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D Field Extensions

D-1 Vector Spaces

The development of Galois Theory requires some basic linear algebra. But
not all that much.

We need to know what a vector space is. We need to know what a basis of
a vector space is, and therefore we need to know about linear independence
and spanning sets. And we need to know how the dimension of a finite-
dimensional vector space is defined.

First let us review the definition of a vector space. A vector space V
over a field K is a set that is provided with an operation of addition, defined
on V , together with an operation of multiplication, whereby elements of the
vector space V may be multiplied by elements of the field K. Elements of
the vector field V may be referred to as vectors ; elements of the field K may
be referred to as scalars.

A vector space V is required to be an Abelian group with respect to the
operation of addition on V . Thus x+y = y+x and (x+y)+z = x+(y+z) for
all x, y, z ∈ V . The vector space V has a zero element, which we may denote
by 0, or by 0V , with the property that x+0 = x for all x ∈ V . Also, given any
element x of V there exists some element −x of V such that x + (−x) = 0.
The operation of subtraction on V is defined so that x− y = x+ (−y) for all
x, y ∈ V .

In addition the vector space is provided with an operation of multipli-
cation-by-scalars whereby a scalar λ ∈ K and a vector x ∈ V may be mul-
tiplied so as to yield a vector λx, where λx ∈ V . Moreover we require that
λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx, (λµ)x = λ(µx) and 1Kx = x for all
λ, µ ∈ K and x, y ∈ V , where 1K denotes the multiplicative identity element
of the field K.

The set Rn of n-tuples of real numbers is a vector space over the field
of real numbers, where the operations of addition and of multiplication-by-
scalars are defined in the usual fashion. A vector space over the field of real
numbers is often referred to as a real vector space. Similarly a vector space
over the field of complex numbers is often referred to as a complex vector
space.

In Galois Theory, and also in Algebraic Number Theory, we deal with vec-
tor spaces over the field Q of rational numbers, and, more generally, with vec-
tor spaces over fields K that are themselves finite-dimensional vector spaces
over the field Q of rational numbers.

Let V be a vector space over a field K, and let x1, x2, . . . , xk be elements
of V . These elements x1, x2, . . . , xk are said to be linearly dependent if there
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exist elements λ1, λ2, . . . , λk of the field K, not all zero, for which

λ1x1 + λ2x2 + · · ·+ λkxk = 0.

These elements x1, x2, . . . , xk are said to be linearly independent if they are
not linearly dependent. The elements x1, x2, . . . , xk are said to span the
vector space V if, given any element v of V , there exist λ1, λ2, . . . , λk ∈ K
such that

v = λ1x1 + λ2x2 + · · ·+ λkxk.

A list x1, x2, . . . , xk of elements of V is said to constitute a basis of V if these
elements are linearly independent and also span V . It is easy to verify from
these definitions that elements x1, x2, . . . , xk of the vector space V constitute
a basis of V over the field K if and only if, given any element v of V , there
exist uniquely determined elements λ1, λ2, . . . , λk of K such that

v = λ1x1 + λ2x2 + · · ·+ λkxk.

A vector space is said to be finite-dimensional if there exists a finite list of
elements of V which is a basis for V over the field K. A fundamental theorem
of linear algebra guarantees that the number of elements in any basis of a
finite-dimensional vector space is independent of the choice of basis: this
number is the dimension of the vector space. Thus if a vector space V over
a field K is of dimension n for some positive integer n, then every basis of V
has n members.

The trivial vector space {0} with just one element 0 is considered to be
a zero-dimensional vector space.

D-2 The Tower Law

If a field K is a subfield of some field L then L can be regarded as a vector
space over the subfield K. We say that L is an extension field of K, and
we describe the situation where a field K is embedded as a subfield in some
field L as a field extension, customarily denoted by L:K. If L is a finite-
dimensional vector space over K then this field extension is said to be finite.
The dimension of this field extension is denoted by [L:K].

We must prove that if M :L and L:K are finite field extensions, then so
is M :K, and that [M :K] = [M :L][L:K]. (We must also prove the converse
result, but this is straightforward.)

