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36 Vectors in Three-Dimensional Space

36.1 Vector Quantities

Vector quantities are objects that have attributes of magnitude and direction.
Many physical quantities, such as velocity, acceleration, force, electric field
and magnetic field are examples of vector quantities. Displacements between
points of space may also be represented using vectors.

Quantities that do not have a sense of direction associated with them
are known as scalar quantities. Such physical quantities as temperature and
energy are scalar quantities. Scalar quantities are usually represented by real
numbers.

36.2 Displacement Vectors

Points of three-dimensional space may be represented, in a Cartesian co-
ordinate system, by ordered triples (x, y, z) of real numbers. Two ordered
triples (x1, y1, z1) and (x2, y2, z2) of real numbers represent the same point of
three-dimensional space if and only if x1 = x2, y1 = y2 and z1 = z2. The
point whose Cartesian coordinates are given by the ordered triple (0, 0, 0) is
referred to as the origin of the Cartesian coordinate system.

It is usual to employ a Coordinate system such that the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1) are situated at a unit distance from the origin (0, 0, 0),
and so that the three lines that join the origin to these points are mutually
perpendicular. Moreover it is customary to require that if the thumb of
your right hand points in the direction from the origin to the point (1, 0, 0),
and if the first finger of that hand points in the direction from the origin to
the point (0, 1, 0), and if the second finger of that hand points in a direction
perpendicular to the directions of the thumb and first finger, then that second
finger points in the direction from the origin to the point (0, 0, 1). (Thus if,
at a point on the surface of the earth, away from the north and south pole,
the point (1, 0, 0) is located to the east of the origin, and the point (0, 1, 0)
is located to the north of the origin, then the point (0, 0, 1) will be located
above the origin.

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)
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Let P1, P2, P3 and P4 denote four points of three-dimensional space,
represented in a Cartesian coordinate system by ordered triples as follows:

P1 = (x1, y1, z1), P2 = (x2, y2, z2),

P3 = (x3, y3, z3), P4 = (x4, y4, z4).

The displacement vector
−→

P1, P2 from the point P1 to the point P2 measures
the distance and the direction in which one would have to travel in order
to get from P1 to P2. This displacement vector may be represented by an
ordered triple as follows:

−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1).

The displacement vector
−→
P3P4 is equal to the displacement vector

−→
P1P2 if

and only if

x2 − x1 = x4 − x3,
y2 − y1 = y4 − y3,
z2 − z1 = z4 − z3,

in which case we represent the fact that these two displacement vectors are
equal by writing

−→
P1P2 =

−→
P3P4.

P1

P2

P3

P4

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(x4, y4, z4)

Note:
−→
P1P2 =

−→
P3P4 and therefore

x2 − x1 = x4 − x3,
y2 − y1 = y4 − y3,
z2 − z1 = z4 − z3,
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Now

x2 − x1 = x4 − x3
⇐⇒ x2 + x3 = x1 + x4

⇐⇒ x3 − x1 = x4 − x2

Thus

x2 − x1 = x4 − x3 if and only if x3 − x1 = x4 − x2.
Similarly

y2 − y1 = y4 − y3 if and only if y3 − y1 = y4 − y2,
z2 − z1 = z4 − z3 if and only if z3 − z1 = z4 − z2.

Geometrically, these two displacement vectors are equal if and only if P1,
P2, P4 and P3 are the vertices of a parallelogram in three-dimensional space,
in which case

x3 − x1 = x4 − x2,
y3 − y1 = y4 − y2,
z3 − z1 = z4 − z2,

and thus −→
P1P3 =

−→
P2P4.

P1

P2

P3

P4

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(x4, y4, z4)

Note:
x2 − x1 = x4 − x3,
y2 − y1 = y4 − y3,
z2 − z1 = z4 − z3,

 ⇐⇒


x3 − x1 = x4 − x2,
y3 − y1 = y4 − y2,
z3 − z1 = z4 − z2,

 .

These displacement vectors may be regarded as objects in their own right,
and denoted by symbols of their own: we use a symbol such as u to denote

the displacement vector
−→
P1P2 from the point P1 to the point P2, and we write

u = (ux, uy, uz) where ux = x2 − x1, uy = y2 − y1 and uz = z2 − z1.
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Remark It is traditional in mathematics texts to denote vectors with bold-
face letters (e.g., u, v, w). The traditional way of writing the equivalent
on paper or blackboards is to put a tilde underneath the letter (e.g., u

∼
, v

∼
,

w
∼

). When vectors are taught at second level, they are often written with an

arrow on top (e.g., ~u, ~v, ~w).

Vectors are used to record displacements and positions. Let P1 and P2

be points of three-dimensional Euclidean space with Cartesian coordinates

(x1, y1, z1) and (x2, y2, z2) respectively. The displacement vector
−→
P1P2 from

P1 to P2 is the vector with components

(x2 − x1, y2 − y1, z2 − z1)

that contains the information necessary to determine the distance of P2 from
P1 and also the direction of P2 in relation to P1.

A Cartesian coordinate system in three-dimensional space determines an
origin O that is the point whose Cartesian coordinates are (0, 0, 0). The
position of a point P of the plane with respect to the origin is specified by a

vector r, where r =
−→
OP . This vector r is the position vector of the point P .

It represents the displacement of the point P from the origin of the Cartesian
coordinate system.

O = (0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

P = (5,−2, 3)

−→
OP

Note: The position vector
−→
OP of the point P , where P = (5,−2, 3).

