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A Cyclotomic Polynomials

A.1 Minimum Polynomials of Roots of Unity

Proposition A.1 If a monic polynomial with integer coefficients factors as
a product of monic polynomials with rational coefficients, then those polyno-
mials have integer coefficients.

Proof Let f(z) be a monic polynomial with integer coefficients, and sup-
pose that f(z) = fi(z)f2(x) - fr(x), where fi, fa,..., f» are monic polyno-
mials with rational coefficients. Then there exist unique rational numbers
ai, ag, - . ., a, such that the polynomial a; f;(x) is a primitive polynomial with
integer coefficients for j = 1,2, ..., r. Moreover each rational number a; must
be an integer, because it is the leading coefficient of a polynomial a; f;(z)
whose coefficients are integers. Now Gauss’s Lemma (Lemma 3.7) ensures
that a product of primitive polynomials with integer coefficients is itself a
primitive polynomial. Therefore the polynomial

ayag - - a, f1(x) fo(x) - - - fr(2)

is a primitive polynomial with integer coefficients, and therefore its coeffi-
cients are not all divisible by any integer greater than one. Thus aqas - - - a, =
1, and therefore a; = £1 for j = 1,2,...,r. This then ensures that each fac-
tor f;(z) of f(x) has integer coefficients, as required. |

Corollary A.2 Let f(x) be a monic polynomial with integer coefficients.
Then the minimum polynomial of every root of f(x) over the field Q of ra-
tional numbers has integer coefficients.

Proof If m(z) is the minimum polynomial over Q of some root of f(x) then
f(z) = m(x)g(x) for some monic polynomial g(x) with rational coefficients.
It then follows from Proposition A.1 that the polynomials m(z) and g(x)
have integer coefficients. |}

Let p be a prime number, let F, be the field of congruence classes of
integers modulo p, and let v,: Z — I, be the ring homomorphism that sends
each integer k to its congruence class [k], modulo p. Then each polynomial
f with integer coefficients determines a corresponding polynomial v, f with
coefficients in [F,,, where

Vps (a0 + a1 + aga® + -+ - a,2”) = [agl, + [a1]pa + [a2]p2® + - - + [an]p2".

for all polynomials ag + a1 + asx® + - - - a,2" with integer coefficients. The
polynomial v, f is thus obtained from the polynomial f by replacing each
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coefficient of f(z) by its congruence class modulo p. The function v,: Z[z] —
F,[z] is a ring homomorphism.

Corollary A.3 Let p be a prime number, and let v,:Z — T, be the ring
homomorphism from the ring Z of integers to the field F,, of congruence
classes of integers modulo p that sends each integer k to its congruence class
[k], modulo p. Let f and g be monic polynomials with integer coefficients and
let vy f and v,.g be the polynomials obtained on replacing the coefficients of
f(z) and g(x) by their congruence classes modulo p. Suppose that f divides
g in the polynomial ring Q(z). Then vy, f divides vp.g in F,(x).

Proof The polynomial f divides the polynomial g in the polynomial ring
Q[z], and therefore there exists some monic polynomial h(z) with ratio-
nal coefficients such that g(z) = f(x)h(z). But Proposition A.1 then en-
sures that the monic polynomial h(z) has integer coefficients. It follows that
(Vps £)(2) = (Vpsg)(z)(vph) (), and thus v, f divides v,.g in Fplz]. |

Lemma A.4 Let p be a prime number, and let u(x) be a polynomial with
coefficients in the field I, of congruence classes of integers modulo p. Then
u(z?) = u(z)P.

