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C Polynomial Rings

C-1 Rings of Polynomials and Formal Power Series

Let R be a unital commutative ring.
Let us denote by R̂ the set of all infinite sequences (r0, r1, r2, . . .) indexed

by the set of non-negative integers, where rj ∈ R for j = 0, 1, 2, . . . . For each

element r of R̂, and for each non-negative integer j, let us denote by r[j] the
component of r indexed by j. Thus if r = (r0, r1, r2, . . .), where rj ∈ R for
each non-negative integer j, then r[j] = rj for j = 0, 1, 2, . . . .

Given elements a, and b of R̂, let a + b denote the element of R̂ which
satisfies (a + b)[j] = a[j] + b[j] for all non-negative integers j. Thus if a =
(a0, a1, a2, . . .) and b = (b0, b1, b2, . . .), then

a + b = (a0 + b0, a1 + b1, a2 + b2, . . .).

We obtain in this way an operation of addition defined on the set R̂. This
operation of addition is commutative and associative. Also a + 0 = a and
a + (−a) = 0 for all a ∈ R̂, where

0 = (0, 0, 0, . . .) and − (a0, a1, a2, . . .) = (−a0,−a2,−a3, . . .).

Thus the set R̂ is an Abelian group with respect to the operation of addition.
We now introduce a multiplication operation on R̂ with the intention of

giving R̂ the structure of a ring. We could do this by defining the product
of the infinite sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) to be the infinite
sequence (a0b0, a1b1, a2b2, . . .). This is possible, and the resulting operations
of addition and subtraction satisfy the ring axioms. But there are other
possibilities for the multiplication operation on R̂, and we choose to give R̂ a
multiplication operation whose definition is motivated by the procedures for
multiplying polynomials and power series. Specifically, we define the product
a× b of elements a and b of R̂ so that

(a× b)[n] =
∑
j,k≥0

j+k=n

a[j]b[k] =
n∑

j=0

a[j]b[n−j]

for all non-negative integers n, so that

(a0, a1, a2, . . .)× (b0, b1, b2, . . .) = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .).

We proceed to show that R̂, with these operations of addition and mul-
tiplication, is a unital commutative ring.
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Now the ring R is commutative, and therefore

(a× b)[n] =
n∑

j=0

a[j]b[n−j] =
n∑

k=0

a[n−k]b[k] =
n∑

k=0

b[k]a[n−k]

for each non-negative integer n. It follows that a×b = b×a for all a,b ∈ R̂.
The operations of addition and multiplication we have defined on R̂ satisfy

the Distributive Law. Indeed let a, b and c be elements of R̂. Then

(a× (b + c))[n] =
n∑

j=0

a[j](b + c)[n−j] =
n∑

j=0

a[j](b[n−j] + c[n−j])

=
n∑

j=0

a[j]b[n−j] +
n∑

j=0

a[j]c[n−j] = (a× b)[n] + (a× c)[n]

= (a× b + a× c)[n]

for all non-negative integers n. Thus a× (b + c) = a× b + a× c. Similarly
(a + b) × c = a × c + b × c. (This identity can be deduced from the
previous one either by means of a calculation analogous to the previous one,
or else by making use of the fact that the multiplication operation on R̂
is commutative.) We have now verified that the algebraic operations on R̂
satisfy the Distributive Law.

Let e ∈ R̂ be defined such that e[0] = 1R and e[j] = 0R when j > 0, where
0R and 1R denote the zero element and the multiplicative identity element
of the unital commutative ring R. Then e× a = a = a× e for all a ∈ R̂.

In order to complete the verification that R̂ is a unital commutative ring,
it now only remains to show that the multiplication operation defined on R̂
is associative.

Let a, b and c be elements of R̂, We show by direct calculation that
(a× b)× c = a× (b× c). Now

((a× b)× c)[n] =
n∑

m=0

(a× b)[m]c[n−m]

=
n∑

m=0

m∑
j=0

(a[j]b[m−j])c[n−m]

=
n∑

m=0

m∑
j=0

a[j](b[m−j]c[n−m])

=
∑

(j,m)∈Z2

0≤j≤m≤n

a[j](b[m−j]c[n−m])
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=
n∑

j=0

n∑
m=j

a[j](b[m−j]c[n−m])

=
n∑

j=0

n−j∑
k=0

a[j](b[k]c[n−j−k])

=
n∑

j=0

a[j](b× c)[n−j]

= (a× (b× c))[n]

for all non-negative integers n. (The indices k and m of summation employed
in the above calculation are related by the equation m = j + k.)