36.3 The Parallelogram Law of Vector Addition

Let P1, P2, P3 and P4 denote four points of three-dimensional space, located

such that
−→
P1P2 =

−→
P3P4. Then (as we have seen)

−→
P1P3 =

−→
P2P4 and the

geometrical figure P1P2P4P3 is a parallelogram. Let

u =
−→
P1P2 =

−→
P3P4, v =

−→
P1P3 =

−→
P2P4.
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Let
P1 = (x1, y1, z1), P2 = (x2, y2, z2),

P3 = (x3, y3, z3), P4 = (x4, y4, z4).

Then u = (ux, uy, uz) and v = (vx, vy, vz), where

ux = x2 − x1 = x4 − x3,
uy = y2 − y1 = y4 − y3,
uz = z2 − z1 = z4 − z3,
vx = x3 − x1 = x4 − x2,
vy = y3 − y1 = y4 − y2,
vz = z3 − z1 = z4 − z2,

Let e =
−→
P1P4. Then e = (ex, ey, ez), where

ex = x4 − x1 = ux + vx,

ey = y4 − y1 = uy + vy,

ez = z4 − z1 = uz + vz,

P1

P2

P3

P4

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

(x4, y4, z4)

u

u

v

v

e

Note: u =
−→
P1P2 =

−→
P3P4 and v =

−→
P1P3 =

−→
P2P4, and

ux = x2 − x1 = x4 − x3 &c.,

vx = x3 − x1 = x4 − x2 &c.,

ex = x4 − x1 = ux + vx &c..

We say that the vector e is the sum of the vectors u and v, and denote
this fact by writing

e = u + v.

This rule for addition of vectors is known as the parallelogram rule, due to
its association with the geometry of parallelograms. Note that vectors are
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added, by adding together the corresponding components of the two vectors.
For example,

(0, 3, 2) + (4, 8,−5) = (4, 11,−3).

Note that −→
AB +

−→
BC =

−→
AC

for all points A, B and C of space.

A
B

C

u

v
u+ v

The identity
u + v = v + u

holds for all vectors u and v in three-dimensional space.

A
B

F
C

u

u

v
v

u+ v

The identity u + v = v + u may be interpreted geometrically as follows.

Let u =
−→
AB and v =

−→
BC, where A, B and C are points of three-dimensional

space. Then there exists a point F in three-dimensional space such that
−→
AF =

−→
BC. Then ABCF is a parallelogram, and

−→
FC =

−→
AB. It follows that

−→
AC =

−→
AB +

−→
BC = u + v,

−→
AC =

−→
AF +

−→
FC = v + u.
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A
B

F
C

u

u

v
v

u+ v

In Cartesian coordinates

u + v = v + u = (ux + vx, uy + vy, uz + vz),

where
u = (ux, uy, uz) and v = (vx, vy, vz).

Let u, v and w be vectors in three-dimensional space. Then

(u + v) + w = u + (v + w).

This identity may be verified algebraically as follows. Let

u = (ux, uy, uz), v = (vx, vy, vz), w = (wx, wy, wz).

Then

u + v = (ux + vx, uy + vy, uz + vz), v + w = (vx + wx, vy + wy, vz + wz),

and therefore

(u + v) + w = (ux + vx + wx, uy + vy + wy, uz + vz + wz)

= u + (v + w).

This identity can be interpreted geometrically as follows. Let A be a
point of three-dimensional space. Then there exist points B, C and D of
three-dimensional space such that

u =
−→
AB, v =

−→
BC, w =

−→
CD.

Then
−→
AC =

−→
AB +

−→
BC = u + v and

−→
BD =

−→
BC +

−→
CD = v + w,

and hence
−→
AD =

−→
AC +

−→
CD = (u + v) + w,

−→
AD =

−→
AB +

−→
BD = u + (v + w).

and thus

(u + v) + w =
−→
AD = u + (v + w).
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A

B
C

D

u

v

w

u+ v

v +w−→
AD

Note:

(u + v) + w =
−→
AC +

−→
CD =

−→
AD =

−→
AB +

−→
BD

= u + (v + w).

The zero vector 0 is the vector (0, 0, 0) that represents the displacement
from any point in space to itself. The zero vector 0 has the property that

u + 0 = u

for all vectors u.
Given any vector u, there exists a vector, denoted by −u, characterized

by the property that
u + (−u) = 0.

If u = (ux, uy, uz), then −u = (−ux,−uy,−uz).
We have shown that addition of vectors satisfies the Commutative Law

and the Associative Law.
Given three vectors u, v, w, we define their sum u + v + w so that

u + v + w = (u + v) + w = u + (v + w).

More generally, let v1,v2, . . . ,vk be vectors in three-dimensional space,
and let P0 be a point of three-dimensional space. Then there exist points

P1, P2, . . . , Pk such that vj =
−→

Pj−1, Pj for j = 1, 2, . . . , n. We define the sum
of the vectors v1,v2, . . . ,vk such that

v1 + v2 + . . .+ vk =
−→
P0Pk.

38



v1

v2v3

v4

v5

v6 v7

v8

v9 P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

S

Note: case k = 9, with

S =
−→
P0P9 = v1 + v2 + · · ·+ v9,

where vj =
−→

Pj−1Pj for j = 1, 2, . . . , 9.

Lemma 36.1 Let v1,v2, . . . ,vk be vectors in three-dimensional space, where
vj = (v

(j)
x , v

(j)
y , v

(j)
z ) for j = 1, 2, . . . , n, and let

S = v1 + v2 + · · ·+ vk.

