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Preliminaries

An undirected graph can be thought of as consisting of a finite set V of points,
referred to as the vertices of the graph, together with a finite set E of edges,
where each edge joins two distinct vertices of the graph.

We now proceed to formulate the definition of an undirected graph in
somewhat more formal language.

Let V be a set. We denote by V2 the set consisting of all subsets of V
with exactly two elements. Thus, for any set V ,

V2 = {A ∈ PV : #(A) = 2},

where PV denotes the power set of V (i.e., the set consisting of all subsets
of V ), and #(A) denotes the number of elements in a subset A of V .

Definition An undirected graph (V,E) consists of a finite set V together
with a subset E of V2 (where V2 is the set consisting of all subsets of V with
exactly two elements). The elements of V are the vertices of the graph; the
elements of E are the edges of the graph.

Definition A graph is said to be trivial if it consists of a single vertex.

We may denote a graph by a single letter such as G. Writing G = (V,E)
indicates that V is the set of vertices and E is the set of edges of some
graph G.

Definition If v is a vertex of some graph, if e is an edge of the graph, and
if e = v v′ for some vertex v′ of the graph, then the vertex v is said to be
incident to the edge e, and the edge e is said to be incident to the vertex v.

Definition Two distinct vertices v and v′ of a graph (V,E) are said to be
adjacent if and only if v v′ ∈ E.

Definition Let (V,E) and (V ′, E ′) be graphs. The graph (V ′, E ′) is said to
be a subgraph of (V,E) if and only if V ′ ⊂ V and E ′ ⊂ E (i.e., if and only if
the vertices and edges of (V ′, E ′) are all vertices and edges of (V,E)).

Definition Let (V,E) be a graph. The degree deg v of a vertex v of this
graph is defined to be the number of edges of the graph that are incident
to v (i.e., the number of edges of the graph which have v as one of their
endpoints).

Definition A vertex of a graph of degree 0 is said to be an isolated vertex.
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Definition A vertex of a graph of degree 1 is said to be an pendent vertex.

Definition Let (V,E) be a graph. A walk v0 v1 v2 . . . vn of length n in
the graph from a vertex a to a vertex b is determined by a finite sequence
v0, v1, v2, . . . , vn of vertices of the graph such that v0 = a, vn = b and vi−1 vi
is an edge of the graph for i = 1, 2, . . . , n.

A walk v0 v1 v2 . . . vn in a graph is said to traverse the edges vi−1vi for
i = 1, 2, . . . , n and to pass through the vertices v0, v1, . . . , vn.

Each vertex v in a graph determines a walk of length of length zero in
the graph, consisting of the single vertex v; such a walk is said to be trivial.

Definition Let (V,E) be a graph. A trail v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the edges vi−1vi are distinct for i = 1, 2, . . . , n.

A trail in a graph is thus a walk in the graph which traverses edges of the
graph at most once.

Definition Let (V,E) be a graph. A path v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the vertices v0, v1, . . . , vn are distinct.

A path in a graph is thus a walk in the graph which passes through
vertices of the graph at most once.

Definition An undirected graph is said to be connected if, given any two
vertices u and v of the graph, there exists a path in the graph from u to v.

Definition Let (V,E) be a graph. A walk v0 v1 v2 . . . vn in the graph is said
to be closed if v0 = vn.

Thus a walk in a graph is closed if and only if it starts and ends at the
same vertex.

Definition Let (V,E) be a graph. A circuit in the graph is a non-trivial
closed trail in the graph.

Definition A circuit v0 v1 v2 . . . vn−1 v0 in a graph is said to be simple if the
vertices v0, v1, v2, . . . vn−1 are distinct.

Theorem 29.1 If a graph has no isolated or pendant vertices then it con-
tains at least one simple circuit.

Theorem 29.2 Let u and v be vertices of a graph, where u 6= v. Suppose
that there exist at least two distinct paths in the graph from u to v. Then the
graph contains at least one simple circuit.
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32 Forests and Trees

Definition A graph is said to be acyclic if it contains no circuits.

Definition A forest is an acyclic graph.

Definition A tree is a connected forest.

Note that the components of any forest are trees.

Example The graph (V,E), where

V = {a, b, c, d, e, f, g},
E = {a b, b c, b d, c e, b f, c g},

is a tree.

a

b

cd

e

f

g

a

b

cd

e

f

g

The vertices a, d, e, f and g are pendent vertices (i.e., each of these
vertices is incident to exactly one edge of the graph, and is therefore of
degree one.) The tree has 7 vertices and 6 edges.

Theorem 32.1 Every forest contains at least one isolated or pendent vertex.

Proof If a graph has no isolated or pendent vertices, then it contains a
circuit (Theorem 29.1). But a forest contains no circuits. Therefore must
have at least one isolated or pendent vertex.
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Theorem 32.2 A non-trivial tree contains at least one pendent vertex.

Proof A non-trivial graph has more than one vertex. If a non-trivial graph
has an isolated vertex then there does not exist any path or walk from that
vertex to any other vertex of the graph, and therefore the graph is not con-
nected. But a tree is by definition connected. Therefore a non-trivial tree
cannot have any isolated vertex. However a tree is a forest, and therefore
contains at least one vertex that is either an isolated vertex or a pendent
vertex (Theorem 32.1). Such a vertex must then be a pendent vertex.