Now L is a finite-dimensional vector space over K, and M is a finite-
dimensional vector space over L. Therefore there exists a basis x1, x2, . . . , xm
for L overK, and there exists a basis y1, y2, . . . , yn forM over L. The essential
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idea of the proof is to consider the products xiyj of these basis elements,
where 1 ≤ i ≤ m and 1 ≤ j ≤ n, and to show that the collection of these
products constitutes a basis of M as a vector space over K. This requires
one to show that these products are linearly independent and that they span
M as a vector space over K. These verifications are straightforward exercises
in applying the relevant definitions.

D-3 Simple Extensions

Let L:K be a field extension, and let α ∈ L. Then K(α) is defined to be
the smallest subfield of L containing K ∪{α}. More specifically, K(α) is the
intersection of all subfields of L that are extension fields of K and that also
contain α.

Now finite sums and products of elements of a subfield of L belong to
that subfield. It follows that αj ∈ K(α) for all positive integers j. Therefore

c0 + c1α + c2α
2 + c3α

3 + · · ·+ cnα
n ∈ K(α).

for all positive integers n and for all c0, c1, . . . , cn ∈ K. But

c0 + c1α + c2α
2 + c3α

3 + · · ·+ cnα
n = f(α),

where f is a polynomial c0 + c1x + c2x
2 + · · · + cnx

n whose coefficients
c0, c1, . . . , cn belong to the field K. We have thus shown that f(α) ∈ K(α) for
all f ∈ K[x]. Moreover f(α)−1 ∈ K(α) for all f ∈ K[x] satisfying f(α) 6= 0.
It follows that M ⊂ K(α), where

M = {f(α)g(α)−1 : f, g ∈ K[x] and g(α) 6= 0}.

Also K ⊂ M , and α ∈ M . We claim that M is itself a subfield of L.
Indeed let β and γ be elements of M . Then there exist polynomials f , g,
h and k, where g(α) 6= 0 and k(α) 6= 0, such that β = f(α)g(α)−1 and
γ = h(α)k(α)−1. Then

−β = −f(α)g(α)−1,

β + γ = (f(α)k(α) + h(α)g(α))(g(α)k(α))−1,

βγ = f(α)h(α)(g(α)k(α))−1,

and therefore −β ∈ M , β + γ ∈ M and βγ ∈ M . Moreover if β 6= 0
then β−1 ∈M , because f(α) 6= 0 and β−1 = g(α)f(α)−1. This concludes the
verification that M is a subfield of L, contained in K(α). Also K∪{α} ⊂M .
But K(α) is by definition the smallest subfield of L containing K ∪ {α}. It
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follows that M = K(α). Thus K(α) is the subset of L consisting of all
elements of L that can be expressed in the form f(α)g(α)−1, where f and g
are polynomials with coefficients in K, and where g(α) 6= 0.

At this point in the development of the theory of simple extensions we
come to a fork in the road. The nature of a simple extension K(α):K depends
on whether α is algebraic or transcendental over the ground field K. An
element α of an extension field of K is said to be algebraic over the field K
if it is the root of some non-zero polynomial with coefficients in K. If an
element α of an extension field of K is not algebraic over K, then α is said
to be transcendental over K.

If α is algebraic over K then there exists a unique monic polynomial mα

with coefficients in K with the properties that mα(α) = 0 and every poly-
nomial f with coefficients in K that satisfies f(α) = 0 is divisible by the
minimum polynomial mα of α. The simple extension K(α):K is then a fi-
nite extension, and its degree is the degree of the minimum polynomial mα

of α. Indeed it can be shown that every element of K(α) can be expressed in
the form f(α) for some polynomial f with coefficients in K. Moreover this
polynomial f can be chosen so that either f = 0 or else deg f < degmα, and
moreover the polynomial f satisfying these conditions is uniquely determined.
It follows from this that 1K , α, α

2, . . . , αn−1 is a basis for K(α) as a vector
space over K, where n = degmα, and therefore [K(α):K] = n = degmα.
(See Theorem 4.5.) We shall discuss simple algebraic extensions in more
detail below.

On the other hand, if α is transcendental over K then K(α) is an infinite-
dimensional vector space over K. Moreover the subring K[α] of K(α) con-
sisting of those elements of K(α) that are expressible in the form f(α) for
some f ∈ K[x] is an integral domain, and is a proper subring of K(α). More-
over the only elements of K[α] that are invertible in the integral domain K[α]
are the elements of the ground field K.