Then S = (Sx, Sy, Sz), where

Sx =
n∑

j−1
v(j)x , Sy =

n∑
j−1

v(j)y , Sz =
n∑

j−1
v(j)z .

Proof Let points P0 be a point in three-dimensional space, and let points

P1, P2, . . . , Pk be successively constructed such that vj =
−→

Pj−1Pj for j =
1, 2, . . . , k. Let Pj = (xj, yj, zj) for j = 0, 1, 2, . . . , k. Then

vj = (xj − xj−1, yj − yj−1, zj − zj−1)

for j = 1, 2, . . . , k. Thus if

S = v1 + v2 + · · ·+ vk,

then

S =
−→
P0Pk = (xk − x0, yk − y0, zk − z0) = (Sx, Sy, Sz)
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where

Sx = xk − x0 =
k∑

j=1

(xj − xj−1) =
n∑

j−1
v(j)x ,

Sy = yk − y0 =
k∑

j=1

(yj − yj−1) =
n∑

j−1
v(j)y ,

Sz = zk − z0 =
k∑

j=1

(zj − zj−1) =
n∑

j−1
v(j)z ,

as required.

36.4 Scalar Multiples of Vectors

Let P0, P1, P2, P3, . . . be an infinite sequence of points in three-dimensional
space, where

−→
P0P1 =

−→
P1P2 =

−→
P2P3 = · · · .

Let v =
−→
P0P1, and let v = (vx, vy, vz). Then

−→
PjPj+1 = v for all positive

integers j. It then follows immediately from Lemma 36.1 that

v =
−→
P0P1 = (vx, vy, vz)

v + v =
−→
P0P2 = (2vx, 2vy, 2vz)

v + v + v =
−→
P0P3 = (3vx, 3vy, 3vz)

v + v + v + v =
−→
P0P4 = (4vx, 4vy, 4vz)

...

It follows that

v + v = 2v, v + v + v = 3v, v + v + v + v = 4v, &c.,

where

kv =
−→
P0Pk = (kvx, kvy, kvz)

for all non-negative integers k.
More generally, let v be a vector, represented by the ordered triple (vx, vy, vz),

and let t be a real number. We define tv to be the vector represented by the
ordered triple (tvx, tvy, tvz). Thus tv is the vector obtained on multiplying
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each of the components of v by the real number t. The vector tv is said to
be a scalar multiple of the vector v, obtained by multiplying the vector v by
the scalar t.

It follows from this definition of scalar multiples of vectors that

(s+ t)u = su + tu, t(u + v) = tu + tv, and s(tu) = (st)u,

for all vectors u and v and real numbers s and t. Also 1v = v for all
vectors v.

36.5 Linear Combinations of Vectors

Let v1,v2, . . . ,vk be vectors in three-dimensional space. A vector v is said
to be a linear combination of the vectors v1,v2, . . . ,vk if there exist real
numbers t1, t2, . . . , tk such that

v = t1v1 + t2v2 + · · ·+ tkvk.

Let O, A and B be distinct points of three-dimensional space that are
not collinear (i.e., that do not all lie on any one line in that space). The

displacement vector
−→
OP of a point P in three-dimensional space is a lin-

ear combination of the displacement vectors
−→
OA and

−→
OB if and only if the

point P lies in the unique plane that contains the points O, A and B.

O A

B

C

u

v

3u+ 2v

Note:
−→
OA = u,

−→
OB = v,

−→
OC = 3u + 2v.

36.6 Linear Dependence and Independence

Vectors v1,v2, . . . ,vk are said to be be linearly dependent if there exist real
numbers t1, t2, . . . , tk, not all zero, such that

t1v1 + t2v2 + · · ·+ tkvk = 0.
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If the vectors v1,v2, . . . ,vk are not linearly dependent, then they are said to
be linearly independent.

Note that if any of the vectors v1,v2, . . .vk is the zero vector, then those
vectors are linearly dependent. Indeed if vi = 0 then these vectors satisfy a
relation of the form

t1v1 + t2v2 + · · ·+ tkvk = 0.

where tj = 0 if j 6= i and ti 6= 0. We conclude that, in any list of linearly
independent vectors, the vectors are all non-zero.

Also if any vector in the list v1,v2, . . .vk is a scalar multiple of some other
vector in the list then these vectors are linearly dependent. Indeed suppose
that vk = tvj, where j 6= k. Then tvj − vk = 0, and thus

t1v1 + t2v2 + · · ·+ tkvk = 0,

where tj = t, tk = −1 and ti = 0 whenever i is distinct from both j and k.
If a vector v is expressible as a linear combination of vectors v1, . . . ,vk

then the vectors v1, . . . ,vk,v are linearly dependent. For there exist real
numbers s1, . . . , sk such that

v = s1v1 + s2v2 + · · ·+ skvk.

But then
s1v1 + s2v2 + · · ·+ skvk − v = 0.

Theorem 36.2 Let u, v and w be three vectors in three-dimensional space
which are linearly independent. Then, given any vector s, there exist unique
real numbers p, q and r such that

s = pu + qv + rw.

Proof First we note that the vectors u, v and w are all non-zero, and none
of these vectors is a scalar multiple of another vector in the list. Let O denote
the origin of a Cartesian coordinate system, and let A, B, C and P denote
the points of three-dimensional space whose displacement vectors from the
origin O are u, v, w and s respectively. The points O, A, B and C are then
all distinct, and there is a unique plane which contains the three points O,
A and B. This plane OAB consists of all points whose displacement vector
from the origin is expressible in the form pu + qv for some real numbers p
and q.