Theorem 32.3 Let (V,E) be a tree. Then #(E) = #(V )− 1, where #(V )
and #(E) denote respectively the number of vertices and the number of edges
of the tree.

Proof We can prove the result by induction on the number #(V ) of vertices
of the tree. The result is clearly true when the tree is trivial, since it then
consists of one vertex and no edges.

Suppose that every tree with m vertices has m − 1 edges. Let (V,E)
be a tree with m + 1 vertices. At least one of these vertices is a pendent
vertex (Theorem 32.2). Let v be a pendent vertex, let w be the vertex that
is adjacent to v, let V ′ = V \ {v}, and let E ′ = E \ {v w}. Then (V ′, E ′) is
a subgraph of (V,E), and this subgraph has m vertices. (This subgraph is
obtained from the original graph by deleting the vertex v and the edge v w
from that graph.) We claim that this subgraph (V ′, E ′) is in fact a tree.

w

v

First we show that (V ′, E ′) is connected. Now, given any two vertices in
V ′, there exists a path in (V,E) from one vertex to the other. This path
could not pass through the vertex v, since otherwise the path would have to
pass through w twice (going out to v and then returning from v), which is
impossible since a path by definition has no repeated vertices. Therefore this
path is in fact a path in (V ′, E ′). We conclude that (V ′, E ′) is connected.

Now the tree (V,E) does not contain any circuits. It follows immediately
that the connected subgraph (V ′, E ′) does not contain any circuits, and is
thus a tree. It has m vertices.
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The induction hypothesis now ensures that the tree (V ′, E ′) has m −
1 edges, and therefore the tree (V,E) has m edges. The required result
therefore follows by the Principle of Mathematical Induction.

Theorem 32.4 Given two distinct vertices of a tree, there exists a unique
path in the tree from the first vertex to the the second.

Proof Let u and v be distinct vertices of the tree. There must exist at least
one path in the tree from u to v, since any tree is connected. Were there
to exist more than one, then it would follow from Theorem 29.2 that there
would exist at least one circuit in the tree, which is impossible, since that
a tree cannot contain any circuits. Therefore there must exist exactly one
path in the tree from u to v.

33 Spanning Trees

Definition A spanning tree in a graph (V,E) is a subgraph of the graph
(V,E) that is a tree which includes every vertex of the graph (V,E).

Theorem 33.1 Every connected graph contains a spanning tree

Proof Let (V,E) be a connected graph. The collection consisting of all the
connected subgraphs of (V,E) with the same vertices as (V,E) is non-empty,
since it includes the graph (V,E) itself. Choose a subgraph (V,E ′) in this
collection such that the number #(E ′) of edges in this subgraph is less than
or equal to the number of edges of any other subgraph in the collection. We
claim that (V,E ′) is the required spanning tree. Clearly (V,E ′) is connected
and has the same vertices as V . It only remains to show that (V,E ′) does
not contain any circuits.

Suppose that (V,E ′) were to contain a circuit. Let v w be an edge tra-
versed by some circuit in (V,E ′), and let E ′′ = E ′ \ {v w}. There would
then exist a walk from v to w whose edges belong to E ′′. (Such a walk could
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consist of the remaining edges of the circuit traversing the edge v w.) More-
over every vertex in V could be joined to v by a walk whose edges belong to
E ′, and could therefore be joined either to v or to w by a walk whose edges
belong to E ′′. It would then follow that every vertex of V could be joined to
v by a walk whose edges belong to E ′′, and therefore the graph (V,E ′′) would
be a connected subgraph of (V,E) with the same vertices as (V,E) and with
fewer edges than (V,E ′), which is impossible. We conclude therefore that
the subgraph (V,E ′) of (V,E) cannot contain any circuits and is therefore
the required spanning tree.

Corollary 33.2 Let (V,E) be a connected graph with #(V ) vertices and
#(E) edges. Suppose that #(E) = #(V ) − 1. Then the graph (V,E) is a
tree.

Proof A connected graph (V,E) contains a spanning tree, by Theorem 33.1.
This spanning tree must have #(V ) − 1 edges, by Theorem 32.3. But the
spanning tree then has the same number of edges as the original graph (V,E),
and must therefore be the same as this graph. It follows that the graph (V,E)
must be a tree, since it is a spanning tree of itself.

The proof of Theorem 33.1 corresponds to an algorithm for finding a
spanning tree for a connected graph. The algorithm proceeds as follows.
We start with a subgraph consisting of all the vertices and vertices of the
original graph. If that subgraph contains a circuit, then we can remove one
of the edges of that circuit. The resultant subgraph will still be a connected
subgraph of the original graph that includes all the vertices of the original
graph. We can then iteratively break remaining circuits in the subgraph, one
by one, so that, at each stage of the algorithm, we have a current subgraph
that is connected and includes all the vertices of the original graph. We
proceed in this fashion until the current subgraph has no more circuits to
break. The subgraph will then be the required spanning tree.

Example We find a spanning tree for the connected graph with vertices A,
B, C, D, E, F , G, H, and edges AB, AC, B C, BD, BE, C F , DE, DF ,
DG, DH, EH, F G and F H. This graph is pictured below.

