
Module MA3411: Galois Theory

Worked Solutions to Problems

Michaelmas Term 2013

1. Use Eisenstein’s criterion to verify that the following polynomials are
irreducible over Q:—

(i) x2 − 2;

(ii) x3 + 9x+ 3;

(iii) x5 + 26x+ 52.

The requirements of Eisenstein’ Criterion are satisfied with the prime
number employed in that criterion equal to 2, 3 and 13 in cases (i), (ii)
and (iii) respectively.

2. The Fundamental Theorem of Algebra ensures that every non-constant
polynomial with complex coefficients factors as a product of polynomials
of degree one. Use this result to show that a non-constant polynomial
with real coefficients is irreducible over the field R of real numbers if
and only if it is either a polynomial of the form ax+ b with a 6= 0 or a
quadratic polynomial of the form ax2 + bx+ c with a 6= 0 and b2 < 4ac.

Polynomials over the form ax+ b can only have factors of degrees zero
and one and are thus irreducible. A quadratic polynomial of the form
ax2 + bx+ c with a 6= 0 and b2 < 4ac has non-real roots and therefore
cannot be factored as a product of two polynomials of degree one.
Such quadratic polynomials are thus irreducible over the field of real
numbers.

Let f(x) be an polynomial with real coefficients that is irreducible over
the field R of real numbers. It follows from the Fundamental Theorem
of Algebra that the polynomial f has at least one root in the field
of complex numbers. Let α be a root of f . If α is a real number
then x − α is a factor of f in the polynomial ring R[x], and therefore
f(x) = a(x − α), where a is the leading coefficient of f . If α is not a
real number then its complex conjugate α is also a root of f . But then
(x − α)(x − α) is a polynomial with real coefficients that divides the
irreducible polynomial f in the polynomial ring R. Indeed

(x− α)(x− α) = x2 − (α + α)x+ |α|2 = x2 + 2px+ p2 + q2,
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where the real numbers p and q are the real and imaginary parts re-
spectively of the complex number α. It follows from the irreducibility
of f that

f(x) = a(x− α)(x− α) = ax2 + bx+ c,

where b = 2pa and c = (p2 + q2)a. Moreover

b2 = 4p2a2 < 4(p2 + q2)a2 = 4ac.

It follows that a polynomial with real coefficients that is irreducible
over the field of real numbers must either be of the form ax+ b, where
a, b ∈ R and a 6= 0, or else must be of the form ax2 + bx + c, where
a, b, c ∈ R, a 6= 0 and b2 < 4ac.

3. Let d be a rational number that is not the square of any rational number,
let
√
d be a complex number satisfying (

√
d)2 = d, and let L denote

the set of all complex numbers that are of the form a + b
√
d for some

rational numbers a and b. Prove that L is a subfield of the field of
complex numbers, and that L:Q is a finite field extension of degree 2.

If z1, z2 ∈ L then z1 + z2 ∈ L, z1 − z2 ∈ L and z1z2 ∈ L. Indeed if
z1 = a1 + b1

√
d and z2 = a2 + b2

√
d then

z1 + z2 = (a1 + a2) + (b1 + b2)
√
d,

z1 − z2 = (a1 − a2) + (b1 − b2)
√
d,

z1z2 = (a1a2 + b1b2d) + (a1b2 + b1a2)
√
d.

The set L is therefore a unital commutative ring. In order to show
that L is a field, it remains to show that all non-zero elements of L
are invertible. Let a and b be rational numbers that are not both zero.
Then

(a+ b
√
d)(a− b

√
d) = a2 − b2d,

Moreover b2d 6= a2, because d is not the square of any rational number.
It follows that the reciprocal of a + b

√
d is in L for all a + b

√
d ∈ L,

and
1

a+ b
√
d

=
a

a2 − b2d
− b

a2 − b2d
√
d.

The elements 1 and
√
d are linearly independent over the field of ratio-

nal numbers, because
√
d is not itself a rational number, and therefore

the field L is a two-dimensional vector space over the field Q of rational
numbers with basis 1,

√
d.
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4. A complex number is said to be algebraic if it is a root of some non-
zero polynomial f with rational coefficients. A complex number is thus
algebraic if and only if it is algebraic over the field Q of rational num-
bers. Moreover a simple field extension K(α):K is finite if and only
if the adjoined element α is algebraic over the ground field K. Thus
a complex number z is algebraic if and only if Q(z):Q is a finite field
extension. Use the Tower Law to prove that the set of all algebraic
numbers is a subfield of C.

Let z and w be algebraic numbers. The algebraic number w is algebraic
over the field Q and is therefore algebraic over the field Q(z). It follows
that Q(z)(w):Q(z) is a finite field extension. Now Q(z)(w) = Q(z, w),
because both fields are the smallest subfields of the complex numbers
that contain the rational numbers together with the complex numbers
z and w. It follows from the Tower Law that Q(z, w):Q is a finite
field extension. Now the elements z + w, z − w and zw all belong to
Q(z, w). It follows that the field extensions Q(z + w):Q, Q(z − w):Q
and Q(zw):Q, are finite, and therefore the complex numbers z+w, z−w
and zw are algebraic numbers. Moreover if w 6= 0 then zw−1 ∈ Q(z, w)
and therefore zw−1 is an algebraic number. Thus the set of all algebraic
numbers is a subfield of the field C of complex numbers.