Now the vector w is not expressible as a linear combination of u and v,
and therefore the point C does not belong to the plane OAB. Therefore the
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line parallel to OC that passes through the point P is not parallel to the
plane OAP . This line therefore intersects the plane in a single point Q. Now
the displacement vector of the point Q from the origin is of the form s− rw
for some uniquely-determined real number r. But it is also expressible in the
form pu + qv for some uniquely-determined real numbers p and q, because
Q lies in the plane OAB. Thus there exist real numbers p, q and r such that
s− rw = pu + qv. But then

s = pu + qv + rw.

Moreover the point Q and thus the real numbers p, q and r are uniquely
determined by s, as required.

O

A

B

C

Q

P

u

v

w

Note:
−→
OP = s = 1.5 u + 1.6 v + 1.8 w,
−→
OQ = 1.5 u + 1.6 v,
−→
QP = 1.8 w.

It follows from this theorem that no linearly independent list of vectors
in three-dimensional space can contain more than three vectors, since were
there a fourth vector in the list, then it would be expressible as a linear
combination of the other three, and the vectors would not then be linearly
independent.

36.7 Line Segments

Let O be the origin of Cartesian coordinates in three-dimensional Euclidean
space, and let P and Q be points of three-dimensional space with position

vectors p and q respectively, where p =
−→
OP and q =

−→
OQ. We consider how

to specify, in vector notation, the line segment joining the point P to a point
Q.
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Let R be a point on the line segment PQ whose endpoints are P and Q.

Then the vectors
−→
OP and

−→
OR are collinear, and indeed

−→
PR = t

−→
PQ for some

real number t satisfying 0 ≤ t ≤ 1. Now
−→
OR =

−→
OP +

−→
PR,

−→
OP = p and

−→
PQ = q − p Thus a point with position vector r lies on the line segment
joining P to Q if and only if

r = p + t(q− p)

for some real number t satisfying 0 ≤ t ≤ 1. It follows that the set of position
vectors of points that lie on the line segment with endpoints P and Q is

{r : r = (1− t)p + tq for some t ∈ R satisfying 0 ≤ t ≤ 1}.

37 Real Vector Spaces

37.1 The Definition of a Real Vector Space

Definition A real vector space consists of a set V on which are defined a
binary operation of vector addition, adding any pair of elements v and w of V
to yield an element v+w of V , and an operation of multiplication-by-scalars,
multiplying any element v of V by any real number t to yield an element
tv of V , where these operations of vector addition and multiplication satisfy
the following axioms:—

1. v + w = w + v for all v,w ∈ V ;

2. (u + v) + w = u + (v + w) for all u,v,w ∈ V ;

3. there exists a zero element 0 of V characterized by the property that
v + 0 = 0 + v = v for all v ∈ V ;

4. given any element v ∈ V , there exists an element −v of V characterized
by the property that v + (−v) = (−v) + v = 0,

5. t(v + w) = tv + tw for all v,w ∈ V and for all real numbers t;

6. (s+ t)v = sv + tv for all v ∈ V and for all real numbers s and t;

7. s(tv) = (st)v for all v ∈ V and for all real numbers s and t;

8. 1v = v for all v ∈ V .
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The first four axioms in the definition of a vector space are equivalent
to the requirement that a vector space be an Abelian group (or commuta-
tive group) with respect to the operation of vector addition. Thus a vector
space is an Abelian group provided with an additional algebraic operation of
multiplication-by-scalars that satisfies the last four axioms listed above.

All the real vector space axioms are satisfied by the set of vectors in three-
dimensional Euclidean space, with the standard operations of vector addition
and multiplication-by-scalars. Therefore vectors in three-dimensional space
constitute a real vector space.

There is a corresponding real vector space whose elements are vectors
in the Euclidean plane. Cartesian coordinates of points of the plane are
represented as ordered pairs of real numbers. Given points P1 and P2 of the
plane, where

P1 = (x1, y1) and P2 = (x2, y2),

the displacement vector
−→
P1P2 is represented by the ordered pair defined so

that −→
P1P2 = (x2 − x1, y2 − y1).

Vector addition and multiplication-by-scalars is defined for vectors in two
dimensions in the obvious fashion, so that

(vx, vy) + (wx, wy) = (vx + wx, vy + wy) and t(vx, vy) = (tvx, tvy)

for all two-dimensional vectors (vx, vy) and (wx, wy) and for all real numbers t.

Example Let m be a positive integer, and let Vm be the set of all polyno-
mials with real coefficients consisting of the zero polynomial together with
all non-zero polynomials whose degree does not exceed m. (The degree of
a polynomial is defined only for non-zero polynomials: it is the degree of
the highest term for which the corresponding coefficient is non-zero.) If p(x)
and q(x) are polynomials with real coefficients belonging to Vm then so is
p(x) + q(x). Also tp(x) is a polynomial belonging to Vm for all (constant)
real numbers t. The operation of addition of two polynomials belonging to
Vm to yield another polynomial belonging to Vm can be considered to be an
operation of “vector addition” on the set Vm. Similarly the operation of mul-
tiplying a polynomial by a constant real number can be considered to be an
operation of “multiplication by scalars”. The set Vm, with all these algebraic
operations, is a real vector space: all the axioms in the definition of a vector
space as satisfied when the non-zero “vectors” are polynomials whose degree
does not exceed m.
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37.2 Linear Dependence and Independence in Vector
Spaces

Let V be a real vector space. Elements v1,v2, . . . ,vk of V are said to be be
linearly dependent if there exist real numbers t1, t2, . . . , tk, not all zero, such
that

t1v1 + t2v2 + · · ·+ tkvk = 0.