D-4 Simple Algebraic Field Extensions

Let K be a field, let L be an extension field of K, and let α be an element
of L. Suppose that α is algebraic over K. Let I denote the set of all polyno-
mials f(x) with coefficients in K which satisfy f(α) = 0. Then I is a subset
of the polynomial ring K[x].

Now the zero polynomial belongs to I. Let f, g ∈ I. Then f(α) = 0 and
g(α) = 0. But then −f(α) = 0 and f(α)+g(α) = 0 and therefore −f ∈ I and
f + g ∈ I. Also h(α)f(α) = 0 and thus hf ∈ I for all h ∈ K[x]. Therefore
I is an ideal of the polynomial ring. Now, given any ideal of the polynomial
ring K[x], there exists some polynomial with coefficients in K that generates
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the ideal (see Lemma 3.2). In particular there exists some polynomial p(x)
with coefficients in K which generates the ideal I. The ideal I then consists
of all polynomial with coefficients in K that are divisible by p(x).

Now let c be a non-zero element of the ground field K. Then f(x)p(x) =
(c−1f(x))(cp(x)) for all f ∈ K[x]. It follows that a polynomial with coeffi-
cients in K is divisible by p(x) if and only if it is divisible by cp(x). Therefore
the ideal I is generated by cp(x). Let mα(x) = cp(x), where is the multi-
plicative inverse of the leading coefficient of p(x). Then the leading coefficient
of mα(x) is the identity element of K, and thus mα is a monic polynomial
which generates the ideal I. Moreover mα is the unique monic polynomial
generating this ideal I. Indeed let m be a monic polynomial that generates I.
Then mα divides m, and m divides mα, and therefore degmα ≤ degm and
degm ≤ degmα and therefore degm = degmα But mα divides m and thus
m(x) = r(x)mα(x) for some polynomial r(x) with coefficients in K. This
polynomial r must then be a constant polynomial, and the requirement that
both mα and m are monic polynomials then ensures that value of the constant
polynomial r(x) is the identity element 1K of K. Thus m = mα.

We have now shown that the element α of the extension field L of K
determines a unique monic polynomial mα(x) with coefficients in K. This
polynomial mα satisfies mα(α) = 0. Moreover if f(x) is a polynomial with
coefficients in K, and if f(α) = 0, then f is divisible in the polynomial ring
K[x] by the polynomial mα, and thus there exists some polynomial g(x) with
coefficients in K such that f(x) = g(x)mα(x). It follows that mα(x) is the
monic polynomial of smallest degree amongst those polynomials that have α
as a root. This polynomial mα(x) is referred to as the minimum polynomial
of α. Its basic properties are set out in the statement of Lemma 4.3.

Now suppose that mα(x) = g(x)h(x), where g and h are polynomials
with coefficients in K. Then 0 = mα(α) = g(α)h(α). It follows that either
g(α) = 0, in which case mα divides g, or else h(α) = 0, in which case mα

divides h. It follows that one of the polynomials g(x) and h(x) must be a
constant multiple ofmα(x), and the other must be a constant polynomial. We
conclude that the minimum polynomial mα of α is an irreducible polynomial.

Let
K[α] = {f(α) : f ∈ K[x]}.

Then K[α] is a subring of the field K(α). It is in fact the subring of K(α)
generated by the subset K ∪ {α}. Now any subring of a field is an integral
domain, since such a subring is itself a unital commutative ring, and the
product of any two non-zero elements of a field is always non-zero. In par-
ticular K[α] is an integral domain. We claim that K[α] = K(α), provided
that α is algebraic over the ground field K.
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Let f(x) be a polynomial with coefficients in K. Suppose that f(α) 6=
0. We claim that there exists some polynomial g(x) with coefficients in K
such that f(α)−1 = g(α). Now the minimum polynomial mα(x) does not
divide f(x). But mα(x) is an irreducible polynomial. It follows that the
only polynomials with coefficients in K that divide both f(x) and mα(x) are
constant polynomials. Thus the polynomials f and mα are coprime. A basic
result concerning coprime polynomials ensures the existence of polynomials
g and h with coefficients in K such that f(x)g(x) + mα(x)(x) = 1K (see
Theorem 3.3). But then f(α)g(α) = 1K , and therefore f(α)−1 = g(α). This
shows that every non-zero element of the integral domain K[α] is invertible
in K[α]. It follows that K[α] is itself a field, and therefore K[α] = K(α).

