements of C are proper ideals of R, and therefore 1 6∈ J for every J ∈ C. It
follows that L is a proper ideal of R satisfying I ⊂ L. Thus L ∈ S, and L is
an upper bound for C.
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The conditions of Zorn’s Lemma are satisfied by the partially ordered
set S. Therefore S contains a maximal element M . This maximal element
is the required maximal ideal of R containing the ideal I.

Corollary 11.14 Every unital ring has at least one maximal ideal.

Proof Apply Theorem 11.13 with I = {0}.

11.5 Prime Ideals

Definition Let R be a unital ring. A proper ideal I is said to be prime if,
given any ideals J and K satisfying JK ⊂ I, either J ⊂ I or K ⊂ I.

The following result provides an alternative description of prime ideals of
a ring that is both unital and commutative.

Lemma 11.15 Let R be a unital commutative ring. An proper ideal I of R
is prime if and only if, given any elements x and y of R satisfying xy ∈ I,
either x ∈ I or y ∈ I.

Proof Let I be a proper ideal of R. Suppose that I has the property that,
given any elements x and y of R satisfying xy ∈ I, either x ∈ I or y ∈ I.
Let J and K be ideals of R neither of which is a subset of the ideal I. Then
there exist elements x ∈ J and y ∈ K which do not belong to I. But then xy
belongs to JK but does not belong to I. Thus the ideal JK is not a subset
of I. This shows that the ideal I is prime.

Conversely, suppose that I is a prime ideal of R. Let x and y be elements
of R satisfying xy ∈ I, and let J and K be the ideals generated by x and y
respectively. Then

J = {rx : r ∈ R}, K = {ry : r ∈ R},

since R is unital and commutative (see Lemma 9.2). It follows easily that
JK = {rxy : r ∈ R}. Now xy ∈ I. It follows that JK ⊂ I. But I is prime.
Therefore either J ⊂ I or K ⊂ I, and thus either x ∈ I or y ∈ I.

Example Let n be a natural number. Then the ideal nZ of the ring Z of
integers is a prime ideal if and only if n is a prime number. For an integer j
belongs to the ideal nZ if and only if n divides j. Thus the ideal nZ is prime
if and only if, given any integers j and k such that n divides jk, either n
divides j or n divides k. But it follows easily from the Fundamental Theorem
of Arithmetic that a natural number n has this property if and only if n is
a prime number. (The Fundamental Theorem of Arithmetic states that any
natural number can be factorized uniquely as a product of prime numbers.)
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Lemma 11.16 An ideal I of a unital commutative ring R is prime if and
only if the quotient ring R/I is an integral domain.

Proof If I is a proper ideal of the unital commutative ring R then the
quotient ring R/I is both unital and commutative. Moreover the zero element
of R/I is I itself (regarded as a coset of I in R). Thus R/I is an integral
domain if and only if, given elements x and y of R such that (I+x)(I+y) = I,
either I + x = I or I + y = I. But (I + x)(I + y) = I + xy for all x, y ∈ R,
and I + x = I if and only if x ∈ I. We conclude that R/I is an integral
domain if and only if I is prime, as required.

Lemma 11.17 Every maximal ideal of a unital commutative ring R is a
prime ideal.

Proof Let M be a maximal ideal of R. Then the quotient ring R/M is a
field (see Lemma 11.12). In particular R/M is an integral domain, and hence
M is a prime ideal.

11.6 Affine Varieties and Irreducibility

Definition A topological space Z is said to be reducible if it can be decom-
posed as a union F1 ∪ F2 of two proper closed subsets F1 and F2. (A subset
of Z is proper if it is not the whole of Z.) A topological space Z is said to
be irreducible if it cannot be decomposed as a union of two proper closed
subsets.

Lemma 11.18 Let Z be a topological space. The following are equivalent:—

(i) Z is irreducible,

(ii) the intersection of any two non-empty open sets in Z is non-empty,

(iii) every non-empty open subset of Z is dense.

Moreover a subset A of a topological space Z is irreducible (with respect to
the subspace topology) if and only if its closure A is irreducible.

Proof The topological space Z is irreducible if and only if the union of any
two proper closed subsets of Z is a proper subset of Z. Now the complement
of any proper closed set is a non-empty open set, and vica versa. Thus on
taking complements we see that Z is irreducible if and only if the intersection
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of any two non-empty open subsets of Z is a non-empty subset of Z. This
shows the equivalence of (i) and (ii).

The equivalence of (ii) and (iii) follows from the fact that a subset of Z
is dense if and only if it has non-empty intersection with every non-empty
open set in Z.

Let A be a subset of Z. It follows directly from the definition of the
subspace topology on A that A is irreducible if and only if, given any closed
sets F1 and F2 such that A ⊂ F1 ∪ F2 then either A ⊂ F1 or A ⊂ F2. Now if
F is any closed subset of Z then A ⊂ F if and only if A ⊂ F . It follows that
A is irreducible if and only if A is irreducible.