Alternatively one could establish the associativity of multiplication on R̂
by verifying that

((a×b)× c)[n] =
∑

(j,k,l)∈Z2

j+k+l=n

(a[j]b[k])c[l] =
∑

(j,k,l)∈Z2

j+k+l=n

a[j](b[k]c[l]) = (a× (b× c))[n].

We have now established that R̂, with the operations of addition and
multiplication defined above, is a unital commutative ring.

Let x be the element of R̂ defined such that x[1] = 1R and x[j] = 0R for
all non-negative integers j satisfying j 6= 1, so that

x = (0R, 1R, 0R, 0R, 0R, . . .).

Then
(x× a)[0] = 0R and (x× a)[j+1] = a[j]

for all non-negative integers j. A straightforward proof by induction on n
establishes that

xn
[j] =

{
1R if j = n;
0R if j 6= n.

for all positive integers n. Moreover this formula is valid for all non-negative
integers n, provided that we define x0 = e, where e denotes the identity
element (1R, 0R, 0R, . . .) of R̂.

Now let n be a non-negative integer, let a be an element of R̂. Suppose
that a[j] = 0R for all integers j satisfying j > n, so that

a = (a0, a1, a2, . . . , an, 0R, 0R, 0R, . . .),

where aj = a[j] for j = 0, 1, 2 . . . , n. Then

a =
n∑

j=0

ajx
j = a0e + a1x + a2x

2 + · · ·+ anxn.
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Let R̂0 denote the subset of R̂ consisting of those elements of R̂ with at most
finitely many non-zero coefficients. Thus an element a of R̂ belongs to R̂0 if
and only if the set of non-negative integers j for which a[j] 6= 0R is finite. Now

0 ∈ R̂0, where 0 = (0R, 0R, 0R, . . .), e ∈ R̂0, where e = (1R, 0R, 0R, . . .) and
x ∈ R̂0, where e = (0R, 1R, 0R, . . .). Also −a ∈ R̂0, a + b ∈ R̂0 and ab ∈ R̂0

for all a,b ∈ R̂0. Therefore R̂0 is a unital subring of R̂ which contains x.
We can regard the ring R̂0 as the ring of polynomials in a single indeter-

minate with coefficients in the ring R. Indeed every element of R̂0 may be
represented as a polynomial expression of the form

a0e + a1x + a2x
2 + · · ·+ anxn.

Conversely, every such polynomial expression determines a corresponding el-
ement of the ring R̂0. The operations of addition and multiplication on R̂0

which R̂0 inherits from the ring R̂ correspond to the standard operations
used to add and to multiply polynomials. Thus every polynomial with coeffi-
cients in the ring R determines a corresponding element of the ring R̂0, and,
conversely, every element of the ring R̂0 may be represented as a polynomial
with coefficients on the ring R.

We know that the operations of addition and multiplication on R̂0 satisfy
the ring axioms, because we have verified that R̂0 is a subring of the larger
ring R̂. It follows immediately from this that the ring R[x] of polynomials in
an indeterminate x with coefficients in a unital commutative ring R is itself
a unital commutative ring. Indeed we can define R[x] to be the ring R̂0: this
gives us a formal construction of the polynomial ring.

Moreover we note that the ring R[x] of polynomials with coefficients in a
unital commutative ring R may be embedded in a larger ring R[[x]]]. This
larger ring corresponds to the ring R̂ of infinite sequences (r0, r1, r2, . . .) stud-
ied above, where rj ∈ R for j = 0, 1, 2, . . .. Let a be an element of R̂, and
let aj = a[j] for all non-negative integers j. Then a may be represented as a
formal power series of the form

∞∑
j=0

ajx
j.

An expression of this form should be regarded as merely a convenient nota-
tion for denoting elements of the ring R̂, enabling us to regard elements of R̂
as formal power series with coefficients in the ring R. Considerations of con-
vergence and divergence are totally irrelevant in this context. This notation
representing elements of R̂ as formal power series respects and emphasizes
the fact that each element a of R̂ determines and is determined by an infinite
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sequence a0, a1, a2, . . . of elements of the ring R. The customary procedures
for adding and multiplying together power series correspond to the opera-
tions of addition and multiplication defined on the ring R̂. Moreover this
power series notation is consistent with the representation of elements of the
subring R̂0 as polynomials of the form f(x) whose coefficients belong to the
ring R.

