Modules MA3411/MA3412, Hilary Term 2010
Relevant Examination Questions from the
MA311 2006 Paper

David R. Wilkins

1. (a) Let S be a subgroup of the group Z of integers (where the group
operation is addition of integers). Prove that there exists some
non-negative integer m such that S = mZ (where mZ = {mn :
neZ}).

(b) Let ay,as,...,a, be integers, not all zero. Prove that there exist
ntegers
U1, Ug, . .., U, Such that

(a1, ag,...,a) = uray + ugag + - - - + ura,,
where (ay,as, .. .,a,) denotes the greatest common divisor of
ay,a9,...,Q.

(c) Let x and m be integers that are coprime. Prove that there exists
some integer y such that xy =1 (mod m).

(d) Let p be a prime number. Prove the theorem, due to Fermat, which
states that x¥ = x (mod p) for all integers x.

The question above is a bookwork question set on material
not formally included as such in the MA3411 and MA3412
syllabus. Nevertheless, parts (a) and (b) have some rele-
vance with regard to the basic foundational material, and
analogous results, concerning polynomial rings, and concern-
ing principal ideal domains in general are to be found in the
MA3411/MA3412 course material in 2009/10.

2. (a) Let p be a prime number, and let x be an integer coprime to p.
What is meant by saying that x is a quadratic residue of p?
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3.

4.

(b)
(c)

Which of the integers between 1 and 12 are quadratic residues of
13, and which are quadratic non-residues of 137

State the Quadratic Reciprocity Law, and prove its validity.

[You may use, without proof, the lemma due to Gauss, which states
that, if p is an odd prime number, if m = (p—1)/2, and if x is an

x
integer coprime to p then the Legendre symbol | — | has the value

(—=1)", where r is the number of pairs (j,u) of integers satisfying
1<j<mandl <u<m for which zj = —u (mod p)./

The above question is a question on number theory not rel-
evant to MIA3411/MA3412 in 2009/10. All parts other than
(c) are bookwork.

(a) Let H be a subgroup of the group Z™, where n is some positive

(b)

(c)

integer, the elements of Z" are ordered n-tuples of integers, and
the group operation on Z" is (vector) addition. What is meant by
saying that a list by, bg, ... b, of elements of Z" is an integral
basis of the subgroup H ?

A basic theorem concerning subgroups of Z™ (where n is some
positive integer) states that, given any non-trivial subgroup H of
7, there exists an integral basis by, ba, ..., b, of Z™, a positive
integer s, where s < n, and positive integers ki, ks, ... ks for
which k1by, kobso, ... ksbs is an integral basis of H. Using this
theorem, or otherwise, prove that any finitely-generated Abelian
group 1is isomorphic to a direct product of cyclic groups.

Write down a list of Abelian groups of order 9 with the property
that every Abelian group of order 9 is isomorphic to exactly one
of the groups in this list. [Fully justify your answer.]

(¢) Prove that any Abelian group of order 14 is cyclic.

This question concerns material not included in M A3411 and
MA3412 in 2010. Parts (a) and (b) are bookwork linked to
the 311 course material in 2005/6.

(a) Let G be a finite group, and let p be a prime number that divides

the order of G. What is a Sylow p-subgroup of G ¢

(b) Prove the Second Sylow Theorem, which states that if G is a finite

group, and if p is a prime number dividing the the order of G, then
all all Sylow p-subgroups of G are conjugate, and p-subgroup of G
1s contained in some Sylow p-subgroup of G, and the number of



Sylow p-subgroups of G' divides the order |G| of G and is congruent
to 1 modulo p.

Bookwork question not relevant to the M A3411/MA3412 syl-
labus.

(a) What is a Noetherian ring?

(b) Prove Hilbert’s Basis Theorem, which states that if R is a Noethe-
rian ring, then so is R|x].

. In this question, let K be a field, let K[X1, X, ..., X,] denote the ring
of polynomaials in independent indeterminates X1, Xo, ..., X, with co-
efficients in K, and let A™(K) denote n-dimensional affine space over
the field K which is defined to be the set K™ of ordered n-tuples with
components belonging to the field K.

