MA3411: Galois Theory Problems Michaelmas Term 2013

- 1. Use Eisenstein's criterion to verify that the following polynomials are irreducible over \mathbb{Q} :—
 - (i) $x^2 2$; (ii) $x^3 + 9x + 3$; (iii) $x^5 + 26x + 52$.
- 2. The Fundamental Theorem of Algebra ensures that every non-constant polynomial with complex coefficients factors as a product of polynomials of degree one. Use this result to show that a non-constant polynomial with real coefficients is irreducible over the field \mathbb{R} of real numbers if and only if it is either a polynomial of the form ax + b with $a \neq 0$ or a quadratic polynomial of the form $ax^2 + bx + c$ with $a \neq 0$ and $b^2 < 4ac$.
- 3. Let d be a rational number that is not the square of any rational number, let \sqrt{d} be a complex number satisfying $(\sqrt{d})^2 = d$, and let L denote the set of all complex numbers that are of the form $a + b\sqrt{d}$ for some rational numbers a and b. Prove that L is a subfield of the field of complex numbers, and that $L:\mathbb{Q}$ is a finite field extension of degree 2.
- 4. A complex number is said to be *algebraic* if it is a root of some nonzero polynomial f with rational coefficients. A complex number is thus algebraic if and only if it is algebraic over the field \mathbb{Q} of rational numbers. Moreover a simple field extension $K(\alpha)$: K is finite if and only if the adjoined element α is algebraic over the ground field K. Thus a complex number z is algebraic if and only if $\mathbb{Q}(z)$: \mathbb{Q} is a finite field extension. Use the Tower Law to prove that the set of all algebraic numbers is a subfield of \mathbb{C} .
- 5. Let L be a splitting field for a polynomial of degree n with coefficients in K. Prove that $[L: K] \leq n!$.
- 6. (a) Using Eisenstein's criterion, or otherwise, prove that $\sqrt{3}$ is not a rational number, and is not of the form $b\sqrt{2}$ for any rational number *b*. Hence or otherwise, show that there cannot exist rational numbers *a* and *b* such that $\sqrt{3} = a + b\sqrt{2}$, and thus prove that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.

(b) Explain why $\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3})$, and, using the result of (a) and the Tower Law, or otherwise, prove that $[\mathbb{Q}(\sqrt{2},\sqrt{3}),\mathbb{Q}] = 4$.

(c) Show that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$ and $[\mathbb{Q}(\sqrt{2},\sqrt{3}),\mathbb{Q}] = 4$. What is the degree of the minimum polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} ?

(d) Show that $\sqrt{2} + \sqrt{3}$ is a root of the polynomial $x^4 - 10x^2 + 1$, and thus show that this polynomial is an irreducible polynomial whose splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

(e) Let φ_1 and φ_2 be Q-automorphisms of $\mathbb{Q}(\sqrt{2},\sqrt{3})$. Suppose that $\varphi_1(\sqrt{2}) = \varphi_2(\sqrt{2}) = \sqrt{2}$ and $\varphi_1(\sqrt{3}) = \varphi_2(\sqrt{3}) = \sqrt{3}$. Explain why $\varphi_1 = \varphi_2$.

(f) Prove that there exist \mathbb{Q} -automorphisms σ and τ of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ satisfying

$$\sigma(\sqrt{2}) = \sqrt{2}, \qquad \sigma(\sqrt{3}) = -\sqrt{3}; \\ \tau(\sqrt{2}) = -\sqrt{2}, \qquad \tau(\sqrt{3}) = \sqrt{3};$$

(g) Prove that the Q-automorphisms of $\mathbb{Q}(\sqrt{2},\sqrt{3})$, constitute a group of order 4 isomorphic to a direct product of two cyclic groups of order 2.

7. Let K be a field of characteristic p, where p is prime.

(a) Show that $f \in K[x]$ satisfies Df = 0 if and only if $f(x) = g(x^p)$ for some $g \in K[x]$.

(b) Let $h(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, where $a_0, a_1, \dots, a_n \in K$. Show that $(h(x))^p = g(x^p)$, where $g(x) = a_0^p + a_1^p x + a_2^p x^2 + \dots + a_n^p x^n$.

