
MA3411: Galois Theory

Problems

Michaelmas Term 2013

1. Use Eisenstein’s criterion to verify that the following polynomials are
irreducible over Q:—

(i) x2 − 2;

(ii) x3 + 9x+ 3;

(iii) x5 + 26x+ 52.

2. The Fundamental Theorem of Algebra ensures that every non-constant
polynomial with complex coefficients factors as a product of polynomi-
als of degree one. Use this result to show that a non-constant polyno-
mial with real coefficients is irreducible over the field R of real numbers
if and only if it is either a polynomial of the form ax+b with a 6= 0 or a
quadratic polynomial of the form ax2 + bx+ c with a 6= 0 and b2 < 4ac.

3. Let d be a rational number that is not the square of any rational num-
ber, let

√
d be a complex number satisfying (

√
d)2 = d, and let L denote

the set of all complex numbers that are of the form a + b
√
d for some

rational numbers a and b. Prove that L is a subfield of the field of
complex numbers, and that L:Q is a finite field extension of degree 2.

4. A complex number is said to be algebraic if it is a root of some non-
zero polynomial f with rational coefficients. A complex number is
thus algebraic if and only if it is algebraic over the field Q of rational
numbers. Moreover a simple field extension K(α):K is finite if and
only if the adjoined element α is algebraic over the ground field K.
Thus a complex number z is algebraic if and only if Q(z):Q is a finite
field extension. Use the Tower Law to prove that the set of all algebraic
numbers is a subfield of C.

5. Let L be a splitting field for a polynomial of degree n with coefficients
in K. Prove that [L:K] ≤ n!.

6. (a) Using Eisenstein’s criterion, or otherwise, prove that
√

3 is not a
rational number, and is not of the form b

√
2 for any rational number b.

Hence or otherwise, show that there cannot exist rational numbers a
and b such that

√
3 = a+ b

√
2, and thus prove that

√
3 6∈ Q(

√
2).
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(b) Explain why Q(
√

2)(
√

3) = Q(
√

2,
√

3), and, using the result of (a)
and the Tower Law, or otherwise, prove that [Q(

√
2,
√

3),Q] = 4.

(c) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3) and [Q(
√

2,
√

3),Q] = 4.
What is the degree of the minimum polynomial of

√
2 +
√

3 over Q?

(d) Show that
√

2 +
√

3 is a root of the polynomial x4 − 10x2 + 1,
and thus show that this polynomial is an irreducible polynomial whose
splitting field over Q is Q(

√
2,
√

3).

(e) Let ϕ1 and ϕ2 be Q-automorphisms of Q(
√

2,
√

3). Suppose that
ϕ1(
√

2) = ϕ2(
√

2) =
√

2 and ϕ1(
√

3) = ϕ2(
√

3) =
√

3. Explain why
ϕ1 = ϕ2.

(f) Prove that there exist Q-automorphisms σ and τ of Q(
√

2,
√

3)
satisfying

σ(
√

2) =
√

2, σ(
√

3) = −
√

3;

τ(
√

2) = −
√

2, τ(
√

3) =
√

3;
.

(g) Prove that the Q-automorphisms of Q(
√

2,
√

3), constitute a group
of order 4 isomorphic to a direct product of two cyclic groups of order 2.

7. Let K be a field of characteristic p, where p is prime.

(a) Show that f ∈ K[x] satisfies Df = 0 if and only if f(x) = g(xp)
for some g ∈ K[x].

(b) Let h(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, where a0, a1, . . . , an ∈ K.
Show that (h(x))p = g(xp), where g(x) = ap0 + ap1x+ ap2x

2 + · · ·+ apnx
n.

(c) Now suppose that Frobenius monomorphism of K is an automor-
phism of K. Show that f ∈ K[x] satisfies Df = 0 if and only if
f(x) = (h(x))p for some h ∈ K[x]. Hence show that Df 6= 0 for any
irreducible polynomial f in K[x].

(d) Use these results to show that every algebraic extension L:K of a
finite field K is separable.

8. For each positive integer n, let ωn be the primitive nth root of unity in
C given by ωn = exp(2πi/n), where i =

√
−1. Explain why the field

extensions Q(ωn):Q and Q(ωn, i):Q are normal field extensions for all
positive integers n.
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9. (a) Let p be a prime number. The cyclotomic polynomial Φp(x) is
defined by

Φp(x) = 1 + x+ x2 + · · ·+ xp−1.

Show that
xΦp(x+ 1) = (x+ 1)p − 1,

and hence show that

Φp(x) =

p−1∑
k=0

(
p

k + 1

)
xk,

where

(
p

k + 1

)
is the binomial coefficient whose value is the number

of ways of choosing k + 1 objects from a collection of p objects.

(b) If p be a prime number, then the binomial coefficient

(
p

k + 1

)
is

divisible by p for all integers k satisfying 0 < k < p. By making use of
this result or otherwise, show that the cyclotomic polynomial Φp(x) is
irreducible over Q for all prime numbers p.

(c) Let p be a prime number, and let ωp = exp(2πi/p), where i =
√
−1.

Prove that the minimum polynomial of ωp over Q is the cyclotomic
polynomial Φp(x), where Φp(x) = 1 + x+ x2 + · · ·+ xp−1.