It follows immediately from Lemma 11.18 that a non-empty irreducible
topological space is Hausdorff if and only if it consists of a single point.

Lemma 11.19 Any irreducible topological space is connected.

Proof A topological space Z is connected if and only if the only subsets of Z
that are both open and closed are the empty set ∅ and the whole set Z. Thus
suppose that the topological space Z were not connected. Then there would
exist a non-empty proper subset U of Z that was both open and closed. Let
V = Z \U . Then U and V would be disjoint non-empty open sets. It would
then follow from Lemma 11.18 that Z could not be irreducible.

Lemma 11.20 Let V be an algebraic set, and let V1 be a proper algebraic
subset of V . Then there exists f ∈ K[X1, X2, . . . , Xn] such that f(x) = 0 for
all x ∈ V1 but f 6∈ I(V ).

Proof The inclusion V1 ⊂ V implies that I(V ) ⊂ I(V1). Now V = V (I(V ))
and V1 = V (I(V1)). Thus if V1 is a proper subset of V then I(V ) 6= I(V1),
and hence there exists f ∈ I(V1) such that f 6∈ I(V ). Then f is the required
polynomial.

Proposition 11.21 A non-empty algebraic set V in An is irreducible (with
respect to the Zariski topology) if and only if the ideal I(V ) is a prime ideal
of K[X1, X2, . . . , Xn].

Proof Suppose that the algebraic set V is irreducible. Let f and g be
polynomials in K[X1, X2, . . . , Xn] with the property that fg ∈ I(V ). Then
V ⊂ V (f)∪V (g), since, given any point of V , one or other of the polynomials
f and g must be zero at that point. Let V1 = V ∩ V (f) and V2 = V ∩ V (g).
Then V1 and V2 are algebraic subsets of V , and V = V1∪V2. Therefore either
V = V1 or V = V2, since the irreducible algebraic set V cannot be expressed
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as a union of two proper algebraic subsets. It follows that either f ∈ I(V )
or else g ∈ I(V ). Thus I(V ) is prime, by Lemma 11.15.

Conversely, suppose that V is reducible. Then there exist proper alge-
braic subsets V1 and V2 of V such that V = V1 ∪ V2. It then follows from
Lemma 11.20 that there exist polynomials f and g in K[X1, X2, . . . , Xn] such
that f(x) = 0 for all x ∈ V1, g(x) = 0 for all x ∈ V2, and neither f nor g
belongs to I(V ). But then f(x)g(x) = 0 for all x ∈ V , since V = V1 ∪ V2,
and hence fg ∈ I(V ). Thus the ideal I(V ) is not prime.

Definition An affine algebraic variety is an irreducible algebraic set in An.

Theorem 11.22 Every algebraic set in An can be expressed as a finite union
of affine algebraic varieties.

Proof Let C be the collection of all ideals I of K[X1, X2, . . . , Xn] with the
property that the corresponding algebraic set V (I) cannot be expressed as a
finite union of affine varieties. We claim that C cannot contain any maximal
element.

Let I be an ideal of K[X1, X2, . . . , Xn] belonging to C. Then the algebraic
set V (I) cannot itself be an affine variety, and therefore there must exist
proper algebraic subsets V1 and V2 of V such that V (I) = V1 ∪ V2. Let
I1 = I(V1) and I2 = I(V2). Then I(V (I)) ⊂ I1 and I(V (I)) ⊂ I2, since
V1 ⊂ V (I) and V2 ⊂ V (I). Also I ⊂ I(V (I)). It follows that I ⊂ I1 and
I ⊂ I2. Moreover V (I1) = V1 and V (I2) = V2, since V1 and V2 are algebraic
sets (see Lemma 11.5), and thus V (I1) 6= V (I) and V (I2) 6= V (I). It follows
that I 6= I1 and I 6= I2. Thus I is a proper subset of both I1 and I2.

Now V1 and V2 cannot both be finite unions of affine varieties, since V (I)
is not a finite union of affine varieties. Thus one or other of the ideals I1 and I2

must belong to the collection C. It follows that no ideal I belonging to C can
be maximal in C. But every non-empty collection of ideals of the Noetherian
ring K[X1, X2, . . . , Xn] must have a maximal element (see Proposition 10.5).
Therefore C must be empty, and thus every algebraic set in An is a finite
union of affine varieties, as required.

We shall show that every algebraic set in An has an essentially unique
representation as a finite union of affine varieties.

Lemma 11.23 Let V1, V2, . . . , Vk be algebraic sets in An, and let W be an
affine variety satisfying W ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. Then W ⊂ Vi for some i.