(c) Now suppose that Frobenius monomorphism of K is an automorphism of K. Show that $f \in K[x]$ satisfies Df = 0 if and only if $f(x) = (h(x))^p$ for some $h \in K[x]$. Hence show that $Df \neq 0$ for any irreducible polynomial f in K[x].

(d) Use these results to show that every algebraic extension L: K of a finite field K is separable.

8. For each positive integer n, let ω_n be the primitive nth root of unity in \mathbb{C} given by $\omega_n = \exp(2\pi i/n)$, where $i = \sqrt{-1}$. Explain why the field extensions $\mathbb{Q}(\omega_n):\mathbb{Q}$ and $\mathbb{Q}(\omega_n, i):\mathbb{Q}$ are normal field extensions for all positive integers n.

9. (a) Let p be a prime number. The cyclotomic polynomial $\Phi_p(x)$ is defined by

$$\Phi_p(x) = 1 + x + x^2 + \dots + x^{p-1}.$$

Show that

$$x\Phi_p(x+1) = (x+1)^p - 1,$$

and hence show that

$$\Phi_p(x) = \sum_{k=0}^{p-1} \left(\begin{array}{c} p\\ k+1 \end{array} \right) x^k,$$

where $\begin{pmatrix} p \\ k+1 \end{pmatrix}$ is the binomial coefficient whose value is the number of ways of choosing k+1 objects from a collection of p objects.

(b) If p be a prime number, then the binomial coefficient $\begin{pmatrix} p \\ k+1 \end{pmatrix}$ is divisible by p for all integers k satisfying 0 < k < p. By making use of this result or otherwise, show that the cyclotomic polynomial $\Phi_p(x)$ is irreducible over \mathbb{Q} for all prime numbers p.

(c) Let p be a prime number, and let $\omega_p = \exp(2\pi i/p)$, where $i = \sqrt{-1}$. Prove that the minimum polynomial of ω_p over \mathbb{Q} is the cyclotomic polynomial $\Phi_p(x)$, where $\Phi_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$.

(d) Explain why $[\mathbb{Q}(\omega_p):\mathbb{Q}] = p - 1$ for all prime numbers p, where $\omega_p = \exp(2\pi i/p)$.

10. Throughout this question, let $\omega = \omega_5 = \exp(2\pi i/5)$ and $\xi = \sqrt[5]{2}$. Also let $\Phi_5(x)$ denote the cyclotomic polynomial

$$\Phi_5(x) = x^4 + x^3 + x^2 + x + 1.$$

The field $\mathbb{Q}(\omega)$ is a splitting field for the polynomial $\Phi_5(x)$ over the field of rational numbers. Note that it was shown in Question 9 that the cyclotomic polynomial $\Phi_5(x)$ is irreducible over the field \mathbb{Q} of rational numbers, and that therefore $[\mathbb{Q}(\omega):\mathbb{Q}] = 4$.

(a) Show that the field $\mathbb{Q}(\xi, \omega)$ is a splitting field for the polynomial $x^5 - 2$ over \mathbb{Q} .

(b) Show that $[\mathbb{Q}(\xi, \omega):\mathbb{Q}] = 20$ and $[\mathbb{Q}(\xi, \omega):\mathbb{Q}(\omega)] = 5$. Hence or otherwise, show that $x^5 - 2$ is the minimum polynomial of $\xi \omega^s$ over the field $\mathbb{Q}(\omega)$ for s = 0, 1, 2, 3, 4.

(c) Prove that the Galois $\Gamma(\mathbb{Q}(\xi, \omega); \mathbb{Q})$ consists of the automorphisms $\theta_{r,s}$ for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, where $\theta_{r,s}(\omega) = \omega^r$ and $\theta_{r,s}(\xi) = \omega^s \xi$.

11. Let f be a monic polynomial of degree n with coefficients in a field K. Then

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of f in some splitting field L for f over K. The discriminant of the polynomial f is the quantity δ^2 , where δ is the product $\prod_{1 \le i < j \le n} (\alpha_j - \alpha_i)$ of the quantities $\alpha_j - \alpha_i$ taken over all pairs of integers i and j satisfying $1 \le i < j \le n$.