Proof The Commutative, Associative and Distributive Laws satisfied in any
commutative ring ensure that

p

(i) + ) = 3 () ()P sl = (@) + (ualo)y

§=0
for all polynomials u; and uy with coefficients in the field [F,, because the

binomial coefficient ( ? ) is divisible by p when 0 < j < p (see the proof of

r p r
Lemma 6.10). It follows by induction on r that (Z u; (x)) = Z(uj(x))p

j=1 j=1

for all polynomials wy,us, ..., u, with coefficients in F,. Also ¢” = ¢ for all
c € ), because Fermat’s Little Theorem ensures that k& = k modulo p for
all integers k. Let

u(a:) :CO‘i‘ClJT—i—CQ:L'Q_{_..._i_CJ;xn’
where Co,C1y---,Cp S Fp~ Then
(u(z))P = b+ ca?+Bax® + -+ L™
= ¢y +caf + 021:21” 4™

as required. |
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Proposition A.5 Let m be a positive integer, let p be a prime number that
does not divide m, and let & be a complexr number satisfying ™ = 1. Then
the numbers €& and &P have the same minimum polynomial over the field Q
of rational numbers.

Proof Let f(z) and g(z) be the minimum polynomials of £ and &P respec-
tively over the field Q of rational numbers. The complex numbers are roots of
the polynomial 2™ — 1. It follows from Corollary A.2 that the monic polyno-
mials f(z) and g(x) have integer coefficients. Moreover ¢(&?) = 0, and thus
¢ is a root of the polynomial g(x?). It follows that the minimum polynomial
f(z) of £ divides g(z?) in Q[z]. Corollary A.2 then ensures that f(x) divides
g(aP) in Z[z]. We aim to show that f(z) = g(x).

Let IF, be the field of congruence classes of integers modulo p, let v,: Z —
FF, be the ring homomorphism that sends each integer k to its congruence
class [k], modulo p, and let f(z) and g(x) be the polynomials with coefficients
in F, obtained from the polynomials f(z) and g(x) respectively by replacing
each coefficient of those polynomials by its congruence class modulo p, so
that f = v,.f and § = v,.g. Then f(z) divides g(2P), because f(z) divides
g(2?). But g(2?) = g(x)?, by Lemma A.4. Thus f(z) divides g(x)?. It
follows that all irreducible factors of f(z) in F,[z] divide g(z)?P and are thus
irreducible factors of g(x).

Suppose that it were the case that f # g. Then the polynomial 2™ — 1
would be divisible by f(x)g(z), and therefore the corresponding polynomial
a™ — [1], in F,[z] would be divisible by f(x)g(z). But we have shown that
each irreducible factor of f(z) is also a factor of g(z). Thus, given any
irreducible factor v(x) of f(z), its square v(x)? would divide 2™ — [1], in
F,[x]. Thus there would exist some polynomial w € F,[x] with coefficients
in F,, such that 2™ — [1], = v(z)?w(z). But calculating the formal derivative
in F,[x] of both sides of this identity shows that

mla™™ = m[1,a" " = D™ ~ [1],) = D(v(x)w(x))
= 20(@)(Dv)(@)w(x) + v(2)*(Dw) (),

and moreover [m], # [0],, because the prime number p does not divide m.
It would therefore follow that the irreducible polynomial v(x) would divide
™1 and would therefore divide z. But this is impossible, because [0], is not
a root of 2™ — [1], and thus could not be a root of v(z). Thus the hypothesis
that f # g leads to a contradiction. Therefore f = g, as required. |}
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A.2 Cyclotomic Polynomials and Cyclotomic Fields

Let m be a positive integer. A complex number z is an mth root of unity
if 2™ = 1. It is a primitive mth root of unity if m is the smallest positive
integer for which 2™ = 1.

Definition The mth cyclotomic polynomial ®,,(x) is the monic polynomial
whose roots are the primitive mth roots of unity.