We see therefore that to any unital commutative ring R we can associate
a ring R[[x]]. The elements of this ring R[[x]] are in one-to-one correspon-
dence with infinite sequences a0, a1, a2, a3, . . . of elements of R. It is conve-
nient to represent the element of R[[x]] corresponding to an infinite sequence
a0, a1, a2, . . . by means of a formal power series

a0 + a1x+ a2x
2 + a3a

3 + · · · .

A formal power series may be represented more compactly by the expression

∞∑
j=0

ajx
j.

The operations of addition and multiplication defined on the ring R[[x]] are
those that one would naturally employ when adding and multiplying power
series. And, because we have verified that the operations of addition and
multiplication on R̂ satisfy all the appropriate ring axioms, we can conclude
immediately that R[[x]] is a unital commutative ring.

It is a straightforward exercise to verify that the element 1R − x of the
ring R[[x]] is invertible, and that the inverse of this element is represented
by the formal power series 1R + x+ x2 + x3 + x4 + · · ·. (This corresponds to
the result that

(1R,−1R, 0R, 0R, . . .)× (1R, 1R, 1R, . . .) = (1R, 0R, 0R, . . .)

in the ring R̂.) More generally it is not difficult to verify that an element
∞∑

j=0

ajx
j of the ring R[[x]] is invertible in R[[x]] if and only if a0 6= 0R.

The polynomial ring R[x] is a subring of R[[x]]. Indeed an element
∞∑

j=0

ajx
j

of the ring R[[x]] of formal power series belongs to the polynomial ring R[x]
if and only if there exists some positive integer n such that aj = 0R whenever
j > n.
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C-2 Remarks on the Definition and Basic Properties
of Polynomial Rings

Many of the standard examples arising in Galois Theory concern polynomials
with numerical coefficients. Now the set C[x] consisting of all polynomials in a
single indeterminate x with complex coefficients is a unital commutative ring.
This statement amounts to little more than the observation that there are
well-defined operations of addition, subtraction and multiplication defined on
the set C[x] of polynomials with complex coefficients, and that these algebraic
operations on polynomials satisfy all the usual commutative, associative and
distributive laws.

A unital subring of C is a set of complex numbers which contains the
numbers 0 and 1, and contains the sum, difference and product of any two
of its elements. If R is a unital subring of C then R[x] is a unital subring of
C[x], and therefore R[x] is a unital commutative ring.

In particular, if K is a subfield of C then K[x], the set of polynomials in
a single indeterminate x with coefficients in K is closed under the operations
of addition, subtraction and multiplication of polynomials, and moreover it
contains the constant polynomials with values 0 and 1. This means that K[x]
is a unital subring of C[x], and thus K[x] is a unital commutative ring.

Now, whilst Galois Theory arose out of the study of the solvability of poly-
nomials with numerical coefficients, the theory can be applied more widely.
It is appropriate to generalize the results so that they can be applied to study
the solvability of polynomials with coefficients in any field K. This field K
might be a subfield of the complex numbers. Alternatively it might be a
field with a finite number of elements: it can be shown that, given any prime
number p, and given any positive integer n, there exists a field with pn ele-
ments. Moreover every finite field is of order pn for some prime number p and
positive integer n, and any two finite fields of the same order are isomorphic.
There are also many interesting and useful examples of fields that are neither
subfields of C nor finite fields. It is therefore appropriate to develop a theory
that is applicable to polynomials with coefficients in any field K whatsoever.