5. Let L be a splitting field for a polynomial of degree n with coefficients
in K. Prove that [L:K] ≤ n!.

We prove the result by induction on n. If L is a splitting field for a
polynomial ax + b of degree 1 with coefficients a and b in K then the
unique root of that polynomial is −b/a, which is in K, and therefore
L = K and [L:K] = 1. Thus the result holds for n = 1.

Suppose that [M :K] ≤ m! whenever M is a splitting field for a poly-
nomial g of degree m with coefficients in K. Let L be a splitting field
over K for some polynomial f of degree m + 1 with coefficients in K.
Then all roots of f are in L. Let α be one of the roots of f . Then
f(x) = (x − α)g(x) for some polynomial g satisfying deg g = m. The
polynomial g splits over L, and therefore there is a unique subfield M
of L that is a splitting field for M over K. The induction hypothesis
ensures that [M :K] ≤ m!. Now L = M(α). It follows from a standard
result concerning simple algebraic extensions that [L:M ] is equal to
the degree of the minimum polynomial of α over M . This minimum
polynomial divides the polynomial f and therefore is at most m+ 1. It
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follows from the Tower Law that

[L:K] = [L:M ][M :K] ≤ (m+ 1)[M :K] ≤ (m+ 1)m! = (m+ 1)!,

as required.

6. (a) Using Eisenstein’s criterion, or otherwise, prove that
√

3 is not a
rational number, and is not of the form b

√
2 for any rational number b.

Hence or otherwise, show that there cannot exist rational numbers a
and b such that

√
3 = a+ b

√
2, and thus prove that

√
3 6∈ Q(

√
2).

An immediate application of Eisenstein’s criterion shows that the poly-
nomial polynomial x2 − 3 is irreducible over the field of rational num-
bers. This polynomial is thus the minimum polynomial of

√
3 over

the field Q of rational numbers. An application of Eisenstein’s crite-
rion with prime number 3 shows that the polynomial 2x2 − 3 is also
irreducible. It follows that

√
3/
√

2 is not a rational number.

If it were the case that
√

3 ∈ Q(
√

2) then there would exist rational
numbers a and b such that

√
3 = a+ b

√
2. But then

3 = (a+ b
√

2)2 = a2 + 2b2 + 2ab
√

3.

But
√

3 6∈ Q. Therefore it would follow that ab = 0, and thus either
a = 0 or b = 0. But b = 0 would imply that

√
3 ∈ Q, which is not

the case, and a = 0 would imply that
√

3 = b
√

2, which is not the
case. Therefore there cannot exist rational numbers a and b such that√

3 = a+ b
√

2. It follows that
√

3 6∈ Q(
√

2).

(b) Explain why Q(
√

2)(
√

3) = Q(
√

2,
√

3), and, using the result of (a)
and the Tower Law, or otherwise, prove that [Q(

√
2,
√

3),Q] = 4.

Now Q(
√

2) ∪ {
√

3} ⊂ Q(
√

2,
√

3), and therefore

Q(
√

2)(
√

3) ⊂ Q(
√

2,
√

3).

Also Q ∪ {
√

2,
√

3} ⊂ Q(
√

2)(
√

3), and therefore

Q(
√

2,
√

3) ⊂ Q(
√

2)(
√

3).

Therefore
Q(
√

2)(
√

3) = Q(
√

2,
√

3).
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It was shown in (a) that
√

3 6∈ Q(
√

2). It follows that the polynomial
x2−3 is irreducible over Q(

√
2), and is therefore the minimum polyno-

mial of
√

3 over Q(
√

2). It follows that [Q(
√

2)(
√

3):Q(
√

2)] = 2, and
thus [Q(

√
2,
√

3):Q(
√

2)] = 2. It then follows from the Tower Law that

[Q(
√

2,
√

3):Q] = [Q(
√

2,
√

3):Q(
√

2)][Q(
√

2):Q] = 4,

as required.

(c) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3) and [Q(
√

2,
√

3),Q] = 4.
What is the degree of the minimum polynomial of

√
2 +
√

3 over Q?

Clearly
√

2+
√

3 ∈ Q(
√

2,
√

3), and therefore Q(
√

2+
√

3) ⊂ Q(
√

2,
√

3).
To prove that Q(

√
2,
√

3) ⊂ Q(
√

2 +
√

3), it suffices to show that
√

2 ∈
Q(
√

2 +
√

3) and
√

3 ∈ Q(
√

2 +
√

3). Now (
√

2 +
√

3)n ∈ Q(
√

2,
√

3)
for all positive integers n. Moreover

(
√

2 +
√

3)2 = 2 + 3 + 2
√

2
√

3

= 5 + 2
√

6

(
√

2 +
√

3)3 = (
√

2 +
√

3)(5 + 2
√

6) = 5
√

2 + 5
√

3 + 2
√

12 + 2
√

18

= 11
√

2 + 9
√

3.

It follows that

√
2 =

1

2
(
√

2 +
√

3)3 − 9

2
(
√

2 +
√

3) ∈ Q(
√

2 +
√

3).

But then √
3 = (

√
2 +
√

3)−
√

2 ∈ Q(
√

2 +
√

3).

It follows that Q(
√

2,
√

3) ⊂ Q(
√

2 +
√

3), and therefore Q(
√

2,
√

3) =
Q(
√

2 +
√

3).

(d) Show that
√

2 +
√

3 is a root of the polynomial x4 − 10x2 + 1,
and thus show that this polynomial is an irreducible polynomial whose
splitting field over Q is Q(

√
2,
√

3).