AA BB

CC DD EE

FF GG HH
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Starting with the current subgraph equal to the given graph, we note
that the subgraph has a circuit B C F DB. We may therefore remove one
of the edges of this circuit. Let us therefore remove the edge BD from the
subgraph. The resultant subgraph is then represented by the thick edges of
the diagram below:—

AA BB

CC DD EE

FF GG HH

This is the current subgraph for the second removal.
We then break the circuit DF GD of the current subgraph by removing

the edge DG. The resulting subgraph is then the current subgraph for the
third removal, and is pictured below.

AA BB

CC DD EE

FF GG HH

We then break the circuit AB C A of the current subgraph by removing
the edge AC. The resulting subgraph is then the current subgraph for the
fourth removal, and is pictured below.

AA BB

CC DD EE

FF GG HH

We then break the circuit DF GH D of the current subgraph by removing
the edge GH. The resulting subgraph is then the current subgraph for the
fifth removal, and is pictured below.
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AA BB

CC DD EE

FF GG HH

We then break the circuit B C F DH E B of the current subgraph by
removing the edge EH. The resulting subgraph is then the current subgraph
for the sixth removal, and is pictured below.

AA BB

CC DD EE

FF GG HH

Finally break the circuit B C F DE B of the current subgraph by remov-
ing the edge DF . The resulting subgraph has no circuits, but is connected
and includes all the vertices of the given graph. It is thus a spanning tree
for the given graph. This spanning tree is then the subgraph with edges
AB, B C, BE, C F , DE, DH, F G represented by the thick edges of the
following diagram:—

AA BB

CC DD EE

FF GG HH

There is an alternative algorithm for finding spanning trees of connected
graphs. The procedure is to start with current subgraph of the given graph
consisting of just a single vertex. We then add edges one by one, together
with any extra vertices incident on those added edges, so as to ensure that,
at each stage, the current subgraph is acyclic. When we reach the stage that
no further edges can be added to the subgraph without introducing a circuit
then the subgraph must be connected and must include all the vertices of the
given graph. The subgraph at the final stage must therefore be a spanning
tree of the given graph. We illustrate this algorithm by showing how to apply
it to find a spanning tree of the graph considered in the previous example.
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Example We seek a spanning tree of the graph with vertices A, B, C, D,
E, F , G, H, and edges AB, AC, B C, BD, BE, C F , DE, DF , DG,
DH, EH, F G and F H. This graph is pictured below.

AA BB

CC DD EE

FF GG HH

We first add the edge BE to obtain the acyclic graph pictured below.

AA BB

CC DD EE

FF GG HH

Let us then successively add the edges DF , DG and DH (which we can
do) to build up the acyclic subgraph, so as to obtain the subgraph pictured
below.

AA BB

CC DD EE

FF GG HH

It would not then be possible to proceed by adding any of the edges F G
or GH to the acyclic subgraph at the following stage.

We can, for example, add the edge DE. Adding this edge joins the two
components of the acyclic subgraph so as to obtain the acyclic subgraph
pictured below.

AA BB

CC DD EE

FF GG HH
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It would not then be possible to proceed by adding any of the edges BD,
EH, F G or GH to the acyclic subgraph at the following stage.

The possibilities for the remaining two steps can then be enumerated as
follows:—

(i) add AB and then AC;

(ii) add AB and then B C;

(iii) add AB and then C F ;

(iv) add AC and then AB;

(v) add AC and then C B;

(vi) add AC and then C F ;

(vii) add B C and then AB;

(viii) add B C and then AC;

(ix) add C F and then AB;

(x) add C F and then AC.

For example, opting for possibility (vii) results in the subgraph with ver-
tices A, B, C, D, E, F , G, H and edges AB, B C, BE, DE, DF , DG and
DH. This subgraph is pictured below.

AA BB

CC DD EE

FF GG HH

We now consider the reasons why adding edges to an acyclic subgraph
of a given connected graph so as to ensure that the resulting graph remains
acyclic is guaranteed to arrive at a spanning tree for the given connected
graph.

Suppose that some connected graph is given and that an acyclic subgraph
of the given graph has been constructed. Suppose first that the acyclic
subgraph does not contain all the vertices of the given graph. Let v be
a vertex of the given connected graph that does not belong to the acyclic
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subgraph. Then, if any edge incident on the vertex v is added to the acyclic
subgraph, the resulting subgraph will be acyclic, because the addition of an
edge incident on the vertex v cannot result in the formation of a cycle in the
resulting larger subgraph.

Next suppose that we have constructed an acyclic subgraph that contains
all the vertices of the given connected graph. If this acyclic subgraph is
connected then it is a spanning tree. Otherwise there will exist a walk in
the given connected graph from a vertex in one connected component of the
acyclic subgraph to a vertex in some other connected component. This walk
must contain at least one edge whose endpoints are in distinct connected
components of the acyclic subgraph. If this edge is added to the acyclic
subgraph the resultant subgraph will be acyclic. (The addition of the edge
with reduce the number of connected components of the acyclic subgraph by
one.)

These observations ensure that if we are given a connected graph, if we
have constructed an acyclic subgraph, and if it is impossible to add an edge
to that acyclic subgraph so as to ensure that the resulting subgraph is also
acyclic, then the acyclic subgraph that has been constructed is a spanning
tree for the given connected graph.