If v1,v2, . . . ,vk are not linearly dependent, then they are said to be linearly
independent.

Note that if any of the elements v1,v2, . . .vk of V is the zero element of
V then those elements of V are linearly dependent. Indeed if vi = 0 then
these vectors satisfy a relation of the form

t1v1 + t2v2 + · · ·+ tkvk = 0.

where tj = 0 if j 6= i and ti 6= 0. We conclude that, in any list of linearly
independent elements of a real vector space V , the vectors are all non-zero.

If an element v of a real vector space V is expressible as a linear combina-
tion of elements v1, . . . ,vk of V then the elements v1, . . . ,vk,v are linearly
dependent. For there exist real numbers s1, . . . , sk such that

v = s1v1 + s2v2 + · · ·+ skvk.

But then
s1v1 + s2v2 + · · ·+ skvk − v = 0.

38 Scalar and Vector Products in Three Di-

mensions

38.1 The Length of Three-Dimensional Vectors

Let P1 and P2 be points in space, and let u denote the displacement vector
−→
P1P2 from the point P1 to the point P2. If P1 = (x1, y1, z1) and P2 =
(x2, y2, z2) then u = (ux, uy, uz) where ux = x2 − x1, uy = y2 − y1 and
uz = z2 − z1.

The length (or magnitude) of the vector u is defined to be the distance
from the point P1 to the point P2. This distance may be calculated using
Pythagoras’s Theorem. Let Q = (x2, y2, z1) and R = (x2, y1, z1). If the
points P1 and P2 are distinct, and if z1 6= z2, then the triangle P1QP2 is a
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right-angled triangle with hypotenuse P1P2, and it follows from Pythagoras’s
Theorem that

P1P
2
2 = P1Q

2 +QP 2
2 = P1Q

2 + (z2 − z1)2.

This identity also holds when P1 = P2, and when z1 = z2, and therefore holds
wherever the points P1 and P2 are located.

Similarly

P1Q
2 = P1R

2 +RQ2 = (x2 − x1)2 + (y2 − y1)2

(since P1RQ is a right-angled triangle with hypotenuse P1Q whenever the
points P1, R and Q are distinct), and therefore the length |u| of the displace-
ment vector u from the point P1 to the point P2 satisfies the equation

|u|2 = P1P
2
2 = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

= u2x + u2y + u2z.

P1 = (x1, y1, z1)

P2 = (x2, y2, z2)

Q = (x2, y2, z1)
R = (x2, y1, z1)

i

j

k

Note:
−→
P1R = (x2 − x1, 0, 0),

−→
RQ = (0, y2 − y1, 0),

−→
QP2 = (0, 0, z2 − z1).

In general we define the length, or magnitude, |v| of any vector quantity
v by the formula

|v| =
√
v2x + v2y + v2z ,

where v = (vx, vy, vz). This ensures that the length of any displacement
vector is equal to the distance between the two points that determine the
displacement.

Example The vector (3, 4, 12) is of length 13, since

32 + 42 + 122 = 52 + 122 = 132.
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A vector whose length is equal to one is said to be a unit vector.
Let v be a non-zero vector in three-dimensional space, and let t be a real

number.
Note that if t > 0 then tv is a vector, pointing in the same direction as

v, whose length is obtained on multiplying the length of v by the positive
real number t.

Similarly if t < 0 then tv is a vector, pointing in the opposite direction
to v, whose length is obtained on multiplying the length of v by the positive
real number |t|.

38.2 The Scalar Product

Let u and v be vectors in three-dimensional space, represented in some Carte-
sian coordinate system by the ordered triples (u1, u2, u3) and (v1, v2, v3) re-
spectively. The scalar product of the vectors u and v is defined to be the
real number u . v defined by the formula

u . v = u1v1 + u2v2 + u3v3.

In particular,
u . u = u21 + u22 + u23 = |u|2,

for any vector u, where |u| denotes the length of the vector u.
Note that u . v = v . u for all vectors u and v. Also

(su + tv) .w = su .w + tv .w,

u . (sv + tw) = su . v + tu .w

for all vectors u, v and w and real numbers s and t.

Proposition 38.1 Let u and v be non-zero vectors in three-dimensional
space. Then their scalar product u . v is given by the formula

u . v = |u| |v| cos θ,

where θ denotes the angle between the vectors u and v.

Proof Suppose first that the angle θ between the vectors u and v is an acute

angle, so that 0 < θ < 1
2
π. Let us consider a triangle ABC, where

−→
AB = u

and
−→
BC = v, and thus

−→
AC = u + v. Let ADC be the right-angled triangle

constructed as depicted in the figure below, so that the line AD extends AB
and the angle at D is a right angle.
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A

B

C

D

u

v
u+ v

θ

Note:

AD = |u|+ |v| cos θ,

CD = |v| sin θ,
|u + v|2 = AC2 = AD2 + CD2 (Pythagoras).

Then the lengths of the line segments AB, BC, AC, BD and CD may
be expressed in terms of the lengths |u|, |v| and |u + v| of the displacement
vectors u, v and u+v and the angle θ between the vectors u and v by means
of the following equations:

AB = |u|, BC = |v|, AC = |u + v|,

BD = |v| cos θ and DC = |v| sin θ.

Then
AD = AB +BD = |u|+ |v| cos θ.