Now

(
√

2 +
√

3)4 = (
√

2 +
√

3)(11
√

2 + 9
√

3)

= 49 + 20
√

6

and therefore

(
√

2 +
√

3)4 − 10(
√

2 +
√

3)2 + 1 = 0.

5



Thus (
√

2 +
√

3)4 is a root of the polynomial x4 − 10x2 + 1. But

[Q(
√

2 +
√

3):Q] = [Q(
√

2,
√

3):Q] = 4,

and therefore the minimum polynomial of
√

2 +
√

3 must be a monic
polynomial of degree 4. This monic polynomial must also divide the
polynomial x4 − 10x2 + 1. Therefore x4 − 10x2 + 1 is the minimum
polynomial of

√
2+
√

3. Thus x4−10x2+1 is an irreducible polynomial
whose splitting field over Q is Q(

√
2,
√

3).

(e) Let ϕ1 and ϕ2 be Q-automorphisms of Q(
√

2,
√

3). Suppose that
ϕ1(
√

2) = ϕ2(
√

2) =
√

2 and ϕ1(
√

3) = ϕ2(
√

3) =
√

3. Explain why
ϕ1 = ϕ2.

The set Q ∪ {
√

2,
√

3} is contained in the fixed field of ϕ−12 ϕ1, and
therefore the fixed field of ϕ−12 ϕ1 must be the whole of Q(

√
2,
√

3), and
thus ϕ1 = ϕ2.

(f) Prove that there exist Q-automorphisms σ and τ of Q(
√

2,
√

3) sat-
isfying

σ(
√

2) =
√

2, σ(
√

3) = −
√

3;

τ(
√

2) = −
√

2, τ(
√

3) =
√

3;
.

The field Q(
√

2,
√

3) is the splitting field for the polynomial x2 − 3
over the field Q(

√
2) Moreover the polynomial x3 − 3 is irreducible

over Q(
√

2) and has roots
√

3 and −
√

3. It follows from the theory of
isomorphisms of splitting fields that there exists an automorphism σ of
Q(
√

2,
√

3) that fixes the subfield Q(
√

2) and satisfies σ(
√

3) = −
√

3.
Similarly there exists an automorphism τ of Q(

√
2,
√

3) that fixes the
subfield Q(

√
3) and satisfies τ(

√
2) = −

√
2.

(g) Prove that the Q-automorphisms of Q(
√

2,
√

3), constitute a group
of order 4 isomorphic to a direct product of two cyclic groups of order 2.

Let ι denote the identity automorphism of Q(
√

2,
√

3) and let G =
{ι, σ, τ, στ}. Now

ι(
√

2) =
√

2, ι(
√

3) =
√

3;

σ(
√

2) =
√

2, σ(
√

3) = −
√

3;

τ(
√

2) = −
√

2, τ(
√

3) =
√

3;

στ(
√

2) = −
√

2, στ(
√

3) = −
√

3.
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Moreover it follows from (e) that any Q-automorphism of Q(
√

2,
√

3)
is determined by its action on

√
2 and

√
3. The possible images of√

2 and ±
√

2, and the possible images of
√

3 are ±
√

3. It follows that
the field Q(

√
2,
√

3) can have at most four Q-automorhisms. Thus the
group G is the group of Q-automorphisms of Q(

√
2,
√

3). Moreover
στ = τσ, since the composition of σ with τ in either order sends

√
2 to

−
√

2 And sends
√

3 to −
√

3. It follows that the group G is isomorphic
to the direct product of the two subgroups {ι, σ} and {ιτ}. These
subgroups are of order 2.

7. Let K be a field of characteristic p, where p is prime.

(a) Show that f ∈ K[x] satisfies Df = 0 if and only if f(x) = g(xp)
for some g ∈ K[x].

Let

f(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n =
n∑
j=0

cjx
k.

Then

(Df)(x) =
n∑
j=1

j.cjx
j−1.

Now j.cj = (j.1K)cj for j = 0, 1, . . . , n, where 1K denotes the identity
element of the field K. Also j.1K = 0K if and only if j is divisible
by the prime number p, because K is a field of characteristic p. Thus
if (Df) = 0 then (j.1K)cj = 0K for all positive integers j satisfying
0 < j ≤ n, and therefore cj = 0K for all positive integers j satisfying
0 < j ≤ n that are not divisible by the prime number p. It follows
that if f 6= 0 and Df = 0 then f is of degree mp for some non-negative
integer p, and

f(x) = x0 + cpx
p + c2px

2p + · · ·+ cmpx
mp = g(xp),

where
g(x) = x0 + cpx+ c2px

2 + · · ·+ cmpx
m.

(b) Let h(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, where a0, a1, . . . , an ∈ K.
Show that (h(x))p = g(xp), where g(x) = ap0 + ap1x+ ap2x

2 + · · ·+ apnx
n.
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Let h0(x) and h1(x) be polynomials with coefficients in the field K.
Then(

h0(x) + h1(x)
)p

=

p∑
j=0

(
p
j

)
· h0(x)p−jh1(x)j = h0(x)p + h1(x)p.

Indeed the Commutative, Associative and Distributive Laws are satis-
fied in the polynomial ring K[x], and therefore the appropriate form
of the Binomial Theorem is applicable in this ring. But the binomial

coefficient

(
p
j

)
is an integer divisible by p when 0 < j < p, and

therefore

(
p
j

)
· f(x) = 0 for all polynomials f(x) with coefficients in

the field K when 0 < j < p.