This methodology leads to an alternative proof of Theorem 33.1, which
asserts that any connected graph has a spanning tree. Indeed any connected
graph must contain an acyclic subgraph, where the number of edges in that
acyclic subgraph is greater than or equal to the number of edges in any other
acyclic subgraph of the given connected graph. It will not then be possible to
add an edge to the acyclic subgraph so as to obtain a larger acyclic subgraph.
It follows that the acylic subgraph with the maximum possible number of
edges must be a spanning tree of the given connected graph.

34 Kruskal’s Algorithm

Definition Let (V,E) be an undirected graph whose set of vertices is V and
whose set of edges is E. A cost function c:E → R on the set E of edges of
the graph is a function that assigns to each edge e of the graph a real number
c(e).

Let c:E → R be a cost function on the set E of edges of a graph (V,E).
Given any subset S of E, we define

c(S) =
∑
e∈S

c(e).
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(Thus c(S) is the sum of the costs of all the edges of the graph that belong
to the subset E.)

Let (V,E) be a connected graph. We recall that a subgraph of (V,E) is
said to be a spanning tree if it is a tree that includes all the vertices of the
given connected graph. Thus a subgraph of that given graph is a spanning
tree if and only if it is a connected acyclic subgraph of the given graph that
includes all the vertices of the given graph.

Definition Let (V,E) be a connected graph on which is defined a cost func-
tion c:E → R that assigns a cost c(e) to each edge e of the graph. A spanning
tree (VM , EM) is said to be minimal (with respect to this cost function) if
c(EM) ≤ c(ET ) for all spanning trees (VT , ET ) of the given graph.

We discuss Kruskal’s Algorithm for finding minimal spanning trees. Let
(V,E) be a graph, and let c:E → R be a cost function defined on the set E
of edges of the graph (V,E). We start with a subgraph that initially consists
of all the vertices of the graph (with no edges). List the edges of the graph
in a queue so that the the edges is non-decreasing in the queue. (Thus if e
and e′ are edges of the graph, and if c(e) < c(e′) then e precedes e′ in the
queue.)

Take edges successively from the front of the queue, and determine whether
or not addition of that edge to the current subgraph will create a cycle. If
such a cycle would be created then discard it; otherwise add it to the sub-
graph. Continue till the queue is emptied.

The algorithm described always yields a minimal spanning tree for the
given graph.

We now justify this assertion.
Let the edges in the queue that are added to the subgraph as that sub-

graph is built up be ordered in sequence as e1, e2, e3, . . . , em. The spanning
tree ultimately constructed then consists of the vertices of the original graph,
together with the edges e1, e2, . . . , em. Moreover c(ei) ≤ c(ej) whenever i < j.
Also if e′ is an edge of the original graph, if c(e′) ≤ c(ek) for some integer j
betweeen 2 and m, and if the subgraph consisting of the e1, e2, . . . , em−1 and
e′ together with the endpoints of those edges would contain a cycle, then the
edge e′ is disarded by the Kruskal algorithm, and is thus not included in the
spanning tree constructed.

The algorithm described always yields a minimal spanning tree for the
given graph.

We now justify this assertion.
Let the edges in the queue that are added to the subgraph as that sub-

graph is built up be ordered in sequence as e1, e2, e3, . . . , em. The spanning
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tree ultimately constructed then consists of the vertices of the original graph,
together with the edges e1, e2, . . . , em. Moreover c(ei) ≤ c(ej) whenever i < j.
Also if e′ is an edge of the original graph, if c(e′) ≤ c(ek) for some integer j
betweeen 2 and m, and if the subgraph consisting of the e1, e2, . . . , em−1 and
e′ together with the endpoints of those edges would contain a cycle, then the
edge e′ is disarded by the Kruskal algorithm, and is thus not included in the
spanning tree constructed.

Example We apply Kruskal’s Algorithm to find a minimal spanning tree
for the following graph:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

(Costs are specified next to the relevant edge.)
We order the edges so that the associated costs are non-decreasing. The

edges are listed in order with their associated costs as follows:—

AD BC DE BD CH DH AB
2 3 4 5 5 5 6

CD DF EF AE FH FG GH
6 6 7 8 9 12 13

We build up an acyclic subgraph of the given connected graph as follows.
We start with an acyclic subgraph consisting of the vertices of the original
graph. We then treat the above list of edges as a queue, taking edges in turn
from the head of the queue, and add them to the subgraph if and only if
doing so does not create any circuits in the subgraph.

In the first five iterations we add the edges AD, BC, DE, BD and CH.
No circuit is created at any stage, and the resultant acyclic subgraph is
represented by the vertices and thick edges in the following diagram:—
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AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Adding the edge DH would create a circuit DBCHD; therefore the edge
DH is discarded. Adding the edge AB would create a circuit ABDA; there-
fore the edge AB is discarded. Adding the edge CD would create a circuit
DBCD; therefore the edge CD is discarded.