Note that we have shown that if α is algebraic over K then every element
of the field K(α) be be expressed as the value f(α) at α of some polynomial f
with coefficients in K. This polynomial f may be chosen such that either
f = 0 or else deg f < degmα. Indeed, given any polynomial h(x) with
coefficients in K, there exist polynomials q(x) and f(x) with coefficients in K
such that h(x) = q(x)mα(x)+f(x), where either f = 0 or else deg f < degmα

(see Lemma 3.1). But then h(α) = f(α), since mα(α) = 0. Now let f be a
polynomials with coefficients in K for which f(α) = 0. Suppose that either
f = 0 or else deg f < degmα. Then the minimum polynomial mα divides
f − f . But if f − f were a non-zero polynomial then its degree would be
less than degmα, which is impossible. Therefore f = f . We have now
shown that, given any element z of K(α), there exists a unique polynomial
f(x) with coefficients in K such that f(α) = z and either f = 0 or else
deg f < degmα. It follows that there exist uniquely-determined elements
c0, c1, · · · , cn−1, where n = degmα such that

z = c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1.

This shows that 1, α, α2, . . . , αn−1 is a basis of K(α) as a vector space over
the field K. It follows immediately that the simple extension K(α):K is
finite, and [K(α):K] = n = degmα.

The result we have just obtained is included in the statement of Theo-
rem 4.5. Indeed we have shown that simple algebraic extensions are finite
extensions. The converse result follows from Lemma 4.2, which ensures that
finite field extensions are algebraic.

D-5 An Alternative Proof regarding Simple Algebraic
Field Extensions

Reproduced below is an alternative proof of the results of Lemma 4.4 and
Theorem 4.5. This alternative proof depends on the fact that if m is an
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irreducible polynomial with coefficients in a field K then the quotient ring
K[x]/(m) is a field.

Proof Suppose that the field extension K(α):K is finite. It then follows
from Lemma 4.2 that α is algebraic over K.

Conversely suppose that α is algebraic over K. Let R = {f(α) : f ∈
K[x]}. Now f(α) = 0 if and only if the minimum polynomial m of α over
K divides f . It follows that f(α) = 0 if and only if f ∈ (m), where (m) is
the ideal of K[x] generated by m. The ring homomorphism from K[x] to R
that sends f ∈ K[x] to f(α) therefore induces an isomorphism between the
quotient ring K[x]/(m) and the ring R. But K[x]/(m) is a field, since m is
irreducible (Proposition 3.6). Therefore R is a subfield of K(α) containing
K ∪ {α}, and hence R = K(α).

Let z ∈ K(α). Then z = g(α) for some g ∈ K[x]. But then there exist
polynomials l and f belonging to K[x] such that g = lm+f and either f = 0
or deg f < degm (Lemma 3.1). But then z = f(α) since m(α) = 0.

Suppose that z = h(α) for some polynomial h ∈ K[x], where either h = 0
or deg h < degm. Then m divides h−f , since α is a zero of h−f . But if h−f
were non-zero then its degree would be less than that of m, and thus h− f
would not be divisible by m. We therefore conclude that h = f . Thus any
element z of K(α) can be expressed in the form z = f(α) for some uniquely
determined polynomial f ∈ K[x] satisfying either f = 0 or deg f < degm.
Thus if n = degm then 1, α, α2 . . . , αn−1 is a basis of K(α) over K. It follows
that the extension K(α):K is finite and [K(α):K] = degm, as required.

D-6 Simple Transcendental Field Extensions

Let K be a field, let L be an extension field of K, and let α be an element
of L. We say that α is transcendental over K if α is not the root of any
non-zero polynomial with coefficients in K.

Consider the special case when K = Q and L = C. We say that a
complex number α is algebraic if α is the root of some non-zero polynomial
with rational coefficients. A complex number α is said to be transcendental
if it is not algebraic. Thus the algebraic numbers are those complex numbers
that are algebraic over Q, and the transcendental numbers are those complex
numbers that are transcendental over Q. Irrational numbers like

√
2 and√

3 are obviously algebraic over Q. It can be shown that the π and e are
transcendental. Now the set Q of rational numbers is countable. It follows
from this that the set of finite lists of rational numbers is countable, and
therefore the set of polynomials with rational coefficients is countable. It
then follows fairly directly from this that the set of algebraic numbers is
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countable. But the set of complex numbers is uncountable. Therefore there
must exist uncountably many transcendental numbers.