It follows by induction on n that(
n∑
k=0

hk(x)

)p

=
n∑
k=0

hk(x)p

for all h0, h1, . . . , hn ∈ K[x]. In particular, if h(x) = a0 + a1x+ a2x
2 +

· · ·+ anx
n, then

h(x)p =

(
n∑
k=0

akx
k

)p

=
n∑
k=0

apkx
kp = g(xp),

where g(x) = ap0 + ap1x+ ap2x
2 + · · ·+ apnx

n.

(c) Now suppose that Frobenius monomorphism of K is an automor-
phism of K. Show that f ∈ K[x] satisfies Df = 0 if and only if
f(x) = (h(x))p for some h ∈ K[x]. Hence show that Df 6= 0 for any
irreducible polynomial f in K[x].

Suppose that f ∈ K[x] satisfies Df = 0. Then f(x) = g(xp) for some
g ∈ K[x]. Let g(x) = c0+c1x+c2x

2+· · ·+cnxn. Now, for each integer j
between 0 and n there is some element aj of K such that apj = cj,
because the Frobenius monomorphism of K is an automorphism and is
thus surjective. But then

g(x) = ap0 + ap1x+ ap2x
2 + · · ·+ apnx

n.

It follows from (b) that f(x) = g(xp) = h(x)p, where

h(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

8



We conclude that if f ∈ K[x] satisfies Df = 0 then f(x) = h(x)p for
seom h ∈ K[x].

We now verify the converse. A straightforward proof by induction on
k shows that D(h(x))k = k.h(x)k−1Dh(x) for all positive integers k. In
particular D(h(x))p = p.h(x)p−1Dh(x) = 0. We conclude that if the
Frobenius monomorphism of the field K is an automorphism, and if
f ∈ K[x] satisfies Df = 0 then f(x) = h(x)p for some h ∈ K[x].

(d) Use these results to show that every algebraic extension L:K of a
finite field K is separable.

An irreducible polynomial f ∈ K[x] is inseparable if and only ifDf = 0.
(see Corollary 6.8). But if K is a finite field, then every injective
function from K to itself is surjective, and therefore every monomor-
phism from K to itself is an automorphism. In particular the Frobenius
monomorphism of a finite field is an automorphism. It follows from (c)
that a polynomial f ∈ K[x] satisfies Df = 0 if and only if f(x) = h(x)p

for some h ∈ K[x]. We conclude from this that no irreducible poly-
nomial f with coefficients in K can satisfy Df = 0. Thus there are
no inseparable polynomials with coefficients in a finite field K, and
therefore every algebraic extension L:K of a finite field K is separable.

8. For each positive integer n, let ωn be the primitive nth root of unity in
C given by ωn = exp(2πi/n), where i =

√
−1. Explain why the field

extensions Q(ωn):Q and Q(ωn, i):Q are normal field extensions for all
positive integers n.

The field Q(ωn) is a splitting field for the polynomial xn − 1 over Q,
since the roots of this polynomial are powers of ωn. Any splitting field
extension is both finite and normal.

The field Q(ωn, i) is a splitting field for the polynomial (xn−1)(x2 + 1)
over Q. Any splitting field extension is both finite and normal.

9. (a) Let p be a prime number. The cyclotomic polynomial Φp(x) is
defined by

Φp(x) = 1 + x+ x2 + · · ·+ xp−1.

Show that
xΦp(x+ 1) = (x+ 1)p − 1,
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and hence show that

Φp(x) =

p−1∑
k=0

(
p

k + 1

)
xk,

where

(
p

k + 1

)
is the binomial coefficient whose value is the number

of ways of choosing k + 1 objects from a collection of p objects.

The cyclotomic polynomial Φp(x) satisfies the identity (x− 1)Φp(x) =
xp− 1. On substituting x+ 1 for x, we find that xΦp(x) = (x+ 1)p− 1.
On expanding (x+ 1)p using the Binomial Theorem, we find that

xΦp(x) =

p∑
k=1

(
p

k

)
xk.

On substituting k + 1 for k in this formula, we find that

Φp(x) =

p−1∑
k=0

(
p

k + 1

)
xk.

(b) If p be a prime number, then the binomial coefficient

(
p

k + 1

)
is

divisible by p for all integers k satisfying 0 < k < p. By making use of
this result or otherwise, show that the cyclotomic polynomial Φp(x) is
irreducible over Q for all prime numbers p.

The cyclotomic polynomial Φp(x) is a polynomial of degree p− 1, and

its leading coefficient

(
p
p

)
is equal to 1. The remaining coefficients

of this polynomial are divisible by the prime number p. The constant

coefficient is

(
p
1

)
, and this coefficient has the value p. Therefore

the constant coefficient of Φp(x) is not divisible by p2. We have thus
verified that the leading coefficient of Φp(x) is not divisible by the
prime number p, the remaining coefficients are all divisible by p, and the
constant coefficient is not divisible by p2. The conditions of Eisenstein’s
criterion for irreducibility are therefore satisfied with respect to the
prime number p. We conclude therefore that Φp(x) is an irreducible
monic polynomial of degree p− 1 over the field Q of rational numbers.

(c) Let p be a prime number, and let ωp = exp(2πi/p), where i =
√
−1.

Prove that the minimum polynomial of ωp over Q is the cyclotomic
polynomial Φp(x), where Φp(x) = 1 + x+ x2 + · · ·+ xp−1.
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It was shown in (b) that, for each prime number p, the cyclotomic
polynomial Φp(x) is an irreducible monic polynomial of degree p − 1
over the field Q of rational numbers. It follows from this that it is the
minimum polynomial of each of its roots. Those roots include ωp.