The next edge in the queue is DF . We can add this edge to the acyclic
subgraph. However the edges EF , AE and FH must be discarded, since
adding any of those edges to the subgraph would create a circuit. The current
acyclic subgraph is now as follows:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

We add the edge FG to the subgraph, as this is the next in the queue
that may be added without creating a circuit in subgraph. We cannot then
add GH. Thus the minimal spanning tree generated by Kruskal’s Algorithm
is as follows:—

14



AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The minimal spanning tree generated by Kruskal’s Algorithm thus con-
sists of the vertices A, B, C, D, E, F G and H of the given connected graph,
together with the edges e1, e2, e3, e4, e5, e6 and e7, where e1, . . . , e7 denote
the edges of the minimal spanning tree listed in the order in which they were
added to the acyclic graph, so that

e1 = AD, e2 = BC, e3 = DE, e4 = BD,

e5 = CH, e6 = DF, e7 = FG.

We refer to the spanning tree generated by Kruskal’s Algorithm as the
Kruskal tree.

However we have not yet shown that the Kruskal tree has minimal cost.

We claim that, given any integer k satisfying 0 < k ≤ 7, and given any
spanning tree that includes edges ei of the Kruskal tree whenever i < k but
does not include the edge ek, this spanning tree can be modified to yield a
spanning tree that includes edges ei of the Kruskal tree for i ≤ k, where the
cost of the modified tree does not exceed that of the given spanning tree.

We consider the example below. The spanning tree T represented by the
edges with circles includes edges e1, e2, e3 and e4 of the Kruskal tree (i.e.,
the edges AD, BC, DE and BD), but does not include the edge e5 where
e5 = CH:–

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Adding any edge to a spanning tree creates a circuit. In particular, if we
add the edge CH to the spanning tree T , then the resultant subgraph of the
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original connected graph must contain a circuit. In the present example the
circuit created is CHFDBC. Now not all edges of that circuit can belong
to the Kruskal tree, because trees cannot contain circuits. Therefore at least
one edge of the circuit CHFDBC does not belong to the Kruskal tree.

In the example under consideration, the edge FH does not belong to
the Kruskal tree. Now if the cost of FH were less than that of CH then
the Kruskal algorithm would have required the edge FH to be added to the
Kruskal tree before CH. It follows that the cost of the edge FH cannot be
less than CH. Indeed FH has cost 9, whereas CH has cost 5.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

It follows that we can modify the spanning tree T to obtain a new span-
ning tree T ′, where T ′ includes the edges e1, e2, e3, e4 and e5 of the Kruskal
tree, and where the cost of T ′ does not exceed that of T . The resultant tree
T ′ consists of the edges with circles in the following figure:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The spanning tree T ′ includes edges ei of the Kruskal spanning tree for
i < 7 but does not include the edge e7, where e7 = FG. Now addition of the
edge e7 to the spanning tree creates a circuit FGHCBDF in the resultant
subgraph. This circuit cannot consist entirely of edges of the Kruskal tree.
Therefore at least one edge of the circuit does not belong to the Kruskal tree.
That edge is GH.
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AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The cost of the edge GH cannot exceed that of the edge e7, because
otherwise GH would have been added to the Kruskal tree before FG was
considered in the application of Kruskal’s Algorithm. Therefore replacement
of GH by FG results in a spanning tree T ′′ whose cost does not exceed that
of T ′. This spanning tree T ′′ then includes all the edges of the Kruskal tree,
and must therefore be identical to the Kruskal tree. It follows that the cost
of the Kruskal tree cannot exceed that of the tree T ′, and therefore cannot
exceed that of the tree T .

We claim that the procedure just described can be applied to demonstrate
that the cost of the Kruskal tree is less than or equal to the cost of any
spanning tree for the given connected graph.

We now analyze Kruskal’s Algorithm in order to show that if that algo-
rithm is applied to a given connected graph, then the spanning tree generated
by that algorithm minimizes cost.

First we recall the specification of the algorithm.
We are given a connected graph. Let V denote the set of vertices of the

given graph, and let E denote the set of edges of the given graph. There is
a cost function c:E → R defined on the set of edges of the given graph. The
cost of any spanning tree is defined to be the sum of the costs of the edges of
that spanning tree. The objective is to find a spanning tree of the connected
graph whose cost is less than or equal to that of every other spanning tree
of the connected graph.

To implement Kruskal’s Algorithm we order the edges of the given con-
nected graph in a finite sequence, or queue, so that, given any pair of edges
e and e′ for which c(e) < c(e′), the edge e precedes the edge e′ in the queue.

We start with a acyclic subgraph of the given connected graph consisting
of all the vertices of the given graph. We build up an acyclic subgraph
through the addition of edges. This initial subgraph has no edges. We then
take edges in order from the the front of the queue. Having taken an edge
from the front of the queue, we determine whether or not addition of that
edge to the current acyclic subgraph would create a circuit in the resultant
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graph. If a circuit would be created, then we discard the edge. Otherwise we
add the edge to the acyclic subgraph so as to create a larger acyclic subgraph.
We continue until the queue has been exhausted.

Proposition 34.1 Let a connected graph be given, together with a cost func-
tion defined on its set of edges, and let Kruskal’s Algorithm be applied to de-
termine a spanning tree K. Let T be a spanning tree in the connected graph
that does not coincide with the spanning tree K resulting from application of
Kruskal’s Algorithm. Then there exists a spanning tree T ′, where the cost
of T ′ does not exceed that of T , such that T ′ includes more edges of K than
does T .

Proof Let us refer to the spanning tree of the given connected graph con-
structed using Kruskal’s Algorithm as the Kruskal spanning tree.