Now let us return to the general case of simple transcendental field ex-
tensions. Let K be a field, and let α an element of some extension field L
of K. Suppose that α is transcendental over K. There is a ring homomor-
phism from the polynomial ring K[x] to the extension field K(α) of K that
sends each polynomial f with coefficients in K to its value f(α) at α. Now,
because α is transcendental over K, the kernel of this homomorphism is the
zero subring of K[x] whose only element is the zero polynomial. Therefore
K[x] is isomorphic to a proper subring of K(α). This subring consists of
those elements of K(α) that may be expressed in the form f(α) for some
f ∈ K[x]; we denote this subring by K[α].

Now the polynomial ring K[x] is an integral domain. Moreover there is
a general construction whereby any integral domain R may be embedded in
a field QR whose elements are represented as fractions r/s, where r, s ∈ R
and s 6= r. This field QR is referred to as the field of fractions associated to
the integral domain R. Let r/s and r′/s′ be elements of QR, where s and
s′ are non-zero. The definition of QR ensures that r/s = r′/s′ if and only if
rs′ = r′s. Also the operations of addition and multiplication are defined on
QR so that

(r1/s1) + (r2/s2) = (r1s2 + s1r2)/(s1s2), (r1/s1)(r2/s2) = (r1r2)/(s1s2)

for all r1, r2, s1, s2 ∈ R with s1 6= 0 and s2 6= 0. We shall discuss the details
of this construction in much more detail below. For now we simply note
that the construction just outlined associates to the polynomial ring K[x] a
field of fractions K(x) whose elements are represented as ratios f(x)/g(x),
where f and g are polynomials with coefficients in K and g 6= 0. Such ratios
are referred to as rational functions over the field K. Rational functions
f(x)/g(x) and h(x)/k(x) are considered to be equal to one another if and
only if f(x)k(x) = h(x)g(x). The operations of addition and multiplication
on the field K(x) are defined so as to correspond to the standard formulae
for adding and multiplying fractions. The field K(x) is referred to as the
field of rational functions over the field K.

Now any injective ring homomorphism ϕ:R → L from an integral do-
main R to a field L extends to an injective field homomorphism ϕ:QR → L,
where QR is the field of fractions of the integral domain R. (We shall discuss
this also below.) We can apply this result to the homomorphism from the
polynomial ring K[x] to the field K(α) that sends f ∈ K[x] to f(α), where
α is an element of some extension field of K that is transcendental over
K. This homomorphism is injective and therefore extends to an injective
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field homomorphism εα:K(x) → K(α), where εα(f/g) = f(α)g(α)−1 for all
polynomials f, g ∈ K[x] with g 6= 0. The image εα(K(x)) of this homomor-
phism is a subfield of K(α) which contains K ∪ {α}. It then follows from
the definition of K(α) that εα(K(x)) = K(α). Thus εα:K(x)→ K(α) is an
isomorphism of fields.

We conclude from this that if K is a field, if α is an element of some
extension field of K, and if α is transcendental over K, then the field K(α)
is isomorphic to the field K(x) of rational functions over the field K. The
elements of K(x) are represented as fractions f(x)/g(x), where f(x) and
g(x) are polynomials with coefficients in K and g(x) 6= 0. Moreover elements
f1(x)/g1(x) and f2(x)/g2(x) are equal if and only if f1(x)g2(x) = f2(x)g1(x),
and the isomorphism between K(x) and K(α) sends f(x)/g(x) ∈ K(x) to
f(α)g(α)−1.

We now proceed to discuss in detail the construction and basic properties
of the field of fractions associated to any integral domain. This discussion
should cover the details required to understand the definition and basic prop-
erties of the field K(x) of rational functions over some field K.