Proof The affine variety W is the union of the algebraic sets W ∩ Vi for
i = 1, 2, . . . , k. It follows from the irreducibility of W that the algebraic sets
W ∩ Vi cannot all be proper subsets of W . Hence W = W ∩ Vi for some i,
and hence W ⊂ Vi, as required.
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Proposition 11.24 Let V be an algebraic set in An, and let V = V1 ∪ V2 ∪
· · ·Vk, where V1, V2, . . . , Vk are affine varieties, and Vi 6⊂ Vj for any j 6= i.
Then V1, V2, . . . , Vk are uniquely determined by V .

Proof Suppose that V = W1∪W2∪· · ·Wm, where W1,W2, . . . ,Wm are affine
varieties, and Wi 6⊂ Wj for any j 6= i. Now it follows from Lemma 11.23 that,
for each integer i between 1 and k, there exists some integer σ(i) between 1
and m such that Vi ⊂ Wσ(i). Similarly, for each integer j between 1 and m,
there exists some integer τ(j) between 1 and k such that Wj ⊂ Vτ(j). Now
Vi ⊂ Wσ(i) ⊂ Vτ(σ(i)), But Vi 6⊂ Vi′ for any i′ 6= i. It follows that i = τ(σ(i))
and Vi = Wσ(i). Similarly Wj ⊂ Vτ(j) ⊂ Wσ(τ(j)), and thus j = σ(τ(j)) and
Wj = Vτ(j). We deduce that

σ: {1, 2, . . . , k} → {1, 2, . . . ,m}

is a bijection with inverse τ , and thus k = m. Moreover Vi = Wσ(i), and thus
the varieties V1, V2, . . . , Vk are uniquely determined by V , as required.

Let V be an algebraic set, and let V = V1∪V2∪· · ·Vk, where V1, V2, . . . , Vk
are affine varieties, and Vi 6⊂ Vj for any j 6= i. The varieties V1, V2, . . . , Vk are
referred to as the irreducible components of V .

11.7 Radical Ideals

Definition Let R be a unital commutative ring. An ideal I of R is said to
be a radical ideal if every element x of R with the property that xm ∈ I for
some natural number m belongs to I.

Lemma 11.25 Every prime ideal of a unital commutative ring R is a radical
ideal.

Proof Let I be a prime ideal. Suppose that x ∈ R satisfies xm ∈ I. If m = 1
then we are done. If not, then either x ∈ I or xm−1 ∈ I, since I is prime.
Thus it follows by induction on m that x ∈ I. Thus I is a radical ideal.

Lemma 11.26 Let I be an ideal of a unital commutative ring R, and let
√
I

denote the set of all elements x of R with the property that xm ∈ I for some
natural number m. Then

√
I is a radical ideal of R. Moreover I =

√
I if and

only if I is a radical ideal of R.
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Proof Let x and y be elements of
√
I. Then there exist natural numbers m

and n such that xm ∈ I and yn ∈ I. Now

(x+ y)m+n =
m+n∑
i=0

(
m+ n

i

)
xiym+n−i,

(where x0 = 1 = y0), and moreover, given any value of i between 0 and
m + n, either i ≥ m or m + n − i ≥ n, so that either xi ∈ I or ym+n−i ∈ I.
Therefore (x+ y)m+n ∈ I, and thus x+ y ∈

√
I. Also −x ∈

√
I and rx ∈

√
I

for all r ∈ R. Thus
√
I is an ideal of R. Clearly

√
I is a radical ideal, and

I =
√
I if and only if I is a radical ideal.

The ideal
√
I is referred to as the radical of the ideal I.

Lemma 11.27 Let Z be a subset of An. Then I(Z) is a radical ideal of the
polynomial ring K[X1, X2, . . . , Xn]. Moreover Z = V (I(Z)) if and only if Z
is an algebraic set in An.

Proof Note that if g and h are polynomials belonging to K[X1, X2, . . . , Xn]
which are zero throughout the set Z then the same is true of the polynomials
g + h, −g and fg for all f ∈ K[X1, X2, . . . , Xn]. Therefore I is an ideal of
K[X1, X2, . . . , Xn]. Moreover gm is identically zero on Z if and only if the
same is true of g. Therefore the ideal I(Z) is a radical ideal. If Z = V (I(Z))
then Z is clearly an algebraic set. Conversely, if Z is an algebraic set then
Z = V (S) for some subset S of K[X1, X2, . . . , Xn], and therefore

V (I(Z)) = V (I(V (S))) = V (S) = Z,

by Lemma 11.5, as required.

Lemma 11.28 Let S be a subset of the polynomial ring K[X1, X2, . . . , Xn],
and let I be the ideal generated by S. Then V (S) = V (I) = V (

√
I), where√

I is the radical of the ideal I. Thus every algebraic set in An is of the form
V (I) for some radical ideal I of K[X1, X2, . . . , Xn].