Show that the quantity δ changes sign whenever α_i is interchanged with α_{i+1} for some *i* between 1 and n-1. Hence show that $\theta(\delta) = \delta$ for all automorphisms θ in the Galois group $\Gamma(L; K)$ that induce even permutations of the roots of *f*, and $\theta(\delta) = -\delta$ for all automorphisms θ in $\Gamma(L; K)$ that induce odd permutations of the roots.

12. Let L be a splitting field for the polynomial f over the field K, where

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

Suppose that the field extension L: K is separable, and is thus a Galois extension. Apply the Galois correspondence to show that the discriminant δ^2 of the polynomial f belongs to the field K containing the coefficients of f, and the field $K(\delta)$ is the fixed field of the subgroup of $\Gamma(L: K)$ consisting of those automorphisms in $\Gamma(L: K)$ that induce even permutations of the roots of f. Hence show that $\delta \in K$ if and only if all automorphisms in the Galois group $\Gamma(L: K)$ induce even permutations of the roots of f.

13. (a) Show that the discriminant of the quadratic polynomial $x^2 + bx + c$ is $b^2 - 4c$.

(b) Show that the discriminant of the cubic polynomial $x^3 - px - q$ is $4p^2 - 27q^2$.

14. Let $f(x) = x^3 - px - q$ be a cubic polynomial with complex coefficients p and q without repeated roots, and let the complex numbers α , β and γ be the roots of f.

(a) Give formulae for the coefficients p and q of f in terms of the roots α , β and γ of f, and verify that $\alpha + \beta + \gamma = 0$ and

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma = 3q$$

(b) Let $\lambda = \alpha + \omega\beta + \omega^2\gamma$ and $\mu = \alpha + \omega^2\beta + \omega\gamma$, where ω is the complex cube root of unity given by $\omega = \frac{1}{2}(-1 + \sqrt{3}i)$. Verify that $1 + \omega + \omega^2 = 0$, and use this result to show that

$$\alpha = \frac{1}{3}(\lambda + \mu), \qquad \beta = \frac{1}{3}(\omega^2 \lambda + \omega \mu), \qquad \gamma = \frac{1}{3}(\omega \lambda + \omega^2 \mu).$$

(c) Let K be the subfield $\mathbb{Q}(p,q)$ of \mathbb{C} generated by the coefficients of the polynomial f, and let M be a splitting field for the polynomial f over $K(\omega)$. Show that the extension M: K is normal, and is thus a Galois extension. Show that any automorphism in the Galois group $\Gamma(M:K)$ permutes the roots α , β and γ of f and either fixes ω or else sends ω to ω^2 .

(d) Let $\theta \in \Gamma(M; K)$ be a K-automorphism of M. Suppose that

$$\theta(\alpha) = \beta, \quad \theta(\beta) = \gamma, \quad \theta(\gamma) = \alpha$$

Show that if $\theta(\omega) = \omega$ then $\theta(\lambda) = \omega^2 \lambda$ and $\theta(\mu) = \omega \mu$. Show also that if $\theta(\omega) = \omega^2$ then $\theta(\lambda) = \omega \mu$ and $\theta(\mu) = \omega^2 \lambda$. Hence show that $\lambda \mu$ and $\lambda^3 + \mu^3$ are fixed by any automorphism in $\Gamma(M:K)$ that cyclically permutes α , β and γ . Show also that the quantities $\lambda \mu$ and $\lambda^3 + \mu^3$ are also fixed by any automorphism in $\Gamma(M:K)$ that interchanges two of the roots of f whilst leaving the third root fixed. Hence prove that $\lambda \mu$ and $\lambda^3 + \mu^3$ belong to the field K generated by the coefficients of fand can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that $\lambda \mu = 3p$ and $\lambda^3 + \mu^3 = 27q$. Hence show that λ^3 and μ^3 are roots of the quadratic polynomial $x^2 - 27qx + 27p^3$. Use this result to verify that the roots of the cubic polynomial $x^3 - px - q$ are of the form

$$\sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}}$$

where the two cube roots must be chosen so as to ensure that their product is equal to $\frac{1}{3}p$.