Let the given connected graph have m+1 vertices. Then any spanning tree
for this graph has m edges and m+ 1 vertices (see Theorem 32.3). Moreover
any connected subgraph of the given connected graph with m edges and m+1
vertices is a spanning tree for that graph (see Corollary 33.2).

Let the edges of the Kruskal spanning tree be denoted by e1, e2, . . . , em,
where the order of these edges is the order established by the queue con-
structed in applying the algorithm.

Now let T be an spanning tree for the given connected graph that is
distinct from the Kruskal spanning tree. Both spanning trees have the same
number of edges. It follows that the Kruskal spanning tree must have at least
one edge that does not belong to the spanning tree T . Therefore there exists
some integer k satisfying 0 ≤ k ≤ m such that ei is an edge of T whenever
i < k but ek is not an edge of T .

Because T is connected, there is a path in T between any two vertices
of T . It follows that if the edge ek is added to T , then the resultant graph
contains a circuit. This circuit must include the edge ek. But it cannot be
contained within the Kruskal spanning tree, because the Kruskal spanning
tree is acyclic. Therefore the circuit must include at least one edge e′ that
does not belong to the Kruskal spanning tree.

Now there cannot exist any circuit in the subgraph of the given connected
graph consisting of the vertices of that graph, the edge e′ and the edges ei
for i < k, because that subgraph is contained in the spanning tree T . Had
it been the case that c(e′) < c(ek), then e′ would have preceded ek in the
queue in the application of Kruskal’s algorithm, and it would accordingly
have been added to the Kruskal spanning tree. Because e′ was not added to
the Kruskal spanning true, it must be the case that c(e′) ≥ c(ek).

Suppose we modify the spanning tree T by adding the edge ek and then
removing the edge e′ to obtain a subgraph T ′ of the given connected graph.
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Once the edge ek is added, the resultant graph contains a circuit which
includes the edge e′. The removal of e′ then breaks the circuit, leaving behind
a connected graph T ′ with m edges and m+1 vertices. This connected graph
T ′ must be a spanning tree of the given connected graph. Its cost cannot
exceed that of the graph T , because c(e′) ≥ c(ek). Moreover T ′ includes edges
the ei of the Kruskal spanning tree corresponding to all positive integers i
satisfying i ≤ k. Moreover the spanning tree T ′ contains more edges of the
Kruskal spanning tree than does the spanning tree T , because an edge e′ that
does not belong to the Kruskal spanning tree has been replaced by an edge
ek that does. The result follows.

Theorem 34.2 Let a connected graph be given, together with a cost function
defined on its set of edges, and let Kruskal’s Algorithm be applied to determine
a spanning tree K. Then the cost of the spanning tree generated by Kruskal’s
Algorithm is less than or equal to that of every other spanning tree for the
given connected graph.

Proof The number of possible spanning trees of the connected graph is
finite. There is therefore a well-defined real number that is the minimum
of the costs of all spanning trees for the given connected graph. Moreover
there exists a spanning tree T with this minimum cost that has the maximum
possible number of edges in common with the spanning tree K generated by
Kruskal’s Algorithm. But then T must coincide with K.

Indeed if it were the case that T did not coincide with K, then Propo-
sition 34.1 would guarantee the existence of a spanning tree T ′, where the
cost of T ′ does not exceed that of T , such that T ′ includes more edges of K
than does T . The cost of T ′ would then also be the minimum of the costs of
all spanning trees for the given connected graph. But the existence of such
a spanning tree T ′ would contradict the choice of T as the spanning tree
of minimum cost with the maximum possible number of edges in common
with K. We conclude therefore that T must coincide with K, and therefore
the cost of K is less than or equal to every other spanning tree. The result
follows.

35 Prim’s Algorithm

There is an alternative algorithm for constructing a spanning tree of minimal
cost for a connected graph. This algorithm is known as Prim’s Algorithm.
It was first discovered by Vojtěch Jarńık and published by him in 1930. It
was subsequently rediscovered and published by Robert Prim and published
by him in 1957. It was again rediscovered by Edsger Dijkstra in 1959.
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A connected graph is given. A cost function is defined on the edges of the
graph. To apply Prim’s Algorithm, one first orders the edges of the graph so
that if e and e′ are edges of the graph, and if their costs c(e) and c(e′) satisfy
c(e) < c(e′), then e precedes e′ in the ordering.

A vertex of the graph is chosen. Each successive iteration of the algorithm
we have a subgraph that is a tree. We then identify the first edge in the chosen
ordering which has one vertex included in the current subgraph and the other
vertex not included in that subgraph. We then add that edge to the current
subgraph, together with the endpoint of that edge that is not in the current
subgraph. The resultant subgraph of the given connected graph will then be
a tree. We continue this process until we can proceed no further. At that
point all vertices of the given connected graph will be in the subgraph, and
therefore the subgraph at that iteration will be a spanning tree. It can be
shown that this spanning tree minimises cost amongst all spanning trees of
the given connected graph.