Proof The ideal I(V (S)) of K[X1, X2, . . . , Xn] contains the set S. Therefore
I ⊂ I(V (S)), where I is the ideal generated by S. Moreover if f ∈

√
I then

fm ∈ I for some natural number m, and thus fm ∈ I(V (S)). But I(V (S))
is a radical ideal (see Lemma 11.27). Therefore f ∈ I(V (S)). Thus

S ⊂ I ⊂
√
I ⊂ I(V (S)).

It follows that

V (I(V (S))) ⊂ V (
√
I) ⊂ V (I) ⊂ V (S).

But V (I(V (S))) = V (S) (see Lemma 11.5). Therefore V (S) = V (I) =
V (
√
I), as required.
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12 Finitely-Generated Modules over

Principal Ideal Domains

12.1 Linear Independence and Free Modules

Let M be a module over a unital commutative ring R, and let x1, x2, . . . , xk
be elements of M . A linear combination of the elements x1, x2, . . . , xk with
coefficients r1, r2, . . . , rk is an element of M that is represented by means of
an expression of the form

r1x1 + r2x2 + · · ·+ rkxk,

where r1, r2, . . . , rk are elements of the ring R.

Definition Let M be a module over a unital commutative ring R. The
elements of a subset X of M are said to be linearly dependent if there exist
distinct elements x1, x2, . . . , xk of X (where xi 6= xj for i 6= j) and elements
r1, r2, . . . , rk of the ring R, not all zero, such that

r1x1 + r2x2 + · · ·+ rkxk = 0M ,

where 0M denotes the zero element of the module M .
The elements of a subset X of M are said to be linearly independent over

the ring R if they are not linearly dependent over R.

Let M be a module over a unital commutative ring R, and let X be a
(finite or infinite) subset of M . The set X generates M as an R-module if and
only if, given any non-zero element m of M , there exist x1, x2, . . . , xk ∈ X
and r1, r2, . . . , rk ∈ R such that

m = r1x1 + r2x2 + · · ·+ rkxk

(see Lemma 10.1). In particular, a module M over a unital commutative
ring R is generated by a finite set {x1, x2, . . . , xk} if and only if any ele-
ment of M can be represented as a linear combination of x1, x2, . . . , xk with
coefficients in the ring R.

A module over a unital commutative ring is freely generated by the empty
set if and only if it is the zero module.

Definition Let M be a module over a unital commutative ring R, and let
X be a subset of M . The module M is said to be freely generated by the
set X if the following conditions are satisfied:
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() i the elements of X are linearly independent over the ring R;

() ii the module M is generated by the subset X.

Definition A module over a unital commutative ring is said to be free if
there exists some subset of the module which freely generates the module.

Definition Let M be a module over a unital commutative ring R. Elements
x1, x2, . . . , xk ofM are said to constitute a free basis ofM if these elements are
distinct, and if the R-moduleM is freely generated by the set {x1, x2, . . . , xk}.

Lemma 12.1 Let M be a module over an unital commutative ring R. Ele-
ments x1, x2, . . . , xk of M constitute a free basis of that module if and only
if, given any element m of M , there exist uniquely determined elements
r1, r2, . . . , rk of the ring R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Proof First suppose that x1, x2, . . . , xk is a list of elements of M with the
property that, given any element m of M , there exist uniquely determined
elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Then the elements x1, x2, . . . , xk generate M . Also the uniqueness of the
coefficients r1, r2, . . . , rk ensures that the zero element 0M of M cannot be
expressed as a linear combination of x1, x2, . . . , xk unless the coeffients in-
volved are all zero. Therefore these elements are linearly independent and
thus constitute a free basis of the module M .

Conversely suppose that x1, x2, . . . , xk is a free basis of M . Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
r1, r2, . . . , rk and s1, s2, . . . , sk be elements of the coefficient ring R satisfying

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk.

Then
(r1 − s1)x1 + (r2 − s2)x2 + · · ·+ (rk − sk)xk = 0M .

But then rj−sj = 0 and thus rj = sj for j = 1, 2, . . . , n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M , as required.
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Proposition 12.2 Let M be a free module over a unital commutative ring R,
and let X be a subset of M that freely generates M . Then, given any R-
module N , and given any function f :X → N from X to N , there exists a
unique R-module homomorphism ϕ:M → N such that ϕ|X = f .

Proof We first prove the result in the special case where M is freely gen-
erated by a finite set X. Thus suppose that X = {x1, x2, . . . , xk}, where
the elements x1, x2, . . . , xk are distinct. Then these elements are linearly
independent over R and therefore, given any element m of M , there exist
uniquely-determined elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

(see Lemma 12.1). It follows that, given any R-module N , and given any
function f :X → N from X to N , there exists a function ϕ:M → N from M
to N which is characterized by the property that

ϕ(r1x1 + r2x2 + · · ·+ rkxk) = r1f(x1) + r2f(x2) + · · ·+ rkf(xk).

for all r1, r2, . . . , rk. It is an easy exercise to verify that this function is an R-
module homomorphism, and that it is the unique R-module homomorphism
from M to N that extends f :X → N .