Now whatsoever field K we choose as our field of coefficients, the set K[x]
of polynomials with coefficients in K is itself well-defined, and there are well-
defined operations of addition, substraction and multiplication defined on
K[x]. Moreover, K[x], with these algebraic operations, has the structure of
a unital commutative ring. A certain amount of effort is required in order
to check out all the details of the proof of this fact, but the verifications are
straightforward and obvious. One should note that polynomials f(x) and
g(x) with coefficients in some field K are equal if and only if every coefficient
of f(x) is equal to the corresponding coefficient of g(x).
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Now each polynomial f(x) with coefficients in K determines a function
from the coefficient field K to itself which maps each element α of K to
f(α). If f(x) = c0 + c1x+ · · ·+ cnx

n, where c0, c1, . . . , cn ∈ K, then f(α) =
c0 +c1α+ · · ·+cnαn. If K is a subfield of the field C of complex numbers then
each polynomial with coefficients in K is determined by the corresponding
function on K. However the corresponding result does not hold when the
field K is finite. For example, let K is a finite field with p elements, where p
is a prime number, and let f(x) = 1Kx

p−1Kx. Then f(α) = 0 for all α ∈ K.
Indeed the field K is isomorphic to the field of congruence classes of integers
modulo p, and Fermat’s Little Theorem ensures that every integer n satisfies
the congruence np ≡ n (mod. p). But although the function α 7→ f(α) on K
determined by the polynomial f is the zero function, the polynomial f itself is
a non-zero polynomial. This example shows that it is necessary to distinguish
between polynomials with coefficients in a field K and the functions from K
to itself that are determined by evaluating that polynomial at elements of
the coefficient field K. Therefore one cannot develop a theory of polynomials
with coefficients in an arbitrary field K in which polynomials are regarded
as functions from K to itself.

A more formal approach to the construction of the polynomial ring K[x] is
presented at some length in Subsection C-1. One can represent a polynomial
with coefficients in some field K as an infinite sequence (c0, c1, c2, . . .) of
elements of K, where only finitely many terms in this sequence are non-zero.
One can define appropriate operations of addition and multiplication on such
sequences that represent the usual operations of addition and multiplication
of polynomials. One can then carefully check that these operations satisfy
all the axioms needed to ensure that K[x] is a unital commutative ring. This
exercise estabilishes the theory of polynomial rings on a sound and secure
footing.

C-3 The Structure of Rings of Polynomials with coef-
ficients in a Field

Let K be a field, and let K[x] be the ring of polynomials in a single indeter-
minate x with coefficients in K.

Now given any two polynomials h and f with coefficients in the field K,
where f 6= 0, there exist polynomials q and r such that h = qf + r and
either r = 0 or else deg r < deg f (Lemma 3.1). One may regard q as the
quotient polynomial and r as the remainder obtained when we divide the
polynomial h by the polynomial g by an algorithm analogous to the ‘long
division’ algorithm for dividing natural numbers.
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Suppose, for example that

h(x) = x4 − 2x3 + 5x2 + 4x+ 7 and f(x) = x2 + x− 7.

Then

x4 − 2x3 + 5x2 + 4x+ 7 = x2(x2 + x− 7)− 3x3 + 12x2 + 4x+ 7

−3x3 + 12x2 + 4x+ 7 = −3x(x2 + x− 7) + 15x2 − 17x+ 7

15x2 − 17x+ 7 = 15(x2 + x− 7)− 32x+ 112

It follows that

x4 − 2x3 + 5x2 + 4x+ 7 = (x2 − 3x+ 15)(x2 + x− 7)− 32x+ 112.

Thus h(x) = q(x)f(x) + r(x), where q(x) = x2− 3x+ 15 and r(x) = −32x+
112. Moreover deg r < deg q.

Given any ideal I of the polynomial ring K[x], there exists some poly-
nomial f with coefficients in K which generates the ideal I (Lemma 3.2).
Then

I = {gf : g ∈ K[x]}.

Many key results concerning polynomials with coefficients in a field may
be deduced as corollaries of this absolutely fundamental result. First we
summarize the proof of this basic result. The case when I is the zero ideal
is trivial: we take f = 0 in that case. Suppose that I is a non-zero ideal
of K[x]. We choose f ∈ I so as to minimize the degree amongst non-zero
polynomials in I. Let h ∈ I. Then h = qf + r for some q, r ∈ K[x], where
either r = 0 or else deg r < deg f . The definition of ideals ensures that r ∈ I.
It follows that the case where r 6= 0 and deg r < deg f is ruled out, because
f was chosen so as to minimize the degree amongst the non-zero elements of
I. Therefore r = 0 and h = qf , as required.

The result just discussed in turn leads to an important result concerning
coprime polynomials. Let f1, f2, . . . , fk be polynomicals with coefficients in
the field K. We say that these polynomials are coprime if there is no non-
constant polynomial that divides every one of these polynomials.

