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1. (a) Let S be a subgroup of the group Z of integers (where the group
operation is addition of integers). Prove that there exists some
non-negative integer m such that S = mZ (where mZ = {mn :
n ∈ Z}).

(b) Let a1, a2, . . . , ar be integers, not all zero. Prove that there exist
integers
u1, u2, . . . , ur such that

(a1, a2, . . . , ar) = u1a1 + u2a2 + · · ·+ urar,

where (a1, a2, . . . , ar) denotes the greatest common divisor of

a1, a2, . . . , ar.

(c) Let x and m be integers that are coprime. Prove that there exists
some integer y such that xy ≡ 1 (mod m).

(d) Let p be a prime number. Prove the theorem, due to Fermat, which
states that xp ≡ x (mod p) for all integers x.

The question above is a bookwork question set on material
not formally included as such in the MA3411 and MA3412
syllabus. Nevertheless, parts (a) and (b) have some rele-
vance with regard to the basic foundational material, and
analogous results, concerning polynomial rings, and concern-
ing principal ideal domains in general are to be found in the
MA3411/MA3412 course material in 2009/10.

2. (a) Let p be a prime number, and let x be an integer coprime to p.
What is meant by saying that x is a quadratic residue of p?
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(b) Which of the integers between 1 and 12 are quadratic residues of
13, and which are quadratic non-residues of 13?

(c) State the Quadratic Reciprocity Law, and prove its validity.

[You may use, without proof, the lemma due to Gauss, which states
that, if p is an odd prime number, if m = (p−1)/2, and if x is an

integer coprime to p then the Legendre symbol

(
x

p

)
has the value

(−1)r, where r is the number of pairs (j, u) of integers satisfying
1 ≤ j ≤ m and 1 ≤ u ≤ m for which xj ≡ −u (mod p).]

The above question is a question on number theory not rel-
evant to MA3411/MA3412 in 2009/10. All parts other than
(c) are bookwork.

3. (a) Let H be a subgroup of the group Zn, where n is some positive
integer, the elements of Zn are ordered n-tuples of integers, and
the group operation on Zn is (vector) addition. What is meant by
saying that a list b1,b2, . . . ,br of elements of Zn is an integral
basis of the subgroup H?

(b) A basic theorem concerning subgroups of Zn (where n is some
positive integer) states that, given any non-trivial subgroup H of
Z
n, there exists an integral basis b1,b2, . . . ,bn of Zn, a positive

integer s, where s ≤ n, and positive integers k1, k2, . . . , ks for
which k1b1, k2b2, . . . , ksbs is an integral basis of H. Using this
theorem, or otherwise, prove that any finitely-generated Abelian
group is isomorphic to a direct product of cyclic groups.

(c) Write down a list of Abelian groups of order 9 with the property
that every Abelian group of order 9 is isomorphic to exactly one
of the groups in this list. [Fully justify your answer.]

(c) Prove that any Abelian group of order 14 is cyclic.

This question concerns material not included in MA3411 and
MA3412 in 2010. Parts (a) and (b) are bookwork linked to
the 311 course material in 2005/6.

4. (a) Let G be a finite group, and let p be a prime number that divides
the order of G. What is a Sylow p-subgroup of G?

(b) Prove the Second Sylow Theorem, which states that if G is a finite
group, and if p is a prime number dividing the the order of G, then
all all Sylow p-subgroups of G are conjugate, and p-subgroup of G
is contained in some Sylow p-subgroup of G, and the number of
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Sylow p-subgroups of G divides the order |G| of G and is congruent
to 1 modulo p.

Bookwork question not relevant to the MA3411/MA3412 syl-
labus.

5. (a) What is a Noetherian ring?

(b) Prove Hilbert’s Basis Theorem, which states that if R is a Noethe-
rian ring, then so is R[x].

6. In this question, let K be a field, let K[X1, X2, . . . , Xn] denote the ring
of polynomials in independent indeterminates X1, X2, . . . , Xn with co-
efficients in K, and let An(K) denote n-dimensional affine space over
the field K which is defined to be the set Kn of ordered n-tuples with
components belonging to the field K.

(a) What is an algebraic set in An(K)?

(b) Prove that the intersection of any collection of algebraic sets in
A
n(K) is an algebraic set in An(K).

(c) Prove that the union of two algebraic sets in An(K) is an algebraic
set in An(K).