(d) Explain why [Q(ωp):Q] = p − 1 for all prime numbers p, where
ωp = exp(2πi/p).

10. Throughout this question, let ω = ω5 = exp(2πi/5) and ξ = 5
√

2. Also
let Φ5(x) denote the cyclotomic polynomial

Φ5(x) = x4 + x3 + x2 + x+ 1.

The field Q(ω) is a splitting field for the polynomial Φ5(x) over the field
of rational numbers. Note that it was shown in Question 9 that the
cyclotomic polynomial Φ5(x) is irreducible over the field Q of rational
numbers, and that therefore [Q(ω):Q] = 4.

(a) Show that the field Q(ξ, ω) is a splitting field for the polynomial
x5 − 2 over Q.

(b) Show that [Q(ξ, ω):Q] = 20 and [Q(ξ, ω):Q(ω)] = 5. Hence or
otherwise, show that x5−2 is the minimum polynomial of ξωs over the
field Q(ω) for s = 0, 1, 2, 3, 4.
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(c) Prove that the Galois Γ(Q(ξ, ω):Q) consists of the automorphisms
θr,s for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, where θr,s(ω) = ωr and θr,s(ξ) =
ωsξ.

11. Let f be a monic polynomial of degree n with coefficients in a field K.
Then

f(x) = (x− α1)(x− α2) · · · (x− αn),

where α1, α2, . . . , αn are the roots of f in some splitting field L for f
over K. The discriminant of the polynomial f is the quantity δ2, where
δ is the product

∏
1≤i<j≤n

(αj − αi) of the quantities αj − αi taken over

all pairs of integers i and j satisfying 1 ≤ i < j ≤ n.

Show that the quantity δ changes sign whenever αi is interchanged
with αi+1 for some i between 1 and n − 1. Hence show that θ(δ) = δ
for all automorphisms θ in the Galois group Γ(L:K) that induce even
permutations of the roots of f , and θ(δ) = −δ for all automorphisms θ
in Γ(L:K) that induce odd permutations of the roots.

12. Let L be a splitting field for the polynomial f over the field K, where

f(x) = (x− α1)(x− α2) · · · (x− αn),

Suppose that the field extension L:K is separable, and is thus a Galois
extension. Apply the Galois correspondence to show that the discrim-
inant δ2 of the polynomial f belongs to the field K containing the
coefficients of f , and the field K(δ) is the fixed field of the subgroup of
Γ(L:K) consisting of those automorphisms in Γ(L:K) that induce even
permutations of the roots of f . Hence show that δ ∈ K if and only if all
automorphisms in the Galois group Γ(L:K) induce even permutations
of the roots of f .

13. (a) Show that the discriminant of the quadratic polynomial x2 + bx+ c
is b2 − 4c.

(b) Show that the discriminant of the cubic polynomial x3 − px− q is
4p2 − 27q2.

14. Let f(x) = x3−px− q be a cubic polynomial with complex coefficients
p and q without repeated roots, and let the complex numbers α, β and
γ be the roots of f .

4



(a) Give formulae for the coefficients p and q of f in terms of the roots
α, β and γ of f , and verify that α + β + γ = 0 and

α3 + β3 + γ3 = 3αβγ = 3q

(b) Let λ = α + ωβ + ω2γ and µ = α + ω2β + ωγ, where ω is the
complex cube root of unity given by ω = 1

2
(−1 +

√
3i). Verify that

1 + ω + ω2 = 0, and use this result to show that

α =
1

3
(λ+ µ), β =

1

3
(ω2λ+ ωµ), γ =

1

3
(ωλ+ ω2µ).

(c) Let K be the subfield Q(p, q) of C generated by the coefficients of
the polynomial f , and let M be a splitting field for the polynomial f
over K(ω). Show that the extension M :K is normal, and is thus a
Galois extension. Show that any automorphism in the Galois group
Γ(M :K) permutes the roots α, β and γ of f and either fixes ω or else
sends ω to ω2.

(d) Let θ ∈ Γ(M :K) be a K-automorphism of M . Suppose that

θ(α) = β, θ(β) = γ, θ(γ) = α.

Show that if θ(ω) = ω then θ(λ) = ω2λ and θ(µ) = ωµ. Show also that
if θ(ω) = ω2 then θ(λ) = ωµ and θ(µ) = ω2λ. Hence show that λµ
and λ3 + µ3 are fixed by any automorphism in Γ(M :K) that cyclically
permutes α, β and γ. Show also that the quantities λµ and λ3 + µ3

are also fixed by any automorphism in Γ(M :K) that interchanges two
of the roots of f whilst leaving the third root fixed. Hence prove that
λµ and λ3 + µ3 belong to the field K generated by the coefficients of f
and can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that λµ = 3p and λ3 +µ3 = 27q. Hence
show that λ3 and µ3 are roots of the quadratic polynomial x2− 27qx+
27p3. Use this result to verify that the roots of the cubic polynomial
x3 − px− q are of the form

3

√
q

2
+

√
q2

4
− p3

27
+

3

√
q

2
−
√
q2

4
− p3

27

where the two cube roots must be chosen so as to ensure that their
product is equal to 1

3
p.
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