The triangle ADC is a right-angled triangle with hypotenuse AC. It follows
from Pythagoras’ Theorem that

|u + v|2 = AC2 = AD2 +DC2 = (|u|+ |v| cos θ)2 + |v| sin2 θ

= |u|2 + 2|u| |v| cos θ + |v|2 cos2 θ + |v|2 sin2 θ

= |u|2 + |v|2 + 2|u| |v| cos θ,

because cos2 θ + sin2 θ = 1.
Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

u + v = (u1 + v1, u2 + v2, u3 + v3),
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and therefore

|u + v|2 = (u1 + v1)
2 + (u2 + v2)

2 + (u3 + v3)
2

= u21 + 2u1v1 + v21 + u22 + 2u2v2 + v22 + u23 + 2u3v3 + v23
= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3)

= |u|2 + |v|2 + 2u.v.

On comparing the expressions for |u + v|2 given by the above equations, we
see that u.v = |u| |v| cos θ when 0 < θ < 1

2
π.

The identity u.v = |u| |v| cos θ clearly holds when θ = 0 and θ = π.
Pythagoras’ Theorem ensures that it also holds when the angle θ is a right
angle (so that θ = 1

2
π. Suppose that 1

2
π < θ < π, so that the angle θ is

obtuse. Then the angle between the vectors u and −v is acute, and is equal
to π − θ. Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

u.v = −u.(−v) = −|u| |v| cos(π − θ) = |u| |v| cos θ

when 1
2
π < θ < π. We have therefore verified that the identity u.v =

|u| |v| cos θ holds for all non-zero vectors u and v, as required.

Corollary 38.2 Two non-zero vectors u and v in three-dimensional space
are perpendicular if and only if u . v = 0.

Proof It follows directly from Proposition 38.1 that u . v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors u and v. This is
the case if and only if the vectors u and v are perpendicular.

Example We can use the scalar product to calculate the angle θ between
the vectors (2, 2, 0) and (0, 3, 3) in three-dimensional space. Let u = (2, 2, 0)
and v = (0, 3, 3). Then |u|2 = 22 + 22 = 8 and |v|2 = 32 + 32 = 18. It follows
that (|u| |v|)2 = 8 × 18 = 144, and thus |u| |v| = 12. Now u . v = 6. It
follows that

6 = |u| |v| cos θ = 12 cos θ.

Therefore cos θ = 1
2
, and thus θ = 1

3
π.

Example We can use the scalar product to find the distance between points
on a sphere. Now the Cartesian coordinates of a point P on the unit sphere
about the origin O in three-dimensional space may be expressed in terms of
angles θ and ϕ as follows:

P = (sin θ cosϕ, sin θ sinϕ, cos θ).
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The angle θ is that between the displacement vector
−→
OP and the vectical

vector (0, 0, 1). Thus the angle 1
2
π−θ represents the ‘latitude’ of the point P ,

when we regard the point (0, 0, 1) as the ‘north pole’ of the sphere. The
angle ϕ measures the ‘longitude’ of the point P .

Now let P1 and P2 be points on the unit sphere, where

P1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1),

P2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2).

We wish to find the angle ψ between the displacement vectors
−→
OP1 and

−→
OP2

of the points P1 and P2 from the origin. Now |
−→
OP1| = 1 and |

−→
OP2| = 1. On

applying Proposition 38.1, we see that

cosψ =
−→
OP1 .

−→
OP2

= sin θ1 sin θ2 cosϕ1 cosϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2

+ cos θ1 cos θ2

= sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

Example Let X be a plane in three-dimensional space, and let p be a vector
that is perpendicular to the plane X. Let O be the origin of a Cartesian
coordinate system in three-dimensional space, and let v and w be the position

vectors
−→
OV and

−→
OW of points V and W respectively lying in the plane X.

Then the vector p is perpendicular to the displacement vector
−→
VW . Now

−→
VW = w − v. It follows that

(w − v) . p = 0

(see Corollary 38.2), and therefore v.p = w.p. Identifying the points of
the plane X with their position vectors r with respect to the origin O of
the Cartesian coordinate system, we find that It follows from this that there
exists a real number k such that

X = {r ∈ R3 : r . p = k}.

Let r = (x, y, z) and p = (a, b, c). The point r belongs to the plane X if
and only if r . p = k. It follows that

X = {(x, y, z) ∈ R3 : ax+ by + cz = k}.
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Suppose that the vector r is the position vector of an arbitrary point R of
three-dimensional space. We wish to determine the distance from this point
to the plane X. Now the line through the point r parallel to the vector p cuts
the plane X in a single point. Therefore there exists a unique real number t
for which r + tp ∈ X. For this value of t the equation

(r + tp) . p = k

is satisfied. Then
r . p = t|p|2 = k,

and therefore

t =
1

|p|2 (k − r . p).

Let w = r + tp, where t has the value determined above that ensures
that w ∈ X. Let v be an arbitrary point that lies on the plane X. Then the
displacement vector v − w from W to V is perpendicular to the vector p.
Now

v − r = tp + (v −w).

It follows, either directly from Pythagoras’ Theorem, or else from an equiv-
alent calculation using scalar products (using the result of Corollary 38.2)
that

|v − r|2 = t2|p|2 + |v −w|2.
It follows that

|v − r| ≥ t|p|,
and that

|v − r| = t|p| ⇐⇒ v = w.

Thus the point w is the closest point of the plane X to the point R with
position vector r. It follows that the distance d(r, X) from the point R to
the plane X is the length |w − r| of the vector w − r. Thus

d(r, X) = t|p| = 1

|p| |k − r . p|.