Now consider the case whenM is freely generated by an infinite setX. Let
N be an R-module, and let f :X → N be a function from X to N . For each
finite subset Y of X, let MY denote the submodule of M that is generated
by Y . Then the result we have just proved for modules freely generated
by finite sets ensures that there exists a unique R-module homomorphism
ϕY :MY → N from MY to N such that ϕY (y) = f(y) for all y ∈ Y .

Let Y and Z be finite subsets ofX, where Y ∩Z 6= ∅. Then the restrictions
of the R-module homomorphisms ϕY :MY → N and ϕZ :MZ → N to MY ∩Z
are R-module homomorphisms fromMY ∩Z toN that extend f |Y ∩Z:Y ∩Z →
N . But we have shown that any extension of this function to an R-module
homomorphism from MY ∩Z → N is uniquely-determined. Therefore

ϕY |MY ∩Z = ϕZ |MY ∩Z = ϕY ∩Z .

Next we show that MY ∩MZ = MY ∩Z . Clearly MY ∩Z ⊂ MY and MY ∩Z ⊂
MZ . Let Y ∪ Z = {x1, x2, . . . , xk}, where x1, x2, . . . , xk are distinct. Then,
given any element m of MY ∩MZ , there exist uniquely-determined elements
r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.
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But this element m is expressible as a linear combination of elements of
Y alone, and as a linear combination of elements of Z alone. Therefore,
for each index i between 1 and k, the corresponding coefficient ri is zero
unless both xi ∈ Y and xi ∈ Z. But this ensures that x is expressible as
a linear combination of elements that belong to Y ∩ Z. This verifies that
MY ∩MZ = MY ∩Z .

Let m ∈ M . Then m can be represented as a linear combination of the
elements of some finite subset Y of X with coefficients in the ring R. But
then m ∈ MY . It follows that M is the union of the submodules MY as Y
ranges over all finite subsets of the generating set X.

Now there is a well-defined function ϕ:M → N characterized by the
property that ϕ(m) = ϕY (m) whenever m belongs to MY for some finite
subset Y of X. Indeed suppose that some element m of M belongs to both
MY and MZ , where Y and Z are finite subsets of M . Then m ∈MY ∩Z , since
we have shown that MY ∩MZ = MY ∩Z . But then ϕY (m) = ϕY ∩Z(m) =
ϕZ(m). This result ensures that the homomorphisms ϕ:MY → N defined on
the submodules MY of M generated by finite subsets Y of X can be pieced
together to yield the required function ϕ:M → N . Moreover, given elements
x and y of M , there exists some finite subset Y of M such that x ∈MY and
y ∈MY . Then

ϕ(x+ y) = ϕY (x+ y) = ϕY (x) + ϕY (y) = ϕ(x) + ϕ(y),

and
ϕ(rx) = ϕY (rx) = rϕY (x) = rϕ(x)

for all r ∈ R. Thus the function ϕ:M → N is an R-module homomor-
phism. The uniqueness of the R-module homomorphisms ϕY then ensures
that ϕ:M → N is the unique R-module homomorphism from M to N that
extends f :X → N , as required.

Proposition 12.3 Let R be a unital commutative ring, let M and N be R-
modules, let F be a free R-module, let π:M → N be a surjective R-module
homomorphism, and let ϕF → N be an R-module homomorphism. Then
there exists an R-module homomorphism ψ:F →M such that ϕ = π ◦ ψ.

Proof Let X be a subset of the free module F that freely generates F . Now,
because the R-module homomorphism π:M → N is surjective, there exists
a function f :F →M such that π(f(x)) = ϕ(x) for all x ∈ X. It then follows
from Proposition 12.2 that there exists an R-module homomorphism ψ:F →
M such that ψ(x) = f(x) for all x ∈ X. Then π(ψ(x)) = π(f(x)) = ϕ(x)
for all x ∈ X. But it also follows from Proposition 12.2 that any R-module
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homomorphism from F to N that extends ϕ|X → X → N is uniquely
determined. Therefore π ◦ ψ = ϕ, as required.

Proposition 12.4 Let R be a unital commutative ring, let M be an R-
module, let F be a free R-module and let π:M → F be a surjective R-module
homomorphism. Then M ∼= kerπ ⊕ F .