Now w,, is a primitive mth root of unity, where w,, = e2mV=1/m \oreover
w® is a primitive mth root of unity if and only if the integer a is coprime
to m. Indeed an integer j satisfies w’® = 1 if and only if ja is divisible by
m. If a is coprime to m then ja is divisible by m if and only if j is itself
divisible by m, and therefore w® is a primitive mth root of unity. On the
other hand if the greatest common divisor (a,m) of a and m is greater than
1, then w® = 1 where d = m/(a, m) < m and therefore w® is not a primitive
mth root of unity. Thus

Cu(e)= ] G@-w)= ][ @-e&mvtom,

0<a<m 0<a<m

a

(a,m)=1 (a,m)=1

ie., ®,, is the product of the polynomials x — w? taken over all integers a
satisfying 0 < a < m that are coprime to m.

Definition The mth cyclotomic field is the field obtained by adjoining the
mth roots of unity to the field Q of rational numbers.

Now the field Q(w,,) contains all mth roots of unity, because those prim-
itive mth roots of unity are powers of w,,. It follows that the field Q(w,,) is
the mth cyclotomic field.

Now each mth root of unity is a primitive dth root of unity for some
divisor d of m. It follows that

™ —1= H@d(x),

dm

where the product of the cyclotomic polynomials ®4(z) is taken over all
divisors d of m.

The Fuler Totient Function ¢ is the function on the positive integers
whose value at each positive integer m is the number of non-negative inte-
gers less than m that are coprime to m. This function satisfies the identity

> o(d) = m for all positive integers m, where the sum is taken over the
dlm
divisors d of m (see Lemma 6.13).
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Theorem A.6 For each positive integer m, the mth cyclotomic polynomial
®,,(x) is a monic irreducible polynomial of degree ¢(m) with integer coeffi-
cients, where p(m) denotes the number of non-negative integers less than m
that are coprime to m. Moreover the mth cyclotomic field Q(e%ﬁ/m) s a
finite extension of Q of degree ¢(m).

Proof The image of any primitive mth root of unity under an automorphism
of Q(wy,) must itself be a primitive mth root of unity. It follows that the
Galois group I'(Q(w,): Q) of the Galois extension Q(wy,): Q permutes the
primitive mth roots of unity amongst themselves, and therefore permutes
the factors = — w?, of the cyclotomic polynomial ®,,(x) amongst themselves.
It follows that the coefficients of the cyclic polynomial ®,,(x) are in the fixed
field of the Galois group I'(Q(wy,,): Q). This fixed field is the field Q of rational
numbers (Theorem 6.21). Thus the cyclotomic polynomial ®,,(z) € Q(z) is
a polynomial of degree ¢(d) with rational coefficients.

Now the monic polynomial 2™ — 1 is the product of the cyclotomic poly-
nomials ®4(x), where this product is taken over all divisors d of m. Moreover
each of these cyclotomic polynomials is a monic polynomial with rational co-
efficients. It therefore follows from Proposition A.1 that each of the factors
of ™ — 1 has integer coefficients. Thus each cyclotomic polynomial ®,,(x)
has integer coefficients.

Each integer a coprime to m factors as a product pips---pp of prime
numbers that do not divide m. It follows from successive applications of
Proposition A.5 that w,,, wP!, wkPz . wPP2"Pk ghare the same minimum
polynomial over the field of rational numbers. It follows that the cyclotomic
polynomial ®,,(z) is the minimum polynomial of each of its roots and is thus
irreducible.

The mth cyclotomic field is the field Q(w,,) obtained by adjoining the
complex number w,, to the field Q of rational numbers. Moreover the cyclo-
tomic polynomial ®,,(x) is the minimum polynomial of w,, over the field Q
of rational numbers. It follows from Theorem 4.5 that

[Q(wm): Q] = deg ¢, = (p(m),
as required. Jj

If m is a prime number then all mth roots of unity with the exception of
the number 1 itself are primitive mth roots of unity, and therefore

m

—1
m _ 1 )

’ = g x’  (provided that m is prime)
=0

() = rz—1
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A.3 Examples of Cyclotomic Polynomials

We now list the first eight cyclotomic polynomials:

Pi(z) = z-1,

Oy(zx) = z+1,

P3(z) = (v —wy)(v—wi)=a*+a+1,

ufx) = (- vVD)w+ VD) =at+1,

O5(x) = '+t + 2P+ +1,

P(z) = (v —we)(v—wd)=a—2+1,

Or(z) = 2®+ 2P+t 2Pt o+,

Pg(r) = (v —ws)(z —wi)(z—wd)(r —wi) =2+ 1.