Now the coefficient of xk in Φp(x) is the binomial coefficient
(
p

k+1

)
. This

coefficient is divisible by the prime number p for 0 ≤ k < p− 1. More-
over the leading coefficient has the value 1, and constant coefficient has
the value p. It follows from Eisenstein’s Criterion, that the polynomial
Φp is irreducible over Q. Moreover it is a monic polynomial which has
ωp as a root. Therefore Φp(x) is the minimum polynomial of ωp. It fol-
lows from a standard theorem concerning simple algebraic extensions
that

[Q(ωp):Q] = deg Φp = p− 1,

as required.

(d) Explain why [Q(ωp):Q] = p − 1 for all prime numbers p, where
ωp = exp(2πi/p).

The degree of the simple field extension Q(ωp):Q is equal to the degree
of the minimum polynomial of ωp over the ground field Q. But the
minimum polynomial of ωp over Q is the cyclotomic polynomial Φp(x),
and this polynomial has degree p− 1. The result follows.

10. Throughout this question, let ω = ω5 = exp(2πi/5) and ξ = 5
√

2. Also
let Φ5(x) denote the cyclotomic polynomial

Φ5(x) = x4 + x3 + x2 + x+ 1.

The field Q(ω) is a splitting field for the polynomial Φ5(x) over the field
of rational numbers. Note that it was shown in Question 9 that the
cyclotomic polynomial Φ5(x) is irreducible over the field Q of rational
numbers, and that therefore [Q(ω):Q] = 4.

(a) Show that the field Q(ξ, ω) is a splitting field for the polynomial
x5 − 2 over Q.

The roots of the polynomial x5 − 2 in C are of the form ξωr for r =
0, 1, 2, 3, 4. These roots all belong to the subfield Q(ξ, ω) of C. Let L
be a subfield of C that contains all these roots. Then ξ ∈ L. Also L
contains the ratio of the roots ξω and ξ, and therefore ω ∈ L. Therefore
Q(ξ, ω) ∈ L. Thus Q(ξ, ω) is the smallest subfield of C that contains
all rational numbers and also contains all the roots of the polynomial
x5 − 2. This field Q(ξ, ω) is thus a splitting field for x5 − 2 over Q.
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(b) Show that [Q(ξ, ω):Q] = 20 and [Q(ξ, ω):Q(ω)] = 5. Hence or
otherwise, show that x5− 2 is the minimum polynomial of ξωs over the
field Q(ω) for s = 0, 1, 2, 3, 4.

The polynomial x5 − 2 is irreducible, by Eisenstein’s Criterion, with
the prime number equal to 2, and therefore [Q(ξ):Q] = 5.

Now it follows from the Tower Law that [Q(ξ, ω):Q] is divisible by
both [Q(ξ):Q] and [Q(ω):Q], since Q(ξ) and Q(ω) are both subfields
of Q(ξ, ω). Thus [Q(ξ):Q] is divisible by both 5 and 4, and is thus
divisible by 20. But Q(ξ, ω):Q(ω) is a simple algebraic extension, and
the degree of this extension is equal to the degree of the minimum
polynomial of ξ over Q(ω). This minimum polynomial divides x5 − 2.
Therefore [Q(ξ, ω):Q(ω)] ≤ 5. Now an immediate application of the
Tower Law shows that

[Q(ξ, ω):Q] = [Q(ξ, ω):Q(ω)][Q(ω):Q] ≤ 20.

But we have already shown that this degree is divisible by 20. Therefore
[Q(ξ, ω):Q] = 20. Moreover [Q(ξ, ω):Q(ω)] = 5, and therefore the
minimum polynomial of ξ over Q(ω) is a monic polynomial of degree 5.
We see from this that x5 − 2 must be the minimum polynomial of ξ
over Q(ω). This polynomial is thus irreducible and is therefore the
minimum polynomial of each of its roots over Q(ω). These roots are of
ξωs over the field Q(ω) for s = 0, 1, 2, 3, 4.

(c) Prove that the Galois Γ(Q(ξ, ω):Q) consists of the automorphisms
θr,s for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, where θr,s(ω) = ωr and
θr,s(ξ) = ωsξ.

The elements ξ and ξω of Q(ξ, ω) have the same minimum polynomial
over the field Q(ω). A basic theorem in Galois Theory then ensures
that there exists an automorphism σ of Q(ξ, ω) such that σ(ξ) = ξω
and σ(z) = z for all z ∈ Q(ω). Note that σ(ω) = ω.

Now it also follows from the Tower Law that

[Q(ξ, ω):Q] = [Q(ξ, ω):Q(ξ)][Q(ξ):Q],

where [Q(ξ, ω):Q] = 20 and [Q(ξ):Q] = 5. It follows that

[Q(ξ, ω):Q(ξ)] = 4.