Proof It follows from Proposition 12.3 (applied to the identity automor-
phism of F ) that there exists an R-module homomorphism ψ:F → M with
the property that π(ψ(f)) = f for all f ∈ F . Let θ: ker π ⊕ F → M be
defined so that θ(k, f) = k + ψ(f) for all f ∈ F . Then θ: ker π ⊕ F → M is
an R-module homomorphism. Now

π(m− ψ(π(m))) = π(m)− (π ◦ ψ)(π(m)) = π(m)− π(m) = 0F ,

where 0F denotes the zero element of F . Therefore m − ψ(π(m)) ∈ kerπ
for all m ∈ M . But then m = θ(m − ψ(π(m)), π(m)) for all m ∈ M . Thus
θ: ker π ⊕ F →M is surjective.

Now let (k, f) ∈ ker θ, where k ∈ kerπ and f ∈ F . Then ψ(f) = −k. But
then f = π(ψ(f)) = −π(k) = 0F . Also k = ψ(OF ) = 0M , where 0M denotes
the zero element of the module M . Therefore the homomorphism θ: ker π ⊕
F → M has trivial kernel and is therefore injective. This homomorphism
is also surjective. It is therefore an isomorphism between kerπ ⊕ F and M .
The result follows.

12.2 Free Modules over Integral Domains

Definition A module M over an integral domain R is said to be a free
module of finite rank if there exist elements b1, b2, . . . , bk ∈M that constitute
a free basis for M . These elements constitute a free basis if and only if, given
any element m of M , there exist uniquely-determined elements r1, r2, . . . , rk
of R such that

m = r1b1 + r2b2 + · · ·+ rkbk.

Proposition 12.5 Let M be a free module of finite rank over an integral
domain R, let b1, b2, . . . , bk be a free basis for M , and let m1,m2, . . . ,mp be
elements of M . Suppose that p > k, where k is the number elements con-
stituting the free basis of m. Then the elements m1,m2, . . . ,mp are linearly
dependent over R.

Proof We prove the result by induction on the number k of elements in the
free basis. Suppose that k = 1, and that p > 1. If either of the elements
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m1 or m2 is the zero element 0M then m1,m2, . . . ,mp are certainly linearly
dependent. Suppose therefore that m1 6= 0M and m2 6= 0M . Then there exist
non-zero elements s1 and s2 of the ring R such that m1 = s1b1, and m2 = s2b1,
because {b1} generates the moduleM . But then s2m1−s1m2 = 0M . It follows
that the elements m1 and m2 are linearly dependent over R. This completes
the proof in the case when k = 1.

Suppose now that M has a free basis with k elements, where k > 1, and
that the result is true in all free modules that have a free basis with fewer
than k elements. Let b1, b2, . . . , bk be a free basis for M . Let ν:M → R be
defined such that

ν(r1b1 + r2b2 + · · ·+ rkbk) = r1.

Then ν:M → R is a well-defined homomorphism of R-modules, and ker ν
is a free R-module with free basis b2, b3, . . . , bk. The induction hypothesis
therefore guarantees that any subset of ker ν with more than k − 1 elements
is linearly dependent over R.

Let m1,m2, . . . ,mp be a subset of M with p elements, where p > k. If
ν(mj) = 0R for j = 1, 2, . . . , p, where 0R denotes the zero element of the
integral domain R, then this set is a subset of ker ν, and is therefore linearly
dependent. Otherwise ν(mj) 6= 0R for at least one value of j between 1 and
p. We may assume without loss of generality that ν(m1) 6= 0R. Let

m′j = ν(m1)mj − ν(mj)m1 for j = 2, 3, . . . , p.

Then ν(m′j) = 0, and thus m′j ∈ ker ν for j = 2, 3, . . . , p. It follows from the
induction hypothesis that the elements m′2,m

′
3, . . . ,m

′
p of ker ν are linearly

dependent. Thus there exist elements r2, r3, . . . , rp of R, not all zero, such
that

p∑
j=2

rjm
′
j = 0M .

But then

−

(
p∑
j=2

rjν(mj)

)
m1 +

p∑
j=2

rjν(m1)mj = 0M .

Now ν(m1) 6= 0R. Also rj 6= 0R for at least one value of j between 2 and
p, and any product of non-zero elements of the integral domain R is a non-
zero element of R. It follows that rjν(m1) 6= 0R for at least one value of j
between 2 and p. We conclude therefore that the elements m1,m2, . . . ,mp are
linearly dependent (since we have expressed the zero element of M above as a
linear combination of m1,m2, . . . ,mp whose coefficients are not all zero). The
required result therefore follows by induction on the number k of elements
in the free basis of M .
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Corollary 12.6 Let M be a free module of finite rank over an integral do-
main R. Then any two free bases of M have the same number of elements.

Proof Suppose that b1, b2, . . . , bk is a free basis of M . The elements of any
other free basis are linear independent. It therefore follows from Proposi-
tion 12.5 that no free basis of M can have more than k elements. Thus the
number of elements constituting one free basis of M cannot exceed the num-
ber of elements constituting any other free basis of M . The result follows.

Definition The rank of a free module is the number of elements in any free
basis for the free module.

