MA3411: Galois Theory
Problems
Michaelmas Term 2013

1. Use Eisenstein’s criterion to verify that the following polynomials are
irreducible over Q:—

(i) 2% —2;
(ii) 2® + 9z + 3;
(iil) a° 4 26z + 52.

2. The Fundamental Theorem of Algebra ensures that every non-constant
polynomial with complex coefficients factors as a product of polynomi-
als of degree one. Use this result to show that a non-constant polyno-
mial with real coefficients is irreducible over the field R of real numbers
if and only if it is either a polynomial of the form ax+b with a # 0 or a
quadratic polynomial of the form az?+ bx + ¢ with a # 0 and b* < 4ac.

3. Let d be a rational number that is not the square of any rational num-
ber, let v/d be a complex number satisfying (\/E)2 = d, and let L denote
the set of all complex numbers that are of the form a + bv/d for some
rational numbers a and b. Prove that L is a subfield of the field of
complex numbers, and that L:Q is a finite field extension of degree 2.

4. A complex number is said to be algebraic if it is a root of some non-
zero polynomial f with rational coefficients. A complex number is
thus algebraic if and only if it is algebraic over the field QQ of rational
numbers. Moreover a simple field extension K(«): K is finite if and
only if the adjoined element « is algebraic over the ground field K.
Thus a complex number z is algebraic if and only if Q(2): Q is a finite
field extension. Use the Tower Law to prove that the set of all algebraic
numbers is a subfield of C.

5. Let L be a splitting field for a polynomial of degree n with coefficients
in K. Prove that [L: K] <nl.

6. (a) Using Eisenstein’s criterion, or otherwise, prove that V/3 is not a
rational number, and is not of the form b\/2 for any rational number b.
Hence or otherwise, show that there cannot exist rational numbers a

and b such that v/3 = a + b\/§, and thus prove that V3 4 Q(ﬂ)



(b) Explain why Q(v/2)(v/3) = Q(v/2,v/3), and, using the result of (a)
and the Tower Law, or otherwise, prove that [Q(v/2,v/3), Q] = 4.

(c) Show that Q(v2,v3) = Q(V2 + v3) and [Q(vZ, V3),Q] = 4.
What is the degree of the minimum polynomial of v/2 + v/3 over Q?

(d) Show that v/2 + /3 is a root of the polynomial x* — 1022 + 1,
and thus show that this polynomial is an irreducible polynomial whose

splitting field over Q is Q(v/2,v/3).

(e) Let ¢; and ¢, be Q-automorphisms of Q(v/2,v/3). Suppose that
1(V2) = ©2(v2) = V2 and ¢1(V3) = ¢2(V3) = V3. Explain why

Y1 = P2.

(f) Prove that there exist Q-automorphisms o and 7 of Q(v/2,/3)

satisfying
o(vV2)=v2, o(V3)=-V3;
T(V2)=—v2,  T(V3)=V3

(g) Prove that the Q-automorphisms of Q(v/2,/3), constitute a group
of order 4 isomorphic to a direct product of two cyclic groups of order 2.

. Let K be a field of characteristic p, where p is prime.

(a) Show that f € K|[z] satisfies Df = 0 if and only if f(z) = g(aP)
for some g € K{z].

(b) Let h(x) = ap + a1z + asz® + - - - + a,z", where ag, ai, ..., a, € K.
Show that (h(z))? = g(xP), where g(x) = ah + alx + abz? + - - - + aPa™.

(¢) Now suppose that Frobenius monomorphism of K is an automor-
phism of K. Show that f € K[z] satisfies Df = 0 if and only if
f(z) = (h(x))P for some h € K[z|. Hence show that Df # 0 for any
irreducible polynomial f in K|x].

(d) Use these results to show that every algebraic extension L: K of a
finite field K is separable.

. For each positive integer n, let w,, be the primitive nth root of unity in
C given by w, = exp(27i/n), where i = v/—1. Explain why the field
extensions Q(w,,): Q and Q(wy,,7): Q are normal field extensions for all
positive integers n.



9.

10.

(a) Let p be a prime number. The cyclotomic polynomial ®,(x) is
defined by
O (v) =14z +a’+ - +aP L.
Show that
Py +1)=(x+1)P -1,
and hence show that
1

p—
=0

k

where ( 3 f_ 1 ) is the binomial coefficient whose value is the number

of ways of choosing k + 1 objects from a collection of p objects.

(b) If p be a prime number, then the binomial coefficient ( p is

k+1
divisible by p for all integers £ satisfying 0 < k£ < p. By making use of
this result or otherwise, show that the cyclotomic polynomial ®,(z) is
irreducible over Q for all prime numbers p.