(a) What is an algebraic set in A"(K)?
(b) Prove that the intersection of any collection of algebraic sets in
A™(K) is an algebraic set in A™(K).
(¢) Prove that the union of two algebraic sets in A™(K) is an algebraic
set in A"(K).
(d) Give the definition of the Zariski topology on A™(K).
(e) Determine which of the following are algebraic sets in A?(C):—
(i) {(z,w) € A*(C) : 2 # 0 and w # 0};
(ii) {(z,w) € A>(C): 2 £ 0 and w = 1/z};
(iii) {(z,w) € A%(C) : |z]* + |w|* = 1};
(iv) {(z,w) € A*(C) : w = €*}.
[Briefly justify your answers.]

(a) Bookwork.
(b) Bookwork.
(c) Bookwork.
(d) Bookwork.
(

e)
(i) Not an algebraic set. Any complex line (i.e., one-dimensional
affine subspace) should be contained in the set, or intersect
the set in a finite number of points. That is not the case for
the complex line {(z,w) € C? : w = 1}, whose intersection
with the set contains all points of the line with the exception

of the point (0, 1).



(ii) This is the algebraic set {(z,w) € C: zw = 1}.

(iii) Not an algebraic set. The complex line {(z,w) € C* : w = 0}
intersects the set in the circle w = 0, |z| = 1, which is an
infinite set, but is not the whole of the complex line.

(iv) Not an algebraic set. The complex line {(z,w) € C*: w = 1}
intersects the given set at points of the set {(2min, 1) : n € Z},
which is an infinite set, but not the whole of the complex line.

7. (a) What is a field extension? What is meant by saying that a field
extension is finite? What is meant by saying that a field extension
is algebraic? What is the degree [L: K| of a finite field extension
L:K?

(b) State the Tower Law for field extensions.

(c) Let K be a field, and let o be an element of some extension field of
K. Suppose that o 1s algebraic over K. Prove that the simple field
extension K(a): K is finite, and also that the degree K(«): K| of
this simple field extension is equal to the degree of the minimum
polynomial of o over K. [You may use without proof the result
that the quotient ring Klx|/(f) is a field, where K|x] is the ring
of polynomials in the indeterminate x with coefficients in K, and
where (f) is the ideal of K[z| generated by an irreducible polyno-
mial f with coefficients in K. You may also use without proof
the existence and basic properties of the minimum polynomial of
a over K.]

(d) Let K be a field, and let « be an element of some extension field
of K. Suppose that a is the root of some cubic polynomial with
coefficients in K, and that this cubic polynomaial is irreducible over
K. Let 3 be an element of K(«) with the property that 3* € K.
Prove that f € K.

(a) Bookwork.
(b) Bookwork.
(c) Bookwork.
(

d) 3 is a root of the polynomial x> — 3% whose coefficients lie in the
field K. Therefore the degree of the minimum polynomial of (3
over K is at most 2. But [K(a): K] =3 (by (c)), and

[K(a): K] = [K(a): K(B)][K(5): K]
by the Tower Law. It follows that [K(3): K] = 1 (since it is a
divisor of 3 that is less than 3), and therefore 5 € K.
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8. (a) What is meant by saying that a field extension is normal? What
is meant by saying that a field extension is separable?

(b) Give the definition of the Galois group I'(L: K) of a field extension
L:K.

(c) Let L be a field, let G be a finite group of automorphisms of L,
and let K be the fized field of G (i.e.,

K={a€L:o(a)=a foraloeG}.)

Prove that each element o of L is algebraic over K, and that the
manimum polynomial of o over K 1s the polynomial

(z —a)(z — ) (z — ),

where ay, g, ..., ay are distinct and are the elements of the orbit
of a under the action of G on L.

(d) Let L be a field, let G be a finite group of automorphisms of L, and
let K be the fixed field of G. Prove that the field extension L: K
is a Galois extension (i.e., an extension that is finite, normal and
separable). Show moreover that G is the Galois group I'(L: K) of
L: K, and that |G| = [L: K].

The above question is bookwork in its entirety.
9. Let L be the subfield of C which is a splitting field for the polynomial f
over the field Q of rational numbers, where

4
fl@)=> (x+1) =a* +52° + 102” + 10z + 5.