Corollary 12.7 Let M be a module over an integral domain R. Suppose
that M is generated by some finite subset of M that has k elements. If some
other subset of M has more than k elements, then those elements are linearly
dependent.

Proof Suppose that M is generated by the set g1, g2, . . . , gk. Let θ:Rk →M
be the R-module homomorphism defined such that

θ(r1, r2, . . . , rk) =
k∑
j=1

rjgj

for all (r1, r2, . . . , rk) ∈ Rk. Then the R-module homomorphism θ:Rk → M
is surjective.

Let m1,m2, . . . ,mp be elements of M , where p > k. Then there exist
elements t1, t2, . . . , tp of Rk such that θ(tj) = mj for j = 1, 2, . . . , p. Now
Rk is a free module of rank k. It follows from Proposition 12.5 that the
elements t1, t2, . . . , tp are linearly dependent. Therefore there exist elements
r1, r2, . . . , rp of R, not all zero, such that

r1t1 + r2t2 + · · ·+ rptp

is the zero element of Rk. But then

r1m1 + r2m2 + · · ·+ rpmp = θ(r1t1 + r2t2 + · · ·+ rptp) = 0M ,

where 0M denotes the zero element of the module M . Thus the elements
m1,m2, . . . ,mp are linearly dependent. The result follows.
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12.3 Torsion Modules

Definition A module M over an integral domain R is said to be a torsion
module if, given any element m of M , there exists some non-zero element r
of R such that rm = 0M , where 0M is the zero element of M .

Lemma 12.8 Let M be a finitely-generated torsion module over an integral
domain R. Then there exists some non-zero element t of M with the property
that tm = 0M for all m ∈M , where 0M denotes the zero element of M .

Proof Let M be generated as an R-module by m1,m2, . . . ,mk. Then there
exist non-zero elements r1, r2, . . . , rk of R such that rimi = 0M for i =
1, 2, . . . , k. Let t = r1r2 · · · rk. Now the product of any finite number of
non-zero elements of an integral domain is non-zero. Therefore t 6= 0. Also
tmi = 0M for i = 1, 2, . . . , k, because ri divides t. Let m ∈M . Then

m = s1m1 + s2m2 + · · ·+ skmk

for some s1, s2, . . . , sk ∈ R. Then

tm = t(s1m1 + s2m2 + · · ·+ skmk)

= s1(tm1) + s2(tm2) + · · ·+ sk(tmk) = 0M ,

as required.

12.4 Free Modules of Finite Rank over Principal Ideal
Domains

Proposition 12.9 Let M be a free module of rank n over a principal ideal
domain R. Then every submodule of M is a free module of rank at most n
over R.

Proof We prove the result by induction on the rank of the free module.
Let M be a free module of rank 1. Then there exists some element b of

M that by itself constitutes a free basis of M . Then, given any element m
of M , there exists a uniquely-determined element r of R such that m = rb.
Given any non-zero submodule N of M , let

I = {r ∈ R : rb ∈ N}.

Then I is an ideal of R, and therefore there exists some element s of R such
that I = (s). Then, given n ∈ N , there is a uniquely determined element r
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of R such that n = rsb. Thus N is freely generated by sb. The result is
therefore true when the module M is free of rank 1.

Suppose that the result is true for all modules over R that are free of
rank less than k. We prove that the result holds for free modules of rank k.
Let M be a free module of rank k over R. Then there exists a free basis
b1, b2, . . . , bk for M . Let ν:M → R be defined such that

ν(r1b1 + r2b2 + · · ·+ rkbk) = r1.

Then ν:M → R is a well-defined homomorphism of R-modules, and ker ν is
a free R-module of rank k − 1.

Let N be a submodule of M . If N ⊂ ker ν the result follows immediately
from the induction hypothesis. Otherwise ν(N) is a non-zero submodule of
a free R-module of rank 1, and therefore there exists some element n1 ∈ N
such that ν(N) = {rν(n1) : r ∈ R}. Now N ∩ ker ν is a submodule of a free
module of rank k−1, and therefore it follows from that induction hypothesis
that there exist elements n2, . . . , np of N ∩ ker ν that constitute a free basis
for N ∩ker ν. Moreover p ≤ k, because the induction hypothesis ensures that
the rank of N ∩ kerµ is at most k − 1

Let n ∈ N . Then there is a uniquely-determined element r1 of R such
that ν(n) = r1ν(n1). Then n − r1n1 ∈ N ∩ ker ν, and therefore there exist
uniquely-determined elements r2, . . . , rp of R such that

n− r1n1 = r2n2 + · · · rpnp.

It follows directly from this that n1, n2, . . . , np freely generate N . Thus N is
a free R-module of finite rank, and

rankN = p ≤ k = rankM.

The result therefore follows by induction on the rank of M .