Example We calculate ®g(x). Now

wse™™V T = (144) V2,
W™V = (<1 40)/V2,

where i = v/—1. Moreover w — 8* = —1. It follows that

Os(r) = (v —ws)(z —wy)(@ —wi)(z — wy)

) ) ) )

_ (xQ— %) (:ﬁ— %) = (% = i)(? + 1)

= '+ 1.

A direct calculation shows that

Dy (2)Py(2)P3(2)Ps(z) = (x—V(xz+1)(2*+x+1)(2° —x+1)
= (2" = 1D((@* +1) —2?)
= (@ -1D(@@"+22+1)

= 25 -1.

This verifies that 2% — 1 is indeed the product of the cyclotomic polynomials
®,4(x) taken over all divisors d of 6.
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A.4 Cyclotomic Fields and Constructibility of Regular
Polygons

Let K denote the set of all real numbers z for which the point (z,0) is
constructible from the points (0,0) and (0,1) by means of a geometrical
construction using straightedge and compasses alone. Then K is a subfield
of the field of real numbers, and a point (u,v) of the plane is constructible
using straightedge and compass alone if and only if v € K and v € K.
Moreover if u € K and v > 0 then \/u € K. (These results follow from
Theorem 5.3.) Moreover if u € K then [Q(u): Q] = 2" for some non-negative
integer r (Theorem 5.7).

Suppose that a constructible point (u,v) lies on the unit circle, so that
u? +v? = 1. Then [Q(u,v,v/—1): Q(u)] is equal to 1, 2 or 4, because v? =
1 — u? and therefore [Q(u + v): Q] is a power of 2. Now a regular m-sided
polygon inscribed in the unit circle is constructible if and only if the point
(cos(2m/m),sin(2w/m)) is constructible. It follows that if this regular m-
sided polygon is constructible then [Q(e*™V=1/™).Q] = 2" for some non-
negative integer r, and thus ¢(m) = 2" for some integer r, where ¢ denotes
the Euler Totient Function.

Suppose that m = pi'py? - - p,* where p1,po,...,p, are distinct prime
numbers and ry,79,...,7, are positive integers. It follows from well-known

results of elementary number theory that

e(m) =pi* H(pr — Dpy (2 — 1) - e — 1).

Thus p(m) is a power of 2 if and only if r; = 1 and p; — 1 is a power of two
whenever the prime p; is odd. Moreover if p; — 1 = 2 for some integer ¢
then ¢ cannot have any odd divisors, because the polynomial x 4+ 1 divides
2™ + 1 for all odd positive integers n and therefore 2° + 1 divides 2" + 1 for
all odd positive integers n and positive integers s. Thus if p; — 1 is a power
of 2 then p; must be of the form 22" 1 1 for some non-negative integer n;.
Prime numbers of this form are known as Fermat primes. We conclude that
a positive integer m satisfies ¢(m) = 2" for some non-negative integer r if
and only if either m is a power of 2 or else m is a power of 2 multiplied by a
product of distinct Fermat primes.

The five known Fermat primes are 3, 5, 17, 257 and 65537.

The theory of straightedge and compass constructions thus shows that if
an m-sided regular polygon is constructible using straightedge and compasses
then [Q(wy,): Q] must be a power of 2. The converse result is also true.