Jj=0

(a) Show that the roots of the polynomial f are of the form (7 —1 for
7 =1,2,3,4, where

2 2
(= COS(%) + isin(g).
(Here i* = —1.)
(b) Is the polynomial f irreducible over Q¢ (Briefly justify your an-
swer.)

(¢) Prove that the Galois group of the polynomial f is a cyclic group of
order 4, and, for each automorphism of L belonging to the Galots
group of f, and for each root of the polynomial f, find the image
of the root under the automorphism.

b}



(d) Let M = Q(0) where 0 = cos(2n/5). Ezplain why M is the unique
subfield of L for whichQ C M C L, M # Q and M # L. Is M:Q

a normal extension of Q? [Justify your answer.]

(a) A straightforward calculation shows that

T

ef@) = ((z+1) - )Y (@+1) = (@ +1)° - L.

Jj=0

Thus if o is a root of f then o+ 1 is a 5th root of unity, distinct
from 1, and therefore o +1 = &’ for some integer j satisfying
0<j<o.

(b) The polynomial f is irreducible. This follows from an immedi-
ate application of Eisenstein’s criterion for irreducibility, with the
prime equal to 5, given that 5 divides all coefficients with the
exception of the leading coefficient, and 25 does not divide the
constant coefficient.

(¢) The Galois group of the polynomial can be regarded as the Galois
group I'(L: Q) of the field extension L:Q, where L = Q((), since
Q(¢) is a splitting field for f over Q. Let ¢ be a Q-automorphism
of L. Then ¢(¢)° = ¢(¢°) = 1 and ¢(¢) # 1, and therefore
©(C) = (" for some integer r satisfying 0 < r < 5.

Let a;j = ¢ — 1 for each integer j. Then the roots of f are aj,
as, ag and ay. Also a; = oy, if and only if j = £ (mod5). Now
if ¢ € T'(L: Q) satisfies ¢(¢) = ¢" then ¢(¢/) = (™, and therefore
(o) = o for all integers j.

Now the polynomial f is irreducible, and therefore the Galois
group acts transitively on its roots. It follows that the automor-
phism ¢ may be chosen such that ¢(a;) = as. Then ¢(as) = ay,
o(ag) = ag = ag, p(az) = ag = aj. Therefore ¢ is an automor-
phism of order 4. But f is the minimum polynomial

T(L:Q)| = [L: Q] = [Q(an): Q] = deg f = 4.

It follows that the Galois group I'(L: Q) is a cyclic group of order 4,
generated by . Its elements are ¢, ¢, p?, 3, where ¢ denotes the
identity automorphism. Moreover

80(041) = (g, 90(@2) = Qy, 80(044) = (3, 90(%) = 0,

902(041) = Qy, @2(%) = Qq, 902(042) = O3, 902<043) = Qa,

<P3(Oé1) = (s, 903(043) = Qy, 903(044) = o, @3(042) = aq.



(d) The field extension L: Q is a Galois extension, being finite, normal
and separable, and therefore Galois Theory ensures that there is a
one-to-one correspondence between fields M satisfying Q C M C
L and subgroups of the Galois group. If M # Q and M # L
then [M:Q] = 2, and therefore I'(L: M) must be a subgroup of
I'(L: Q) whose order and index are equal to 2. There is only one
such subgroup, and it is the cyclic subgroup generated by ¢?. We
deduce that there can only exist one such field M satisfying the
given conditions. Moreover it follows from standard properties of
the Galois correspondence that this field M is the fixed field of the
automorphism ¢?. But on examining the action of ©? on the roots
of f, we see that ¢ is the restriction to L of the automorphism of
C defined by complex conjugation. Therefore M = L NR.

Now (, (2%, ¢3,(* is a basis for L as a vector space over Q, and
moreover any element of the fixed field M of »? must be a linear
combination of ¢ +¢* and ¢%+ (3 with coefficients in Q. Moreover
C+¢*=20and (* + ¢ = 462 — 2. It follows that M = Q(f), as
required. M is a normal extension of Q because its Galois group
is a normal subgroup of the Abelian group I'(L: Q).



