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1. (a) Let x, y and m be integers with m 6= 0. Suppose that m divides
xy and that m and x are coprime. Prove that m divides y.

(b) Let m1,m2, . . . ,mr be non-zero integers that are pairwise coprime.
Let x be an integer that is divisible by mi for i = 1, 2, . . . , r. Prove
that x is divisible by the product m1 ·m2 · · ·mr of m1,m2, . . . ,mr.

(c) State and prove the Chinese Remainder Theorem.

(d) Find an integer x such that x ≡ 2 (mod 3) x ≡ 3 (mod 5) and
x ≡ 1 (mod 7).

Question on Number Theory, which is not included in the
syllabus for MA3411 and MA3412.

2. (a) Let m be a positive integer. What is meant by saying that some
positive integer g is a primitive root modulo m?

(b) Let p be a prime number, and let x and y be integers coprime to
p. Suppose that the congruence classes of x and y modulo p have
the same order. Prove that there exists a non-negative integer k,
coprime to the order of the congruence classes of x and y, such
that y ≡ xk (mod p). [You may use without proof the fact that if
f is any polynomial of order n with integer coefficients, and if p
is any prime number, then the congruence f(x) ≡ 0 (mod p) has
at most n integer solutions x in the range 0 ≤ x < p.]

(c) Let p be a prime number. Prove that there exists a primitive root
modulo p. [You may use without proof any standard properties
of the Euler totient function φ, where, for any positive integer n,
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φ(n) denotes the number of integers satisfying 0 ≤ x < n that are
coprime to n.]

Question on Number Theory, which is not included in the
syllabus for MA3411 and MA3412.

3. (a) What is meant by saying that a subgroup N of a group G is a
normal subgroup of G? What is a homomorphism from a group G
to a group K? What is the kernel ker θ of a homomorphism θ:G→
K?

(b) Let N be a normal subgroup of a group G. Prove that xN = Nx
for all x ∈ G.

(c) Prove that if θ:G → K is a homomorphism from a group G to a
group K then the kernel ker θ of θ is a normal subgroup of G.

(d) Let G and K be groups, let θ:G → K be a homomorphism from
G to K. Let M1 and M2 be subgroups of K with M1 ⊂ M2, and
let

N1 = {g ∈ G : θ(g) ∈M1}, N2 = {g ∈ G : θ(g) ∈M2}.

Suppose that M1 is a normal subgroup of M2. Prove that N1 is a
subgroup of G, and is a normal subgroup of N2.

Note that it has been announced that no questions will be set
in 2010 that deal directly with the material of Sections 1 and
2 of the lecture notes for MA3411. This is an example of such
a question.

(a) Bookwork.

(b) Bookwork.

(c) Bookwork.

(d) Let x ∈ N1. Then θ(x) ∈ M1, hence θ(x)−1 ∈ M1. But θ(x)−1 =
θ(x−1), since

θ(x)θ(x−1) = θ(xx−1) = θ(eG) = eK

and
θ(x−1)θ(x) = θ(x−1x) = θ(eG) = eK ,

Thus θ(x−1) ∈M1, and therefore x−1 ∈ N1.

Let x ∈ N1 and y ∈ N1. Then θ(xy) = θ(x)θ(y), and θ(x)θ(y) ∈
M1, and therefore xy ∈ N1.
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We have thus shown that eG ∈ N1, and that x−1 ∈ N1 and xy ∈ N1

for all x ∈ N1 and y ∈ N1. We deduce that N1 is a subgroup of
G.

Let x ∈ N1 and n ∈ N2. Then

θ(nxn−1) = θ(n)θ(x)θ(n−1) = θ(n)θ(x)θ(n)−1

and θ(n)θ(x)θ(n)−1 ∈ M1, since θ(x) ∈ M1, θ(n) ∈ M2, and M1

is a normal subgroup of M2. Therefore nxx−1 ∈ N1. This proves
that N1 is a normal subgroup of N2.

4. (a) Let H be a non-trivial subgroup of Zn (where the group operation
on Zn is the standard one of addition of n-tuples). What is meant
by saying that elements b1,b2, . . . ,br of H constitute an integral
basis of the subgroup H?

(b) Let H be a non-trivial subgroup of Zn. Prove that there exists an
integral basis b1,b2, . . . ,bn of Zn, a positive integer s, where s ≤
n, and positive integers k1, k2, . . . , ks for which k1b1, k2b2, . . . , ksbs
is an integral basis of H.

Bookwork question on material that is not included on the
syllabus for MA3411/MA3412.

5. (a) Let G be a finite group, and let p be a prime number that divides
the order of G. What is a Sylow p-subgroup of G?

(b) State and prove the Second Sylow Theorem.

Bookwork question on material that is not included on the
syllabus for MA3411/MA3412.

6. (a) What is meant by saying that a field extension L:K is finite?
What is the degree [L:K] of a finite field extension L:K?

(b) State and prove the Tower Law for field extensions.

(c) Let L:K be a finite field extension with [L:K] = 77. Explain
briefly why there cannot exist any element of L whose minimal
polynomial over K is a cubic polynomial.

(a) Bookwork.

(b) Bookwork.