Example We apply Prim’s Algorithm to find a minimal spanning tree for
the following graph:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

(Costs are specified next to the relevant edge.)
We order the edges so that the associated costs are non-decreasing. The

edges are listed in order with their associated costs as follows:—

AD BC DE BD CH DH AB
2 3 4 5 5 5 6

CD DF EF AE FH FG GH
6 6 7 8 9 12 13

We build up an acyclic subgraph of the given connected graph as follows.
We start with a subgraph consisting of a single vertex. We then build up
in the graph a succession of subgraphs that are trees (i.e., connected acyclic
graphs). At each iteration we add to the current subtree the first edge in the
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above list that joins a vertex in that subtree to a vertex not in that subtree.
We continue till we can go no further. We will then have constructed a
spanning tree for the given connected graph.

We start with the vertex A. In the first iteration we add the edge AD,
obtaining the tree in the connected graph indicated by the thick edge in the
following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

It is not then possible, applying Prim’s Algorithm, to add the edge BC,
because adding this edge would result in an acyclic subgraph. The first edge
in the list that we can add is the edge DE.

We add the edge DE to obtain the tree in the given connected graph
represented by the thick edges in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

In the next step we add the edge BD of cost 5. We can then add the
edge BC of cost 3 and the edge CH of cost 5 to obtain the following tree:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13
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The edges of the tree obtained after applying the first five steps of Prim’s
algorithm are the same as those obtained after applying the first five steps
of Kruskal’s Algorithm.

At the final two iterations we successively add the edges DF and FG so
as to obtain a minimal spanning tree that in this example is identical to that
generated by Kruskal’s Algorithm.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The minimal spanning tree generated by Prim’s Algorithm thus consists
of the vertices A, B, C, D, E, F G and H of the given connected graph,
together with the edges e1, e2, e3, e4, e5, e6 and e7, where e1, . . . , e7 denote
the edges of the minimal spanning tree listed in the order in which they were
added to the acyclic graph, so that

e1 = AD, e2 = DE, e3 = BD, e4 = BC,

e5 = CH, e6 = DF, e7 = FG.

We refer to the spanning tree generated by Prim’s Algorithm as the Prim
spanning tree.

We now consider an example to show how successive modifications can
convert an arbitrary spanning tree for the connected graph into the Prim
spanning tree, whilst ensuring that the cost of each successive modified span-
ning tree does not exceed that of the spanning tree from which it is derived.

Now after the jth iteration of Prim’s Algorithm results in a subgraph of
the given connected graph that is a tree with edges e1, e2, . . . , ej. This tree
has j + 1 vertices. We refer to those vertices as the visited vertices after the
jth iteration. The remaining vertices of the given connected graph are then
referred to as the unvisited vertices after the jth iteration.

We start with the spanning tree T , where T consists of all vertices of the
original graph together with the edges AD, DE, BD, CD, DH, FH and
GH. It is represented by the edges with circles in the following diagram:—
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AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The first three edges added to the Prim spanning tree are also included
in the spanning tree just specified. These edges are AD, DE and BD, which
are the edges e1, e2 and e3 respectively are the first three edges added to
the Prim spanning tree. Now the edge BC is the fourth edge e4 added to
the Prim spanning tree. Addition of this edge to the tree T creates a circuit
BCDB.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Let the vertices A, B, D, E incident on the edges AD, DE, BD be
referred to as the visited vertices after the first three iterations of Prim’s
Algorithm (with the given ordering of edges). Let the remaining vertices C,
F , G, H be referred to as the unvisited vertices after the first three iterations.

(‘Visited vertices’ are indicated by solid dark red disks, and ‘unvisited
vertices’ by light cyan disks bordered in black on the following diagrams.)

The circuit BCDB cannot be contained within the Prim spanning tree,
because a spanning tree has no circuits. The edge BC joins the visited vertex
B to the unvisited vertex C. Some other edge of the circuit must also join
a visited vertex to an unvisited vertex. At this stage of the example under
discussion that edge is the edge CD.
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AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Had the cost of CD been less than that of BC then Prim’s Algorithm
would have added CD to the Prim spanning tree in place of BC. This did
not happen. Therefore the cost of BC does not exceed that of CD, and
indeed the costs of BC and CD are 3 and 6 respectively. We now modify
the tree T , replacing CD by BC, to obtain the tree T ′ indicated by circles
in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The modified spanning tree T ′ includes the edges e1, e2, e3 and e4 of the
Prim spanning tree, and its cost does not exceed that of the tree T .

Now the fifth edge e5 added to the Prim spanning tree is the edge CH.
Addition of this edge to the tree T ′ creates a circuit CHDBC in the resultant
subgraph.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13
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Now the visited vertices after the fourth iteration of the Kruskal algorithm
are A, B, C, D and E, and the unvisited vertices are F , G and H. The edge
CH joins a visited vertex to an unvisited vertex. At least one other edge of
the circuit CHDBC must also join a visited vertex to an unvisited vertex.
The edge DH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Had the cost of DH been less than that of CH then Prim’s Algorithm
would have added DH to the Prim spanning tree in place of CH. This did
not happen. Therefore the cost of CH does not exceed that of DH, and
indeed the costs of CH and DH are 5 and 5 respectively. We now modify
the tree T ′, replacing DH by CH, to obtain the tree T ′′ indicated by circles
in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

The modified spanning tree T ′′ includes the edges e1, e2, e3, e4 and e5 of
the Prim spanning tree, and its cost does not exceed that of the tree T ′. It
follows that the cost of T ′′ does not exceed that of T .