D-7 The Field of Fractions associated to an Integral
Domain

Let R be an integral domain, and let

X = {(r, s) : r, s ∈ R and s 6= 0R},

where 0R denotes the zero element of the integral domain R. We define a
relation ∼ on X, where elements (r, s) and (r′, s′) of X satisfy (r, s) ∼ (r′, s′)
if and only if rs′ = r′s. It is clear that (r, s) ∼ (r, s) for all (r, s) ∈ X.
Thus the relation ∼ on X is reflexive. Also (r, s) ∼ (r′, s′) if and only if
(r′, s′) ∼ (r, s). Thus the relation ∼ is symmetric.

Let (r, s), (r′, s′) and (r′′, s′′) be elements of X, where r, r′, r′′, s, s′, s′′ ∈ R,
and where s, s′ and s′′ are non-zero. Suppose that (r, s) ∼ (r′, s′) and
(r′, s′) ∼ (r′′, s′′). Then rs′ = r′s and r′s′′ = r′′s′. It follows that

s′(rs′′) = (rs′)s′′ = (r′s)s′′ = s(r′s′′) = s(r′′s′) = s′(sr′′).

(Note that the above inequalities follow from the requirement that the mul-
tiplication operation on the integral domain R be both commutative and
associative.) Therefore s′(rs′′− sr′′) = 0. But s′ 6= 0, and the product of two
non-zero elements of an integral domain must itself be non-zero. It follows
that rs′′ − s′′r, and therefore (r, s) ∼ (r′′, s′′). Thus the relation ∼ on X
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is transitive. We have now shown that ∼ is an equivalence relation on the
set X.

The equivalence relation ∼ on the set X partitions X as a disjoint union
of equivalence classes. Let QR denote the set consisting of these equivalence
classes. Then, given any element (r, s) of the set X, where r, s ∈ R and s is
non-zero, there exists exactly one equivalence class to which (r, s) belongs.
Let us denote this equivalence class by r/s. Then

QR = {r/s : r, s ∈ R and s 6= 0R}.

Moreover elements r/s and r′/s′ of QR satisfy r/s = r′/s′ if and only if
rs′ = r′s.

We now define operations of addition and multiplication on QR. These
operations generalize the standard rules for adding and multiplying fractions
in elementary arithmetic. Specifically we define

(r1/s1) + (r2/s2) = (r1s2 + s1r2)/(s1s2), (r1/s1)(r2/s2) = (r1r2)/(s1s2)

for all r1/s1, r2/s2 ∈ QR. However it is necessary to check that these algebraic
operations on QR are indeed well-defined. This involves showing that the
values of (r1/s1) + (r2/s2) and (r1/s1)(r2/s2) do not depend on the choice of
elements r1, r2, s1, s2 of the integral domain R to represent the equivalence
classes r1/s1 and r2/s2.

Let r1, r
′
1, r2, r

′
2, s1, s

′
1, s2, s

′
2 ∈ R, where s1, s

′
1, s2 and s′2 are non-zero.

Suppose that r1/s1 = r′1/s
′
1 and r2/s2 = r′2/s

′
2. Then r1s

′
1 = r′1s1 and

r2s
′
2 = r′2s2. We wish to show that

(r1s2 + s1r2)/(s1s2) = (r′1s
′
2 + s′1r

′
2)/(s

′
1s
′
2).

We must therefore show that

(r1s2 + s1r2)(s
′
1s
′
2) = (r′1s

′
2 + s′1r

′
2)(s1s2).

Now

(r1s2 + s1r2)(s
′
1s
′
2) = (r1s

′
1)(s2s

′
2) + (r2s

′
2)(s1s

′
1)

= (r′1s1)(s2s
′
2) + (r′2s2)(s1s

′
1)

= (r′1s
′
2 + s′1r

′
2)(s1, s2),

as required. We have thus verified that the operation of addition on the
set QR is well-defined. The verification that multiplication on QR is well-
defined is analogous, but is more straightforward. Now

(r1r2)(s
′
1s
′
2) = (r1s

′
1)(r2s

′
2) = (r′1s1)(r

′
2s2) = (r′1r

′
2)(s1s2),
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and therefore
(r1r2)/(s1s2) = (r′1r

′
2)/(s

′
1s
′
2).

We have now shown that the set QR carries well-defined operations of addi-
tion and subtraction, defined by the formulae given above.