(c) Let p be a prime number, and let w, = exp(2mi/p), where i = /—1.
Prove that the minimum polynomial of w, over Q is the cyclotomic
polynomial ®,(z), where ®,(x) =1+ x + 2%+ -+ + 2P~

(d) Explain why [Q(w,):Q] = p — 1 for all prime numbers p, where
w, = exp(2mi/p).

Throughout this question, let w = ws = exp(27i/5) and £ = v/2. Also
let ®5(x) denote the cyclotomic polynomial

Ps(z) = +2* + 2+ + 1.

The field Q(w) is a splitting field for the polynomial ®5(x) over the field
of rational numbers. Note that it was shown in Question 9 that the
cyclotomic polynomial ®5(x) is irreducible over the field Q of rational
numbers, and that therefore [Q(w): Q] = 4.

(a) Show that the field Q(§,w) is a splitting field for the polynomial
x2° — 2 over Q.

(b) Show that [Q(¢,w): Q] = 20 and [Q(&,w): Q(w)] = 5. Hence or
otherwise, show that 2° — 2 is the minimum polynomial of £&w® over the

field Q(w) for s =0,1,2,3,4.



11.

12.

13.

14.

(¢) Prove that the Galois I'(Q(§,w): Q) consists of the automorphisms
0,sforr=1,2,3,4and s =0,1,2,3,4, where 0, (w) = w" and 6, 5(£) =
w?€.

Let f be a monic polynomial of degree n with coefficients in a field K.
Then

f(x) = (z —ai)(z —ag) - (x — ),

where a1, s, ..., a, are the roots of f in some splitting field L for f
over K. The discriminant of the polynomial f is the quantity 62, where
§ is the product [ (a; — ;) of the quantities o; — a; taken over
1<i<j<n

all pairs of integers ¢ and j satisfying 1 <i < j <n.

Show that the quantity 0 changes sign whenever «; is interchanged
with ;41 for some ¢ between 1 and n — 1. Hence show that 6(J) = o
for all automorphisms @ in the Galois group I'(L: K') that induce even
permutations of the roots of f, and 6(§) = —d for all automorphisms 6
in I'(L: K) that induce odd permutations of the roots.

Let L be a splitting field for the polynomial f over the field K, where

f(@) = (z =)@ = ag) - (z = an),

Suppose that the field extension L: K is separable, and is thus a Galois
extension. Apply the Galois correspondence to show that the discrim-
inant 4% of the polynomial f belongs to the field K containing the
coefficients of f, and the field K (4) is the fixed field of the subgroup of
['(L: K) consisting of those automorphisms in I'(L: K) that induce even
permutations of the roots of f. Hence show that 4 € K if and only if all
automorphisms in the Galois group I'(L: K') induce even permutations
of the roots of f.

(a) Show that the discriminant of the quadratic polynomial 2% + bx + ¢
is b? — 4c.

(b) Show that the discriminant of the cubic polynomial z* — pz — ¢ is
4p* — 27¢%.

Let f(x) = 2® — pr — ¢ be a cubic polynomial with complex coefficients
p and g without repeated roots, and let the complex numbers «, $ and
~ be the roots of f.



(a) Give formulae for the coefficients p and ¢ of f in terms of the roots
a, B and v of f, and verify that o + 8+~ =0 and

o’ + 3%+ 7% =3apy = 3¢

(b) Let A = a + wfB + w?y and u = a + w?B + wy, where w is the
complex cube root of unity given by w = %(—1 + /3i). Verify that
1+ w4+ w? =0, and use this result to show that

1 1 1
a=zA+p),  B=g@Atwn), = g@A+eip).

(¢) Let K be the subfield Q(p, ¢) of C generated by the coefficients of
the polynomial f, and let M be a splitting field for the polynomial f
over K(w). Show that the extension M: K is normal, and is thus a
Galois extension. Show that any automorphism in the Galois group
['(M: K) permutes the roots a, § and v of f and either fixes w or else
sends w to w?.

(d) Let # € I'(M: K) be a K-automorphism of M. Suppose that

0la) =8, 0(B)=7, 0()=a.

Show that if #(w) = w then #()\) = w?X and () = wp. Show also that
if 0(w) = w? then A(\) = wp and O(u) = w?A\. Hence show that A\u
and \® + p3 are fixed by any automorphism in I'(M: K) that cyclically
permutes «, $ and . Show also that the quantities Ay and A3 + p3
are also fixed by any automorphism in I'(M: K) that interchanges two
of the roots of f whilst leaving the third root fixed. Hence prove that
A and A? 4 p? belong to the field K generated by the coefficients of f
and can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that Ay = 3p and \* + p = 27¢. Hence
show that A3 and u? are roots of the quadratic polynomial 2? — 27qx +
27p®. Use this result to verify that the roots of the cubic polynomial
2% — pr — q are of the form

s/ q l¢> P> slq [ p3
\/2+ 4 27+\/2 4 27

where the two cube roots must be chosen so as to ensure that their
product is equal to %p.