12.5 Torsion-Free Modules

Definition A module M over an integral domain R is said to be torsion-
free if rm is non-zero for all non-zero elements r of R and for all non-zero
elements m of M .

Proposition 12.10 Let M be a finitely-generated torsion-free module over
a principal ideal domain R. Then M is a free module of finite rank over R.

Proof It follows from Corollary 12.7 that if M is generated by a finite set
with k elements, then no linearly independent subset of M can have more
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than k elements. Therefore there exists a linearly independent subset of
M which has at least as many elements as any other linearly independent
subset of M . Let the elements of this subset be b1, b2, . . . , bp, where bi 6= bj
whenever i 6= j, and let F be the submodule of M generated by b1, b2, . . . , bp.
The linear independence of b1, b2, . . . , bp ensures that every element of F may
be represented uniquely as a linear combination of b1, b2, . . . , bp. It follows
that F is a free module over R with basis b1, b2, . . . , bp.

Let m ∈ M . The choice of b1, b2, . . . , bp so as to maximize the number
of members in a list of linearly-independent elements of M ensures that
the elements b1, b2, . . . , bp,m are linearly dependent. Therefore there exist
elements s1, s2, . . . , sp and r of R, not all zero, such that

s1b1 + s2b2 + · · ·+ spbp − rm = 0M

(where 0M denotes the zero element of M). If it were the case that r = 0R,
where 0R denotes the zero element of R, then the elements b1, b2, . . . , bp would
be linearly dependent. The fact that these elements are chosen to be linearly
independent therefore ensures that r 6= 0R. It follows from this that, given
any element m of M , there exists a non-zero element r of R such that rm ∈ F .
Then r(m+F ) = F in the quotient module M/F . We have thus shown that
the quotient module M/F is a torsion module. It is also finitely-generated,
since M is finitely generated. It follows from Lemma 12.8 that there exists
some non-zero element t of the integral domain R such that t(m + F ) = F
for all m ∈M . Then tm ∈ F for all m ∈M .

Let ϕ:M → F be the function defined such that ϕ(m) = tm for all
m ∈ M . Then ϕ is a homomorphism of R-modules, and its image is a
submodule of F . Now the requirement that the module M be torsion-free
ensures that tm 6= 0M whenever m 6= 0M . Therefore ϕ:M → F is injective.
It follows that ϕ(M) ∼= M . Now R is a principal ideal domain, and any
submodule of a free module of finite rank over a principal ideal domain is
itself a free module of finite rank (Proposition 12.9). Therefore ϕ(M) is a
free module. But this free module is isomorphic to M . Therefore the finitely-
generated torsion-free module M must itself be a free module of finite rank,
as required.

Lemma 12.11 Let M be a module over an integral domain R, and let

T = {m ∈M : rm = 0M for some non-zero element r of R},

where 0M denotes the zero element of M . Then T is a submodule of M .

Proof Let m1,m2 ∈ T . Then there exist non-zero elements s1 and s2 of R
such that s1m1 = 0M and s2m2 = 0M . Let s = s1s2. The requirement that
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the coefficient ring R be an integral domain then ensures that s is a non-zero
element of R. Also sm1 = 0M , sm2 = 0M , and s(rm1) = r(sm1) = 0M for
all r ∈ R. Thus m1 + m2 ∈ T and rm1 ∈ T for all r ∈ R. It follows that T
is a submodule of R, as required.

Definition Let M be a module over an integral domain R. The torsion
submodule of M is the submodule T of M defined such that

T = {m ∈M : rm = 0M for some non-zero element r of R},

where 0M denotes the zero element of M . Thus an element m of M belongs
to the torsion submodule T of M if and only if there exists some non-zero
element r of R for which rm = 0M .

Proposition 12.12 Let M be a finitely-generated module over a principal
ideal domain R. Then there exists a torsion module T over R and a free
module F of finite rank over R such that M ∼= T ⊕ F .

Proof Let T be the torsion submodule ofM . We first prove that the quotient
module M/T is torsion-free.

Let m ∈ M , and let r be a non-zero element of the ring R. Suppose
that rm ∈ T . Then there exists some non-zero element s of R such that
s(rm) = 0M . But then (sr)m = 0M and sr 6= 0R (because R is an integral
domain), and therefore m ∈ T . It follows that if m ∈M , r 6= 0R and m 6∈ T
then rm 6∈ T . Thus if m + T is a non-zero element of the quotient module
M/T then so is rm + T for all non-zero elements r of the ring R. We have
thus shown that the quotient module M/T is a torsion-free module over R.

It now follows from Proposition 12.10 that M/T is a free module of finite
rank over the principal ideal domain R. Let F = M/T , and let ν:M → F
be the quotient homomorphism defined such that ν(m) = m + T for all
m ∈M . Then ker ν = T . It follows immediately from Proposition 12.4 that
M ∼= T ⊕ F . The result follows.
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