Indeed suppose that [Q(w,):Q] is a power of 2. The splitting field
extension Q(w,,): Q is a Galois extension, and therefore its Galois group
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I'(Q(wm): Q) is a finite group whose order is 2" for some integer r. A stan-
dard result of group theory then ensures that the Galois group I'(Q(w;,): Q)
has subgroups Hy, Hy, ..., H,, where |H;| = 2"~ for j = 0,1,...,r and H,
is a normal subgroup of H;_; for j = 1,2,...,r. (This result is a special
case of Corollary A.9 below.) Let the subfield L; of Q(wy,) be the fixed field
of H; for j = 0,1,...,r. It then follows from the Galois Correspondence
(see Theorem 6.25) that [L;: Q] = 27 for j = 0,1,...,7 and L;_; C L; for
j=1,2,...,r. Then [L;: L;_1] = 2, and therefore L; = L;_1(a;) for some el-
ement «; satisfying oz]z € L;_1. Let K be the subfield of R consisting of those
real numbers u for which the point (u,0) is constructible. Then /u € K for
all u € K. It follows that that if L;_; C K(y/—1) then the real and imag-
inary parts of a; belong to K, and therefore L; C K(v/—1). We conclude
from this that Q(w,,) C K(v/=1), and thus the real and imaginary parts of
each element of Q(wy,) are the Cartesian coordinates of a constructible point
in the Euclidean plane.

We conclude therefore that if ¢(m) is a power of 2 then a regular m-sided
polygon inscribed in the unit circle is constructible using straightedge and
compasses.

We now discuss the results from group theory that ensure that any finite
group whose order is a power of 2 contains a finite sequence of subgroups,
where each proper subgroup in the sequence is a normal subgroup of the
preceding group in the sequence whose order is half that of the preceding
subgroup. These results are special cases of results that apply to any finite
group whose order is a power of a prime number.

A.5 Groups whose Order is a Prime Power

Definition Let p be a prime number. A p-group is a finite group whose
order is some power p* of p.

Lemma A.7 Let p be a prime number, and let G be a p-group. Then there
exists a normal subgroup of G of order p that is contained in the centre of GG.

Proof Let |G| = p*. Then p* divides the order of G but does not divide the
order of any proper subgroup of G. It follows from Proposition 8.2 that p
divides the order of the centre of G. It then follows from Cauchy’s Theorem
(Theorem 8.3) that the centre of G contains some element of order p. This
element generates a cyclic subgroup of order p, and this subgroup is normal
since its elements commute with every element of G. |}
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Proposition A.8 Let G be a p-group, where p is some prime number, and
let H be a proper subgroup of G. Then there exists some subgroup K of G
such that H<1 K and K/H is a cyclic group of order p.

Proof We prove the result by induction on the order of G. Thus suppose
that the result holds for all p-groups whose order is less than that of GG. Let
Z be the centre of G. Then ZH is a well-defined subgroup of G, since Z is
a normal subgroup of G.

Suppose that ZH # H. Then H is a normal subgroup of ZH. The
quotient group ZH/H is a p-group, and contains a subgroup K; of order p
(Lemma A.7). Let K ={g € ZH : gH € K,}. Then H<K and K/H = K,
and therefore K is the required subgroup of G.

Finally suppose that ZH = H. Then Z C H. Let Hy = {hZ : h € H}.
Then H, is a subgroup of G/Z. But G/Z is a p-group, and |G/Z| < |G|,
since |Z| > p (Lemma A.7). The induction hypothesis ensures the existence
of a subgroup K of G/Z such that H, < K; and K;/H; is cyclic of order p.
Let K ={9g€ G:9Z e K}. Then H< K and K/H = K,/H,. Thus K is
the required subgroup of G. |}

Repeated applications of Proposition A.8 yield the following result.

Corollary A.9 Let G be a finite group whose order is a power of some prime
number p. Then there exist subgroups Gy, Gy, ..., G, of G, where Gy is the
trivial subgroup and G, = G, such that G;—1 < G; and G;/G;—y is a cyclic
group of order p fori=1,2,... n.
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