Let r = (x, y, z) and p = (a, b, c). Then

d(r, X) =
|k − ax− by − cz|√

a2 + b2 + c2
.
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Example Suppose that we wish to determine the equation of a cone in three-
dimensional space. Let O be the origin of a Cartesian coordinate system, let

V be the apex of the cone, let v be the position vector of V , so that v =
−→
OV ,

and let b be a vector pointed into the axis of the cone. Let θ be a fixed
angle between zero and a right angle. The cone consists of those points R

for which the displacement vector
−→
V R makes an angle θ with the vector b.

It follows from Proposition 38.1 that r is the position vector of a point lying
on the cone if and only if

(r− v) . b = |r− v| |b| cos θ.

Squaring both sides of this identity, we find that

((r− v) . b)2 = |r− v|2 |b|2 cos2 θ.

Let
r = (x, y, z), v = (vx, vy, vz) and b = (bx, by, bz).

Then the equation of the cone becomes

((x− vx)bx + (y − vy)by + (z − vz)bz)2

= C
(
(x− vx)2 + (y − vy)2 + (z − vz)2

)
,

where C = |b|2 cos2 θ. Note that this constant C must satisfy the inequalities
0 ≤ C < |b|2.

38.3 The Vector Product

Definition Let u and v be vectors in three-dimensional space, with Carte-
sian components given by the formulae u = (a1, a2, a3) and v = (b1, b2, b3).
The vector product u× v of the vectors u and v is the vector defined by the
formula

u× v = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Note that u×v = −v×u for all vectors u and v. Also u×u = 0 for all
vectors u. It follows easily from the definition of the vector product that

(su + tv)×w = su×w + tv ×w, u× (sv + tw) = su× v + tu×w

for all vectors u, v and w and real numbers s and t.

Proposition 38.3 Let u and v be vectors in three-dimensional space R3.
Then their vector product u × v is a vector of length |u| |v| | sin θ|, where θ
denotes the angle between the vectors u and v. Moreover the vector u× v is
perpendicular to the vectors u and v.
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Proof Let u = (a1, a2, a3) and v = (b1, b2, b3), and let l denote the length
|u× v| of the vector u× v. Then

l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2
= a22b

2
3 + a23b

2
2 − 2a2a3b2b3

+ a23b
2
1 + a21b

2
3 − 2a3a1b3b1

+ a21b
2
2 + a22b

2
1 − 2a1a2b1b2

= a21(b
2
2 + b23) + a22(b

2
1 + b23) + a23(b

2
1 + b22)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)

− a21b21 − a22b22 − a23b23 − 2a2b2a3b3 − 2a3b3a1b1 − 2a1b1a2b2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= |u|2|v|2 − (u . v)2

since

|u|2 = a21 + a22 + a23, |v|2 = b21 + b22 + b23, u . v = a1b1 + a2b2 + a3b3

But u . v = |u| |v| cos θ (Proposition 38.1). Therefore

l2 = |u|2|v|2(1− cos2 θ) = |u|2|v|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus l = |u| |v| | sin θ|. Also

u . (u× v) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0

and

v . (u× v) = b1(a2b3 − a3b2) + b2(a3b1 − a1b3) + b3(a1b2 − a2b1) = 0

and therefore the vector u × v is perpendicular to both u and v (Corol-
lary 38.2), as required.

Using elementary geometry, and the formula for the length of the vector
product u × v given by Proposition 38.3 it is not difficult to show that the
length of this vector product is equal to the area of a parallelogram in three-
dimensional space whose sides are represented, in length and direction, by
the vectors u and v.
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Remark Let u and v be non-zero vectors that are not colinear (i.e., so that
they do not point in the same direction, or in opposite directions). The
direction of u× v may be determined, using the thumb and first two fingers
of your right hand, as follows. Orient your right hand such that the thumb
points in the direction of the vector u and the first finger points in the
direction of the vector v, and let your second finger point outwards from the
palm of your hand so that it is perpendicular to both the thumb and the first
finger. Then the second finger points in the direction of the vector product
u× v.

Indeed it is customary to describe points of three-dimensional space by
Cartesian coordinates (x, y, z) oriented so that if the positive x-axis and
positive y-axis are pointed in the directions of the thumb and first finger
respectively of your right hand, then the positive z-axis is pointed in the
direction of the second finger of that hand, when the thumb and first two
fingers are mutually perpendicular. For example, if the positive x-axis points
towards the East, and the positive y-axis points towards the North, then the
positive z-axis is chosen so that it points upwards. Moreover if i = (1, 0, 0)
and j = (0, 1, 0) then these vectors i and j are unit vectors pointed in the
direction of the positive x-axis and positive y-axis respectively, and i× j = k,
where k = (0, 0, 1), and the vector k points in the direction of the positive
z-axis. Thus the ‘right-hand’ rule for determining the direction of the vector
product u × v using the fingers of your right hand is valid when u = i and
v = j.

If the directions of the vectors u and v are allowed to vary continuously,
in such a way that these vectors never point either in the same direction or in
opposite directions, then their vector product u×v will always be a non-zero
vector, whose direction will vary continuously with the directions of u and v.
It follows from this that if the ‘right-hand rule’ for determining the direction
of u× v applies when u = i and v = j, then it will also apply whatever the
directions of u and v, since, if your right hand is moved around in such a
way that the thumb and first finger never point in the same direction, and if
the second finger is always perpendicular to the thumb and first finger, then
the direction of the second finger will vary continuously, and will therefore
always point in the direction of the vector product of two vectors pointed in
the direction of the thumb and first finger respectively.