(d) Give the definition of the Zariski topology on An(K).

(e) Determine which of the following are algebraic sets in A2(C):—

(i) {(z, w) ∈ A2(C) : z 6= 0 and w 6= 0};
(ii) {(z, w) ∈ A2(C) : z 6= 0 and w = 1/z};
(iii) {(z, w) ∈ A2(C) : |z|2 + |w|2 = 1};
(iv) {(z, w) ∈ A2(C) : w = ez}.

[Briefly justify your answers.]

(a) Bookwork.

(b) Bookwork.

(c) Bookwork.

(d) Bookwork.

(e)

(i) Not an algebraic set. Any complex line (i.e., one-dimensional
affine subspace) should be contained in the set, or intersect
the set in a finite number of points. That is not the case for
the complex line {(z, w) ∈ C2 : w = 1}, whose intersection
with the set contains all points of the line with the exception
of the point (0, 1).
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(ii) This is the algebraic set {(z, w) ∈ C : zw = 1}.
(iii) Not an algebraic set. The complex line {(z, w) ∈ C2 : w = 0}

intersects the set in the circle w = 0, |z| = 1, which is an
infinite set, but is not the whole of the complex line.

(iv) Not an algebraic set. The complex line {(z, w) ∈ C2 : w = 1}
intersects the given set at points of the set {(2πin, 1) : n ∈ Z},
which is an infinite set, but not the whole of the complex line.

7. (a) What is a field extension? What is meant by saying that a field
extension is finite? What is meant by saying that a field extension
is algebraic? What is the degree [L:K] of a finite field extension
L:K?

(b) State the Tower Law for field extensions.

(c) Let K be a field, and let α be an element of some extension field of
K. Suppose that α is algebraic over K. Prove that the simple field
extension K(α):K is finite, and also that the degree K(α):K] of
this simple field extension is equal to the degree of the minimum
polynomial of α over K. [You may use without proof the result
that the quotient ring K[x]/(f) is a field, where K[x] is the ring
of polynomials in the indeterminate x with coefficients in K, and
where (f) is the ideal of K[x] generated by an irreducible polyno-
mial f with coefficients in K. You may also use without proof
the existence and basic properties of the minimum polynomial of
α over K.]

(d) Let K be a field, and let α be an element of some extension field
of K. Suppose that α is the root of some cubic polynomial with
coefficients in K, and that this cubic polynomial is irreducible over
K. Let β be an element of K(α) with the property that β2 ∈ K.
Prove that β ∈ K.

(a) Bookwork.

(b) Bookwork.

(c) Bookwork.

(d) β is a root of the polynomial x2 − β2 whose coefficients lie in the
field K. Therefore the degree of the minimum polynomial of β
over K is at most 2. But [K(α):K] = 3 (by (c)), and

[K(α):K] = [K(α):K(β)][K(β):K]

by the Tower Law. It follows that [K(β):K] = 1 (since it is a
divisor of 3 that is less than 3), and therefore β ∈ K.
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8. (a) What is meant by saying that a field extension is normal? What
is meant by saying that a field extension is separable?

(b) Give the definition of the Galois group Γ(L:K) of a field extension
L:K.

(c) Let L be a field, let G be a finite group of automorphisms of L,
and let K be the fixed field of G (i.e.,

K = {a ∈ L : σ(a) = a for all σ ∈ G}.)

Prove that each element α of L is algebraic over K, and that the
minimum polynomial of α over K is the polynomial

(x− α1)(x− α2) · · · (x− αk),

where α1, α2, . . . , αk are distinct and are the elements of the orbit
of α under the action of G on L.

(d) Let L be a field, let G be a finite group of automorphisms of L, and
let K be the fixed field of G. Prove that the field extension L:K
is a Galois extension (i.e., an extension that is finite, normal and
separable). Show moreover that G is the Galois group Γ(L:K) of
L:K, and that |G| = [L:K].

The above question is bookwork in its entirety.

9. Let L be the subfield of C which is a splitting field for the polynomial f
over the field Q of rational numbers, where

f(x) =
4∑
j=0

(x+ 1)j = x4 + 5x3 + 10x2 + 10x+ 5.

(a) Show that the roots of the polynomial f are of the form ζj − 1 for
j = 1, 2, 3, 4, where

ζ = cos(
2π

5
) + i sin(

2π

5
).