In fact QR, with these operations of addition and multiplication, is a
field. An examination of the relevant definitions shows immediately that
the operations of addition and multiplication on QR are commutative. Let
r1, r2, r3, s1, s2, s3 ∈ QR, where s1, s2 and s3 are non-zero. Then

((r1/s1) + (r2/s2)) + (r3/s3) = ((r1s2 + s1r2)/(s1s2)) + (r3/s3)

= ((r1s2 + s1r2)s3 + (s1s2)r3)/((s1s2)s3)

= ((r1s2)s3 + (s1r2)s3 + (s1s2)r3)/((s1s2)s3)

= (r1(s2s3) + s1(r2s3) + s1(s2r3))/(s1(s2s3))

= (r1(s2s3) + s1(r2s3 + s2r3))/(s1(s2s3))

= (r1/s1) + (r2s3 + s2r3)/(s2s3)

= (r1/s1) + ((r2/s2) + (r3/s3)).

Thus the operation of addition on QR is associative. Also

((r1/s1)(r2/s2))(r3/s3) = (r1r2/s1s2)(r3/s3) = ((r1r2)r3)/((s1s2)s3)

= (r1(r2r3))/(s1(s2s3)) = (r1/s1)((r2r3)/(s2s3))

= (r1/s1)((r2/s2)(r3/s3)).

Thus the operation of multiplication on QR is associative.
Let r, s and t be elements of the ring R, where s and t are non-zero.

Then r(st) = s(rt), and therefore r/s = (rt)/(st) = (r/s)(t/t). Also

(r/s) + (0R/t) = (rt+ s0R)(st) = (rt)/(st) = r/s.

It follows directly from these identities that 0R/1R is a zero element for QR,
and 1R/1R is a multiplicative identity element for QR. Also

(r/s) + (−r/s) = (rs+ s(−r))/(s2) = 0R/s
2 = 0R/1R,

and thus QR is an Abelian group with respect to the operation of addition,
and −(r/s) = (−r)/s for all r/s ∈ QR. We now note that r/s = 0R/1R if
and only if r = r1R = s0R = 0R. Thus an element r/s of QR is non-zero if
and only if r 6= 0R and s 6= 0R. It then follows that every non-zero element of
QR is invertible. Indeed let r/s be a non-zero element of QR. Then r, s ∈ R,
r 6= 0R,and s 6= 0R, and (r/s)−1 = s/r.
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Finally we verify that the operations of addition and subtraction on QR

satisfy the Distributive Law. Let r1, r2, r3, s1, s2, s3 ∈ QR, where s1, s2 and
s3 are non-zero. Then

((r1/s1) + (r2/s2))(r3/s3) = ((r1s2 + s1r2)/(s1s2))(r3/s3)

= ((r1s2 + s1r2)r3)/((s1s2)s3)

= ((r1s2)r3 + (s1r2)r3)/((s1s2)s3),

and therefore

(r1/s1)(r3/s3) + (r2/s2)(r3/s3)

= ((r1r3)/(s1s3)) + ((r2r3)/(s2s3))

= ((r1r3)(s2s3) + (s1s3)(r2r3))/((s1s3)(s2s3))

= ((r1s2)(r3s3) + (s1r2)(r3s3))/((s1s2)s
2
3)

= ((r1s2)r3 + (s1r2)r3)/((s1s2)s3)

= ((r1/s1) + (r2/s2))(r3/s3).

Thus the operations of addition and multiplication on QR satisfy the Dis-
tributive Law.

We have completed the verification that QR, with these operations of
addition and multiplication, is a field. This field is referred to as the field of
fractions associated to the integral domain R.

Now let ϕ:R→ L be an injective ring homomorphism from a ring R to a
field L. If r, r′, s and s′ are elements of R, where s 6= 0, s′ 6= 0 and rs′ = r′s,
then ϕ(r)ϕ(s′) = ϕ(r′)ϕ(s), and therefore ϕ(r)ϕ(s)−1 = ϕ(r′)ϕ(s′)−1. It
follows that there is a well-defined function ϕ̂:QR → L, where ϕ̂(r/s) =
ϕ(r)ϕ(s)−1 whenever r, s ∈ R and s 6= 0. Moreover it is straightforward
to verify that this function ϕ̂ is an injective homomorphism of fields. We
conclude from this that every injective ring homomorphism ϕ:R → L from
an integral domain R to a field L extends to an injective field homomorphism
ϕ̂:QR → L.
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