Therefore the minimum polynomial Φ5 of ω over Q is also the mini-
mum polynomial of ω over Q(ξ). It follows that there exists an au-
tomorphism τ of Q(ξ, ω) such that τ(ω) = ω2 and τ(z) = z for all

12



z ∈ Q(ξ). Note that τ(ξ) = ξ. Moreover τ 2(ω) = τ(τ(ω)) = ω4,
and τ 3(ω) = τ(τ 2(ω)) = ω8 = ω3. Let θ1,s = σs, θ2,s = σsτ , θ3,s =
σsτ 3 and θ4,s = σsτ 2. Then θr,s is a Q-automorphism of Q(ξ, ω)
for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4. Also θ1,s(ω) = σs(ω) = ω,
θ2,s(ω) = σs(τ(ω))σs(ω2) = ω2, θ3,s(ω) = σs(τ 3(ω))σs(ω3) = ω3, and
θ4,s(ω) = σs(τ 2(ω))σs(ω4) = ω4 for s = 0, 1, 2, 3, 4. Also θr,s(ξ) =
σs(θr,0(ξ)) = σs(ξ) = ωsξ for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4. Thus we
have 20 automorphisms θr,s that are distinct, and belong to the Galois
Group Γ(Q(ξ, ω):Q). But this Galois Group is of order 20. Therefore
any automorphism in this Galois group must be one of the automor-
phisms θr,s.

11. Let f be a monic polynomial of degree n with coefficients in a field K.
Then

f(x) = (x− α1)(x− α2) · · · (x− αn),

where α1, α2, . . . , αn are the roots of f in some splitting field L for f
over K. The discriminant of the polynomial f is the quantity δ2, where
δ is the product

∏
1≤i<j≤n

(αj−αi) of the quantities αj−αi taken over all

pairs of integers i and j satisfying 1 ≤ i < j ≤ n.

Show that the quantity δ changes sign whenever αi is interchanged with
αi+1 for some i between 1 and n − 1. Hence show that θ(δ) = δ for
all automorphisms θ in the Galois group Γ(L:K) that induce even per-
mutations of the roots of f , and θ(δ) = −δ for all automorphisms θ in
Γ(L:K) that induce odd permutations of the roots.

The quantity δ satisfies

(αi+1 − αi)ρστ,

where

ρ =
∏

1≤j<k≤n

j 6∈{i,i+1}

k 6∈{i,i+1}

(αk − αj)

σ =
∏

1≤k<i

((αi − αk)(αi+1 − αk))

τ =
∏

i+1<k≤n

((αk − αi)(αk − αi+1))

13



If αi is interchanged with αi+1, where 1 ≤ i < n, then the term αi+1−αi
changes sign, but the quantities ρ, σ and τ remain unchanged. There-
fore the quantity δ changes sign when i is interchanged with i+1. Now
any permutation of {1, 2, . . . , n} may be expressed as a composition of
transpositions, and any transposition may be expressed as a composi-
tion of transpositions that swap adjacent integers in the list 1, 2, . . . , n.
If a permutation is even, then it can be expressed as the composition of
an even number of transpositions of this form; and if the permutation
is odd, then it can be expressed as a composition of an odd number of
transpositions of this form. Therefore δ is unchanged under an even
permutation of the roots α1, α2, . . . , αn, but changes sign under an odd
permutation of these roots. Thus θ(δ) = δ for all θ ∈ Γ(L:K) that
induce an even permutation of α1, α2, . . . , αn, θ(δ) = −δ for all auto-
morphisms θ in Γ(L:K) that induce odd permutations of α1, α2, . . . , αn.

It follows that θ(δ2) = (θ(δ))2 = δ2 for all θ: Γ(L:K). Therefore δ2

belongs to the fixed field of Γ(L:K).

12. Let L be a splitting field for the polynomial f over the field K, where

f(x) = (x− α1)(x− α2) · · · (x− αn),

Suppose that the field extension L:K is separable, and is thus a Galois
extension. Apply the Galois correspondence to show that the discrim-
inant δ2 of the polynomial f belongs to the field K containing the co-
efficients of f , and the field K(δ) is the fixed field of the subgroup of
Γ(L:K) consisting of those automorphisms in Γ(L:K) that induce even
permutations of the roots of f . Hence show that δ ∈ K if and only if all
automorphisms in the Galois group Γ(L:K) induce even permutations
of the roots of f .

The splitting field extension L:K is a Galois extension, because L:K) is
separable, and therefore the fixed field of Γ(L:K) is the ground field K.
We conclude that δ2 ∈ K.

Let H be the subgroup of Γ(L:K) consisting of those permutations
that induce even permutations of the roots of f , and let M be the fixed
field of H. Then δ ∈ M , and K ⊂ M ⊂ L. Now either H = Γ(L:K),
in which case M = K, or else H is a subgroup of Γ(L:K) of index
2, in which case [M :K] = 2. (Indeed either all elements of Γ(L:K)
induce even permutations of the roots, or else half of them induce even
permutations and the other half induce odd permutations.) If H =
Γ(L:K) then M = K and δ ∈ K, and thus M = K(δ). On the other
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hand, if H is a proper subgroup of Γ(L:K) then θ(δ) = −δ for some
element θ of Γ(L:K) that induces an odd permutation of the roots of
f , and therefore δ 6∈ K. But in that case 1 < [K(δ):K] ≤ [M :K] = 2,
and therefore K(δ) = M . Thus K(δ) is the fixed field of H. So we see
that δ ∈ K if and only if H = Γ(L:K), as required.

13. (a) Show that the discriminant of the quadratic polynomial x2 + bx+ c
is b2 − 4c.

Let x2 + bx + c = (x − α)(x − β). Then the discriminant is δ2, where
δ = (β − α). Now α + β = −b and αβ = c. Therefore

δ2 = α2 + β2 − 2αβ = (α + β)2 − 4αβ = b2 − 4c.

(b) Show that the discriminant of the cubic polynomial x3 − px− q is
4p2 − 27q2.

Let
x3 − px− q = (x− α)(x− β)(x− γ).

Then

α + β + γ = 0, p = −(βγ + αγ + αβ), q = αβγ.