(Here i2 = −1.)

(b) Is the polynomial f irreducible over Q? (Briefly justify your an-
swer.)

(c) Prove that the Galois group of the polynomial f is a cyclic group of
order 4, and, for each automorphism of L belonging to the Galois
group of f , and for each root of the polynomial f , find the image
of the root under the automorphism.
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(d) Let M = Q(θ) where θ = cos(2π/5). Explain why M is the unique
subfield of L for which Q ⊂M ⊂ L, M 6= Q and M 6= L. Is M :Q
a normal extension of Q? [Justify your answer.]

(a) A straightforward calculation shows that

xf(x) = ((x+ 1)− 1)
r∑
j=0

(x+ 1)j = (x+ 1)5 − 1.

Thus if α is a root of f then α + 1 is a 5th root of unity, distinct
from 1, and therefore α + 1 = ξj for some integer j satisfying
0 < j < 5.

(b) The polynomial f is irreducible. This follows from an immedi-
ate application of Eisenstein’s criterion for irreducibility, with the
prime equal to 5, given that 5 divides all coefficients with the
exception of the leading coefficient, and 25 does not divide the
constant coefficient.

(c) The Galois group of the polynomial can be regarded as the Galois
group Γ(L:Q) of the field extension L:Q, where L = Q(ζ), since
Q(ζ) is a splitting field for f over Q. Let ϕ be a Q-automorphism
of L. Then ϕ(ζ)5 = ϕ(ζ5) = 1 and ϕ(ζ) 6= 1, and therefore
ϕ(ζ) = ζr for some integer r satisfying 0 < r < 5.

Let αj = ζj − 1 for each integer j. Then the roots of f are α1,
α2, α3 and α4. Also αj = αk if and only if j ≡ k (mod 5). Now
if ϕ ∈ Γ(L:Q) satisfies ϕ(ζ) = ζr then ϕ(ζj) = ζrj, and therefore
ϕ(αj) = αrj for all integers j.

Now the polynomial f is irreducible, and therefore the Galois
group acts transitively on its roots. It follows that the automor-
phism ϕ may be chosen such that ϕ(α1) = α2. Then ϕ(α2) = α4,
ϕ(α4) = α8 = α3, ϕ(α3) = α6 = α1. Therefore ϕ is an automor-
phism of order 4. But f is the minimum polynomial

|Γ(L:Q)| = [L:Q] = [Q(α1):Q] = deg f = 4.

It follows that the Galois group Γ(L:Q) is a cyclic group of order 4,
generated by ϕ. Its elements are ι, ϕ, ϕ2, ϕ3, where ι denotes the
identity automorphism. Moreover

ϕ(α1) = α2, ϕ(α2) = α4, ϕ(α4) = α3, ϕ(α3) = α1,

ϕ2(α1) = α4, ϕ2(α4) = α1, ϕ2(α2) = α3, ϕ2(α3) = α2,

ϕ3(α1) = α3, ϕ3(α3) = α4, ϕ3(α4) = α2, ϕ3(α2) = α1.
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(d) The field extension L:Q is a Galois extension, being finite, normal
and separable, and therefore Galois Theory ensures that there is a
one-to-one correspondence between fields M satisfying Q ⊂M ⊂
L and subgroups of the Galois group. If M 6= Q and M 6= L
then [M :Q] = 2, and therefore Γ(L:M) must be a subgroup of
Γ(L:Q) whose order and index are equal to 2. There is only one
such subgroup, and it is the cyclic subgroup generated by ϕ2. We
deduce that there can only exist one such field M satisfying the
given conditions. Moreover it follows from standard properties of
the Galois correspondence that this field M is the fixed field of the
automorphism ϕ2. But on examining the action of ϕ2 on the roots
of f , we see that ϕ is the restriction to L of the automorphism of
C defined by complex conjugation. Therefore M = L ∩ R.

Now ζ, ζ2, ζ3, ζ4 is a basis for L as a vector space over Q, and
moreover any element of the fixed field M of ϕ2 must be a linear
combination of ζ+ ζ4 and ζ2 + ζ3 with coefficients in Q. Moreover
ζ + ζ4 = 2θ and ζ2 + ζ3 = 4θ2 − 2. It follows that M = Q(θ), as
required. M is a normal extension of Q because its Galois group
is a normal subgroup of the Abelian group Γ(L:Q).
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