Let f(x) and m(x) be polynomials with coefficients in the field K, and
let I be the ideal of the polynomial ring K[x] generated by f and m. Then

I = {u(x)f(x) + v(x)m(x) : u, v ∈ K[x]}.

(This observation follows directly on applying Lemma 2.5.) Now it follows
from Lemma 3.2 (discussed above) that there exists some polynomial d(x)
with coefficients in K which generates the ideal I. This polynomial d(x)
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then divides both f(x) and m(x). Moreover d ∈ I, and therefore there exist
g, k ∈ K[x] such that d(x) = g(x)f(x)− k(x)m(x). Now suppose that f and
m are coprime. Then this polynomial d(x) must be a constant polynomial.
We may in fact choose d to be the constant polynomial whose value is the
identity element 1K of the field K. Then g(x)f(x)− k(x)m(x) = 1K . (This
result is a special case of Theorem 3.3.)

A polynomial m(x) with coefficients in the field K is said to be irreducible
over K if the only divisors of m(x) in the polynomial ring K[x] are the
constant polynomials and the constant multiples of the polynomial m(x). It
follows from this definition that a polynomial m(x) with coefficients in K is
irreducible over K if and only if m(x) cannot be factored as a product of
polynomials of lower degree with coefficients in K.

Let m(x) and f(x) be polynomials with coefficients in K. Suppose that
m is irreducible over K and that m does not divide f . Then the polynomials
m and f are coprime, and therefore there exist polynomials g(x) and k(x)
with coefficients in K such that g(x)f(x)− k(x)m(x) = 1K .

We can re-express this result in the language of congruence classes. Let
f , h and m be polynomials with coefficients in some field K. If f(x)−h(x) is
divisible by m(x) then we say that f and h are congruent modulo m, and we
write f(x) ≡ h(x) (mod. m(x)), or, more concisely, f ≡ h (mod. m). Thus
f(x) ≡ h(x) (mod. m(x)) if and only if there exists some polynomial k with
coefficients in K such that f(x)− h(x) = k(x)m(x).

We may now restate the previous result as follows. Let m(x) and f(x) be
polynomials with coefficients in K. Suppose that m(x) is irreducible over K
and that f(x) 6≡ 0K (mod. m(x)). Then there exists some polynomial g(x)
with coefficients in K such that f(x)g(x) ≡ 1K (mod. m(x)).

Now let m(x) be a polynomial with coefficients in K. Each polynomial
f(x) with coefficients in K then determines a congruence class modulo m(x).
This congruence class consists of all polynomials h(x) with coefficients in
K for which h(x) ≡ f(x) (mod. m(x)). There are well-defined operations
of addition, subtraction and multiplication defined on congruence classes:
the sum, difference and product of the congruence classes of polynomials
f(x) and g(x) are the congruence classes of f(x) + g(x), f(x) − g(x) and
f(x)g(x) respectively. The set of congruence classes of polynomials modulo
m(x), with these operations of addition, subtraction and multiplication of
congruence classes, is then a unital commutative ring. This ring is in fact
the quotient ring K[x]/(m) where (m) denotes the ideal of K[x] generated
by the polynomial m.

Suppose now that the polynomial m(x) is irreducible. Let f(x) be a
polynomial satisfying f(x) 6≡ 0K (mod. m(x)). We have shown that there
exists a polynomial g(x) with coefficients in K such that f(x)g(x) ≡ 1K . It
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follows that the congruence class of f(x) is invertible in the ring of congru-
ence classes of polynomials modulo m(x), and moreover the inverse of the
congruence class of f(x) is the congruence class of g(x). It follows that if the
polynomial m(x) is irreducible over K then the ring of congruence classes of
polynomials modulo m(x) is a field. In other words, if the polynomial m(x)
is irreducible over K then the quotient ring K[x]/(m) is a field. (This result
is Proposition 3.6.)

C-4 Products of Primitive Polynomials and
Eisenstein’s Irreducibility Criterion

It should be clear that there are some basic ideas common to the proofs of
Gauss’s Lemma and Eisenstein’s Irreducibility Criterion. We explore this
ideas below.