Moreover the discriminant is δ2, where

δ = (β − α)(γ − α)(γ − β).

Let us eliminate γ using the equation α + β + γ = 0. We find that

p = α2 + αβ + β2

q = −α2β − αβ2

δ2 = (β − α)2(α + 2β)2(β + 2α)2

= (α2 − 2αβ + β2)(2α2 + 2β2 + 5αβ)2

= (α2 − 2αβ + β2)(4α4 + 20α3β + 33α2β2 + 20αβ3 + 4β4)

= 4α6 + 12α5β − 3α4β2 − 26α3β3 − 3α2β4 + 12αβ5 + 4β6

p3 = (α2 + αβ + β2)(α4 + 2α3β + 3α2β2 + 2αβ3 + β4)

= α6 + 3α5β + 6α4β2 + 7α3β3 + 6α2β4 + 3αβ5 + β6

q2 = α2β2(α + β)2

= α4β2 + 2α3β3 + α2β4

Therefore

δ2 − 4p3 = −27α4β2 − 54α3β3 − 27α2β4 = −27q2,

and thus δ2 = 4p2 − 27q2, as required.
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14. Let f(x) = x3 − px− q be a cubic polynomial with complex coefficients
p and q without repeated roots, and let the complex numbers α, β and
γ be the roots of f .

(a) Give formulae for the coefficients p and q of f in terms of the roots
α, β and γ of f , and verify that α + β + γ = 0 and

α3 + β3 + γ3 = 3αβγ = 3q

The monic polynomial f has roots α, β and γ, and therefore

f(x) = (x− α)(x− β)(x− γ)

= x3 − (α + β + γ)x2 + (βγ + αγ + αβ)x− αβγ

On comparing coefficients, we see that

α + β + γ = 0, p = −(βγ + αγ + αβ), q = αβγ.

Then

0 = (α + β + γ)3

= α3 + 3α2(β + γ) + 3α(β2 + 2βγ + γ2)

+ β3 + 3β2γ + 3βγ2 + γ3

= α3 + β3 + γ3

+ 3(α2(β + γ) + β2(α + γ) + γ2(α + β))

+ 6αβγ

But

α2(β + γ) + β2(α + γ) + γ2(α + β) = −(α3 + β3 + γ3),

because α + β + γ = 0. It follows that

0 = −2(α3 + β3 + γ3) + 6αβγ,

and therefore
α3 + β3 + γ3 = 3αβγ = 3q.

(b) Let λ = α+ωβ+ω2γ and µ = α+ω2β+ωγ, where ω is the complex
cube root of unity given by ω = 1

2
(−1+

√
3i). Verify that 1+ω+ω2 = 0,

and use this result to show that

α =
1

3
(λ+ µ), β =

1

3
(ω2λ+ ωµ), γ =

1

3
(ωλ+ ω2µ).
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Calculating ω2, we find that

ω2 = 1
4

(
1− 3− 2

√
3i
)

= 1
2

(
−1−

√
3i
)
.

It follows that ω + ω2 = −1. Then

λ+ µ = 2α + (ω + ω2)(β + γ) = (2− ω − ω2)α = 3α,

ω2λ+ ωµ = 2β + (ω + ω2)(α + γ) = (2− ω − ω2)β = 3β,

ωλ+ ω2µ = 2γ + (ω + ω2)(α + β) = (2− ω − ω2)γ = 3γ.

(c) Let K be the subfield Q(p, q) of C generated by the coefficients of the
polynomial f , and let M be a splitting field for the polynomial f over
K(ω). Show that the extension M :K is normal, and is thus a Galois
extension. Show that any automorphism in the Galois group Γ(M :K)
permutes the roots α, β and γ of f and either fixes ω or else sends ω
to ω2.

The field M is a splitting field for the polynomial f(x)(x2 + x + 1)
over the field K. It follows from a standard theorem that the extension
M :K is finite and normal. It is also separable, since the field K has
characteristic zero. If σ ∈ Γ(M :K) then σ(p) = p and σ(q) = q. It
follows that

σ(z3 − pz − q) = σ(z)3 − σ(p)σ(z)− σ(q) = σ(z)3 − pσ(z)− q.

Thus σ sends any root of the polynomial x3− px− q to another root of
this polynomial. Therefore the elements of Γ(M :K) permute the roots
α, β and γ of the polynomial f . Similarly an element σ of Γ(M :K)
permutes the roots of the polynomial x2 +x+1. These roots are ω and
ω2. Therefore either σ(ω) = ω or else σ(ω) = ω2.

(d) Let θ ∈ Γ(M :K) be a K-automorphism of M . Suppose that

θ(α) = β, θ(β) = γ, θ(γ) = α.

Show that if θ(ω) = ω then θ(λ) = ω2λ and θ(µ) = ωµ. Show also that
if θ(ω) = ω2 then θ(λ) = ωµ and θ(µ) = ω2λ. Hence show that λµ
and λ3 + µ3 are fixed by any automorphism in Γ(M :K) that cyclically
permutes α, β and γ. Show also that the quantities λµ and λ3 +µ3 are
also fixed by any automorphism in Γ(M :K) that interchanges two of
the roots of f whilst leaving the third root fixed. Hence prove that λµ
and λ3 + µ3 belong to the field K generated by the coefficients of f and
can therefore be expressed as rational functions of p and q.
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Suppose that θ(ω) = ω. Then

θ(λ) = θ(α) + ωθ(β) + ω2θ(γ) = β + ωγ + ω2α = ω2λ.