(c) Suppose that there were to exist an element α of L whose minimum
polynomial over K was a cubic polynomial. Then [K(α):K] = 3,
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since the degree of this simple extension is equal to the degree of
the minimum polynomial of α. But this is impossible since

[L:K] = [L:K(α)][K(α):K]

by the Tower Law, and 3 does not divide 77.

7. (a) Let L:K be a field extension, and let f be a polynomial with co-
efficients in K. What is meant by saying that the polynomial f
splits over L? What is meant by saying that L is a splitting field
for f over K?

(b) What is meant by saying that a field extension L:K is normal?

(c) Let L:K be a field extension, where L is a splitting field over K for
some polynomial with coefficients in K. Prove that the extension
L:K is normal.

[You may use, without proof, the following theorem: let K1 and K2

be fields, let σ:K1 → K2 be an isomorphism from K1 to K2, let f
be a polynomial with coefficients in K1, let σ∗(f) be the polynomial
with coefficients in K2 that corresponds to f under σ, and let
L1 and L2 be splitting fields for f and σ∗(f) over K1 and K2

respectively. Then there exists an isomorphism τ :L1 → L2 which
extends σ:K1 → K2.]

This question is bookwork in its entirety.

8. (a) Let f be a polynomial with coefficients in a field K. Give the
definition of the Galois group of the polynomial f over the field K.

(b) Prove that the Galois group of the polynomial x3 + 9x− 3 over the
field Q of rational numbers is isomorphic to the symmetric group
Σ3 of permutations of three objects.

(a) Bookwork.

(b) Based on bookwork. First we note that the polynomial x3 +
9x − 3 is irreducible over the field Q of rational numbers. This
follows directly on applying Eisenstein’s criterion with the prime
number equal to 3.

Next we note that this polynomial has only one real root. Indeed
the first derivative is 3x2+9 which has no real roots, and is strictly
positive for all real x. The existence of one real root follows by
Rolle’s Theorem, or indeed by elementary calculus.

4



Let α be the real root of the polynomial, and let β and γ be the
two non-real roots. Then β = γ (where β denotes the complex
conjugate of β).

Let L be the splitting field for the polynomial over Q that is con-
tained within the field of complex numbers. Then L = Q(α, β, γ).

The restriction τ :L → L of complex conjugation to the field L
is a Q-automorphism of L, and thus represents an element τ of
the Galois group Γ(L:Q). Clearly τ 2 = ι, where ι denotes the
identity automorphism of L. It follows from Lagrange’s Theorem
that |Γ(L:Q)| is divisible by 2.

Also [Q(α):Q] = 3, since the polynomial x3 + 9x + 3, being ir-
reducible and monic, is the minimum polynomial over α over Q,
and the degree of such a simple extension is equal to the degree
of the minimum polynomial of α over Q.

It follows that [L:Q] is divisible by 3, since

[L:Q] = [L:Q(α)][Q(α):Q]

by the Tower Law. But [L:Q] = |Γ(L:Q)|, since L:Q is a Galois
extension.

We see therefore that the order |Γ(L:Q)| of the Galois group is
divisible by 2 and by 3, and is therefore divisible by 6.

But any Q-automorphism of L is determined by its action on the
roots α, β and γ of the polynomial f , and induces a permutation of
those roots. The Galois group Γ(L:Q) is therefore isomorphic to a
subgroup of the group of permutations of three objects, those three
objects being the three roots of the polynomial. This permutation
group is of order 6. Therefore the Galois group is isomorphic to
the permutation group itself, as required.

9. Let p be a prime number, and let K be a field of characteristic zero with
the property that the polynomial xp − 1 splits over K.

(a) Let L:K be a Galois extension of K with [L:K] = p. Prove that
there exists an element α of L such that L = K(α) and αp ∈ K.

[ Hint: consider the action of a generator σ of the Galois group
Γ(L:K) on the elements αj given by

αj = β + ωjσ(β) + ω2jσ2(β) + · · ·+ ω(p−1)jσp−1(β),

where β ∈ L \K and ω is a primitive pth root of unity belonging
to K.]
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(b) Let c ∈ K. Prove that if the polynomial xp − c has no root in K
then its Galois group over K is a cyclic group of order p.

(a) Bookwork.

(b) Based on bookwork. Let L be a splitting field for the poly-
nomial xp − c over K, and let α be a root of that polynomial in
L. The field K contains a primitive pth root of unity ω, since
xp − 1 splits over K. Then the roots of xp − c are of the form
αωj for 0 ≤ j < p. These roots all belong to K(α), and there-
fore L = K(α). It follows that [L:K] ≤ p, since [L:K] must
be equal to the degree of the minimum polynomial of α over K.
Let σ ∈ Γ(L:K) be a non-trivial K-automorphism of L. Then
σ(α) = αωr for some positive integer r coprime to p. But then
σj(α) = αωjr for all integers j. It follows that σj(α) = α if and
only if jr is divisible by p, and thus σj(α) = α if and only if j is
divisible by p (since r is coprime to p). Thus the automorphism
σ is of order p, and therefore |Γ(L:K)| = [L:K] = p. The result
now follows from the fact that any cyclic group of prime order is
cyclic.
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