Example We shall find the area of the parallelogram OACB in three-
dimensional space, where

O = (0, 0, 0), A = (1, 2, 0),

B = (−4, 2,−5), C = (−3, 4,−5).
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Note that
−→
OC =

−→
OA +

−→
OB. Let u =

−→
OA = (1, 2, 0) and v =

−→
OB =

(−4, 2,−5). Then u× v = (−10, 5, 10). Now (−10, 5, 10) = 5(−2, 1, 2), and
|(−2, 1, 2)| =

√
9 = 3. It follows that

areaOACB = |u× v| = 15.

Note also that the vector (−2, 1, 2) is perpendicular to the parallelogram
OACB.

Example We shall find the equation of the plane containing the points A, B

and C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if u =
−→
AB =

(1, 2, 0) and v =
−→
AC = (0, 1, 2) then the vectors u and v are parallel to the

plane. It follows that the vector u × v is perpendicular to this plane. Now
u × v = (4,−2, 1), and therefore the displacement vector between any two
points of the plane must be perpendicular to the vector (4,−2, 1). It follows
that the function mapping the point (x, y, z) to the quantity 4x−2y+z must
be constant throughout the plane. Thus the equation of the plane takes the
form

4x− 2y + z = k,

for some constant k.
We can calculate the value of k by substituting for x, y and z the coor-

dinates of any chosen point of the plane. On taking this chosen point to be
the point A, we find that k = 4 × 3 − 2 × 4 + 1 = 5. Thus the equation of
the plane is the following:

4x− 2y + z = 5.

(We can check our result by verifying that the coordinates of the points A,
B and C do indeed satisfy this equation.)

38.4 Scalar Triple Products

Given three vectors u, v and w in three-dimensional space, we can form
the scalar triple product u . (v ×w). This quantity can be expressed as the
determinant of a 3× 3 matrix whose rows contain the Cartesian components
of the vectors u, v and w. Indeed

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

and thus

u . (v ×w) = u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1).
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The quantity on the right hand side of this equality defines the determinant
of the 3× 3 matrix  u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

We have therefore obtained the following result.

Lemma 38.4 Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Using basic properties of determinants, or by direct calculation, one can

easily obtain the identities

u . (v ×w) = v . (w × u) = w . (u× v)

= −u . (w × v) = −v . (u×w) = −w . (v × u)

One can show that the absolute value of the scalar triple product u.(v×w)
is the volume of the parallelepiped in three-dimensional space whose vertices
are the points whose displacement vectors from some fixed point O are 0,
u, v, w, u + v, u + w, v + w and u + v + w. (A parallelepiped is a solid
like a brick, but whereas the faces of a brick are rectangles, the faces of the
parallelepiped are parallelograms.)

Example We shall find the volume of the parallelepiped in 3-dimensional
space with vertices at (0, 0, 0), (1, 2, 0), (−4, 2,−5), (0, 1, 1), (−3, 4,−5),
(1, 3, 1), (−4, 3,−4) and (−3, 5,−4). The volume of this parallelepiped is
the absolute value of the scalar triple product u . (v ×w), where

u = (1, 2, 0), v = (−4, 2,−5), w = (0, 1, 1).

Now

u . (v ×w) = (1, 2, 0) . ( (−4, 2,−5)× (0, 1, 1) )

= (1, 2, 0) . (7, 4,−4) = 7 + 2× 4 = 15.

Thus the volume of the paralellepiped is 15 units.
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38.5 The Vector Triple Product Identity

Proposition 38.5 Let u, v and w be vectors in three-dimensional space.
Then

u× (v ×w) = (u .w) v − (u . v) w.

Proof Let q = u × (v × w), and let u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1, w2, w3), and q = (q1, q2, q3). Then

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

and hence u× (v ×w) = q = (q1, q2, q3), where

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (u .w)v1 − (u . v)w1

Similarly
q2 = (u .w)v2 − (u . v)w2

and
q3 = (u .w)v3 − (u . v)w3

(In order to verify the formula for q2 with an minimum of calculation,
take the formulae above involving q1, and cyclicly permute the subcripts 1,
2 and 3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation
of these subscripts yields the formula for q3.) It follows that

q = (u .w) v − (u . v) w,

as required, since we have shown that the Cartesian components of the vec-
tors on either side of this identity are equal.

38.6 Orthonormal Triads of Unit Vectors

Let u and v be unit vectors (i.e., vectors of length one) that are perpendicular
to each other, and let w = u×v. It follows immediately from Proposition 38.3
that |w| = |u| |v| = 1, and that this unit vector w is perpendicular to both
u and v. Then

u . u = v . v = w .w = 1

and
u . v = v .w = w . u = 0.
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On applying the Vector Triple Product Identity (Proposition 38.5) we
find that

v ×w = v × (u× v) = (v . v) u− (v . u) v = u,

and

w × u = −u×w = −u× (u× v) = −(u . v) u + (u . u) v = v,

Therefore

u× v = −v × u = w, v ×w = −w × v = u, w × u = −u×w = v,

Three unit vectors, such as the vectors u, v and w above, that are mu-
tually perpendicular, are referred to as an orthonormal triad of vectors in
three-dimensional space. The vectors u, v and w in any orthonormal triad
are linearly independent. It follows directly from Theorem 36.2 that any
vector in three-dimensional space may be expressed, uniquely, as a linear
combination of the form

pu + qv + rw.

Any Cartesian coordinate system on three-dimensional space determines
an orthonormal triad i, j and k, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

The scalar and vector products of these vectors satisfy the same relations
as the vectors u, v and w above. A vector represented in these Cartesian
components by an ordered triple (x, y, z) then satisfies the identity

(x, y, z) = xi + yj + zk.
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