θ(µ) = θ(α) + ω2θ(β) + ωθ(γ) = β + ω2γ + ωα = ωµ.

(Here we have used the fact that ω3 = 1.) On the other hand, if
θ(ω) = ω2 then θ(ω2) = ω, and therefore

θ(λ) = θ(α) + ω2θ(β) + ωθ(γ) = β + ω2γ + ωα = ωµ.

θ(µ) = θ(α) + ωθ(β) + ω2θ(γ) = β + ω2γ + ω2α = ω2λ.

Thus if θ(ω) = ω then θ(λ3) = λ3 and θ(µ3) = µ3, and therefore
θ(λ3 + µ3) = λ3 + µ3. Similarly if if θ(ω) = ω2 then θ(λ3) = µ3 and
θ(µ3) = λ3, and therefore θ(λ3 + µ3) = λ3 + µ3. Also if θ(ω) = ω
then θ(λµ) = (ω2λ)(ωµ) = λµ. Similarly if θ(ω) = ω2 then θ(λµ) =
(ωµ)(ω2λ) = λµ. Now any element of the Galois group Γ(M :K) that
cyclicly permutes the roots α, β and γ of f(x) is in the cyclic subgroup
generated by the automorphism θ. We conclude that any element of
the Galois group Γ(M :K) that cyclicly permutes the roots α, β and γ
of f(x) must fix the quantities λµ and λ3 + µ3.

Now suppose that Γ(M :K) contains a K-automorphism τα which fixes
α and interchanges β and γ. If τα(ω) = ω then τα(λ) = µ and τα(µ) =
λ, and therefore τα fixes λµ and λ3 + µ3. Similarly if τα(ω) = ω2, then
τα(λ) = λ and τα(µ) = µ, and therefore τα fixes λµ and λ3 + µ3.

Next suppose that Γ(M :K) contains a K-automorphism τβ which fixes
β and interchanges α and γ. If τβ(ω) = ω then τβ(λ) = ω2µ and τβ(µ) =
ωλ, and therefore τβ fixes λµ and λ3 +µ3. Similarly if τβ(ω) = ω2, then
τβ(λ) = ωλ and τβ(µ) = ω2µ, and therefore τβ fixes λµ and λ3 + µ3.

Next suppose that Γ(M :K) contains a K-automorphism τγ which fixes
γ and interchanges α and β. If τγ(ω) = ω then τγ(λ) = ωµ and τγ(µ) =
ω2λ, and therefore τγ fixes λµ and λ3+µ3. Similarly if τγ(ω) = ω2, then
τγ(λ) = ω2λ and τγ(µ) = ωµ, and therefore τγ fixes λµ and λ3 + µ3.

We have thus shown that every element of the Galois group Γ(M :K)
must fix the quantities λµ and λ3+µ3. These quantities must therefore
belong to the fixed field of the Galois group. This fixed field is the
field K. Therefore λµ ∈ K and λ3 + µ3 ∈ K. These quantities must
therefore be expressible in terms of the formulae constructed out of
rational numbers and the quantities p and q using only the operations
of addition, subtraction, multiplication and division.

18



(e) Show by direct calculation that λµ = 3p and λ3 + µ3 = 27q. Hence
show that λ3 and µ3 are roots of the quadratic polynomial x2 − 27qx+
27p3. Use this result to verify that the roots of the cubic polynomial
x3 − px− q are of the form

3

√
q

2
+

√
q2

4
− p3

27
+

3

√
q

2
−
√
q2

4
− p3

27

where the two cube roots must be chosen so as to ensure that their
product is equal to 1

3
p.

By direct calculation, using the identity ω3 = 1, we see that

λµ = α2 + β2 + γ2 + (ω + ω2)(αβ + αγ + βγ)

= (α + β + γ)2 + (ω + ω2 − 2)(αβ + αγ + βγ).

But α + β + γ = 0 and ω2 + ω + 1 = 0. Therefore

λµ = −3(αβ + αγ + βγ) = 3p.

Also

λ3 = α3 + β3 + γ3

+ 3α2(ωβ + ω2γ) + 3β2(ω2α + ωγ) + 3γ2(ωα + ω2β)

+ 6αβγ,

µ3 = α3 + β3 + γ3

+ 3α2(ω2β + ωγ) + 3β2(ωα + ω2γ) + 3γ2(ω2α + ωβ)

+ 6αβγ.

It follows that

λ3 + µ2 = 2α3 + β3 + γ3

+ 3(ω + ω2)(α2(β + γ) + β2(α + γ) + γ2(α + β))

+ 12αβγ,

It follows that

λ3 + µ2 = (2− 3ω − 3ω2)(α3 + β3 + γ3) + 12αβγ

= 5(α3 + β3 + γ3) + 12αβγ.
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Also α3 + β3 + γ3 = 3αβγ = 3q. Therefore λ3 + µ3 = 27q. Now λ3 and
µ3 are the roots of the quadratic polynomial g(x), where

g(x) = (x− λ3)(x− µ3) = x2 − 27qx+ 27p3.

Now the roots of this quadratic polynomial are r±, where

r± = 27

(
q

2
±
√
q2

4
− p3

27

)
.

One of these roots is λ3, and the other is µ3. The formula for the
roots of the cubic polynomial are then given in terms of λ and µ by the
formulae

α =
1

3
(λ+ µ), β =

1

3
(ω2λ+ ωµ), γ =

1

3
(ωλ+ ω2µ).
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