Let g(x) and h(x) be polynomials with integer coefficients. We write

g(x) =
r∑

j=0

bjx
j, h(x) =

s∑
k=0

ckx
k,

where b0, b1, . . . , br and c0, c1, . . . , cs are integers. It is convenient to define
bj = 0 when j > r, and ck = 0 when k > s. Then the coefficients bj and ck are
defined appropriately for all non-negative integers j and k. Let p be a prime
number. Suppose that the polynomials g(x) and h(x) each have at least one
coefficient that is not divisible by p. Then these polynomials each have a
coefficient that is of smallest order subject to being non-divisible by p. Thus
there exist integers j0 and k0, where 0 ≤ j0 ≤ r and 0 ≤ k0 ≤ s, such that bj0
and ck0 are not divisible by p, bj is divisible by p for all integers j satisfying
0 ≤ j < j0, and ck is divisible by p for all integers k satisfying 0 ≤ k < k0.
We claim that the coefficient of xj0+k0 in the product polynomial g(x)h(x) is
not divisible by p. Now

g(x)h(x) =
r+s∑
n=0

anx
n,

where

an =
n∑

j=0

bjcn−j

for n = 0, 1, 2, . . . , r + s. Suppose that n = j0 + k0. Then an is the sum of
the quantities bjck with j + k = j0 + k0. Note that if j 6= j0 and k = n − j
then either j < j0, in which case bj is divisible by the prime number p, or
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else k < k0, in which case ck is disivible by p. It follows that aj0+k0− bj0ck0 is
divisible by p. But bj0ck0 is not divisible by p, since p does not divide either
bj0 or cj0 , and a prime number cannot divide a product of integers unless it
divides at least one of the factors. We deduce from this that aj0+k0 is not
divisible by p.

We can summarize what we have so far established as follows.

Let g(x) and h(x) be polynomials with integer coefficients, let p
be a prime number, let j0 be the smallest non-negative integer
with the property that p does not divide the coefficient bj0 of xj0

in g(x), and let k0 be the smallest non-negative integer with the
property that p does not divide the coefficient ck0 of xk0 in h(x).
Then p does not divide the coefficient of xj0+k0 in the product
polynomial g(x)h(x).

It follows directly from this that if g(x) and h(x) are primitive polynomials
then so is the product polynomial g(x)h(x). Indeed if p is any prime number
then p cannot divide all the coefficients of g(x), and it cannot divide all
the coefficients of h(x) and therefore p cannot divide all the coefficients of
g(x)h(x). Gauss’s Lemma follows from this observation.

Now we consider Eisenstein’s criterion. Suppose that a polynomial f(x)
of degree m with integer coefficients factors as a product of the form f(x) =
g(x)h(x), where g(x) and h(x) are polynomials with integer coefficients. Let

f(x) =
m∑

n=0

anx
n, where am 6= 0. Suppose that there exists some prime

number p such that p does not divide the leading coefficient am of f , p
divides the coefficient an for f for 0 ≤ n < m, and p2 does not divide the
constant coefficient a0 of f . Let

g(x) =
r∑

j=0

bjx
j, h(x) =

s∑
k=0

ckx
k.

Now the prime number p does not divide all of the coefficients of the poly-
nomial g(x), for if it did, it would then divide all of the coefficients of f(x).
Therefore there is some non-negative integer j0 which is the smallest non-
negative integer with the property that p does not divide bj0 . Similarly there
is some non-negative integer k0 which is the smallest non-negative integer
with the property that p does not divide ck0 . It then follows from the discus-
sion above that the prime number p does not divide aj0+k0 . But all coefficients
of the polynomial f other than the leading coefficient are required to be di-
visible by this prime number p. Therefore j0 + k0 = m, where m = deg f .
Also b0 and c0 cannot both be divisible by p, since the constant coefficient a0
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of f is not divisible by p2, and a0 = b0c0. Thus either j0 = 0, or else k0 = 0.
These observations limit the possible values of j0 and k0: either j0 = m and
k0 = 0, or else j0 = 0 and k0 = m. Thus if the polynomial f(x) satisfies the
conditions in the statement of Eisenstein’s Criterion, and if f(x) = g(x)h(x),
where g(x) and h(x) are polynomials with integer coefficients, then either
deg g = deg f or deg h = deg f . Thus a polynomial f(x) with the properties
specified in the statement of Eisenstein’s criterion cannot be factored as a
product of polynomials of lower degree with integer coefficients. It then fol-
lows from Gauss’s Lemma that such a polynomial must be irreducible over
the field Q of rational numbers.
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