Now the sixth edge e6 added to the Prim spanning tree is the edge DF .
Addition of this edge to the tree T ′′ creates a circuit DFHCBD in the
resultant subgraph.
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AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5
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6

6

6

7
8

9

12

13

Now the visited vertices after the fifth iteration of the Kruskal algorithm
are A, B, C, D, E and H, and the unvisited vertices are F and G. The edge
DF joins a visited vertex to an unvisited vertex. At least one other edge of
the circuit DFHCBD must also join a visited vertex to an unvisited vertex.
The edge FH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Had the cost of FH been less than that of DF then Prim’s Algorithm
would have added FH to the Prim spanning tree in place of DF . This did
not happen. Therefore the cost of DF does not exceed that of FH, and
indeed the costs of DF and FH are 6 and 9 respectively. We now modify
the tree T ′′, replacing FH by DF , to obtain the tree T ′′′ indicated by circles
in the following diagram:—

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13
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The modified spanning tree T ′′′ includes the edges e1, e2, e3, e4, e5 and e6
of the Prim spanning tree, and its cost does not exceed that of the tree T ′′.
It follows that the cost of T ′′′ does not exceed that of T .

Now the seventh edge e7 added to the Prim spanning tree is the edge
FG. Addition of this edge to the tree T ′′′ creates a circuit FGHCBDF in
the resultant subgraph.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Now the visited vertices after the sixth iteration of the Kruskal algorithm
are A, B, C, D, E, F and H, and sole unvisited vertex is G. The edge FG
joins a visited vertex to an unvisited vertex. At least one other edge of the
circuit FGHCBDF must also join a visited vertex to an unvisited vertex.
The edge GH does so.

AA

BB

CC

DD

EE

FF
GG

HH

2

3

4

5

5

5

6

6

6

7
8

9

12

13

Had the cost of GH been less than that of FG then Prim’s Algorithm
would have added GH to the Prim spanning tree in place of FG. This did
not happen. Therefore the cost of FG does not exceed that of GH, and
indeed the costs of FG and GH are 12 and 13 respectively. We now modify
the tree T ′′′, replacing GH by DF , to obtain the tree T ′′′′ indicated by circles
in the following diagram:—
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8

9
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The modified spanning tree T ′′′′ includes all seven edges of the Prim
spanning tree, and its cost does not exceed that of the tree T ′′′. It follows
that the cost of T ′′′′ does not exceed that of T . But T ′′′′ actually coincides
with the Prim spanning tree. Thus the cost of the Prim spanning tree P
does not exceed that of the tree T .

Given any spanning tree in the given connected graph, an analogous pro-
cedure can be followed to modify it in stages, without increasing cost at any
stage, so that the ultimate modification yields the Prim spanning tree itself.
The following proposition establishes this fact.

Proposition 35.1 Let a connected graph be given, together with a cost func-
tion defined on its set of edges, and let Prim’s Algorithm be applied to deter-
mine a spanning tree P . Let e1, e2, . . . , em denote the edges of the spanning
tree P generated by Prim’s Algorithm, listed in the order in which they are
added to that spanning tree. Let T be a spanning tree in the connected graph
that does not coincide with the spanning tree P resulting from application
of Prim’s algorithm, and let k be the smallest positive integer for which T
does not include the edge ek of P . Then there exists a spanning tree T ′,
where the cost of T ′ does not exceed that of T , such that T ′ includes the edges
e1, e2, . . . , ek of P .

Proof Let us refer to the spanning tree P generated by the application
of Prim’s algorithm as the Prim spanning tree. This spanning tree has m
edges, and therefore the given connected graph has m + 1 vertices (see The-
orem 32.3). Moreover any connected subgraph of the given connected graph
with m edges and m+1 vertices is a spanning tree for that graph (see Corol-
lary 33.2).

The spanning tree T is a connected subgraph of the given connected graph
containing all the vertices of that given connected graph. Therefore there is
a path in T between any two vertices of T . It follows that if any edge is
added to T then the resultant graph will contain a circuit.
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Let the vertices of the given connected graph that are incident on the
edges e1, e2, . . . , ek−1 be referred to as visited vertices, and let the remaining
vertices of the graph be referred to as unvisited vertices. (The visited vertices
are those that have been ‘visited’ once the first k− 1 edges have been added
to the Prim spanning tree.)

Prim’s Algorithm then ensures that the edge ek joins a visited vertex to
an unvisited vertex. Moreover the cost of the edge ek is less than or equal to
the cost of any other edge of the given connected graph that joins a visited
to an unvisited vertex.

Now suppose that we add the edge ek to T to obtain a subgraph of the
given connected graph which we denote by T + ek. This graph T + ek has a
circuit. This circuit includes the edge ek and therefore there are both visited
and unvisited vertices included in the circuit. The circuit must therefore
include at least one other edge e′ besides the edge ek that joins a visited
vertex to an unvisited vertex.

Now the edge ek added to the Prim spanning tree at the kth stage must
minimize cost amongst all edges of the given connected graph that join a
visited vertex to an unvisited vertex. Therefore the costs c(ek) and c(e′) of
the edges ek and e′ respectively satisfy c(ek) ≤ c(e′).

Let T ′ be the subgraph of the given connected graph obtained by removing
the edge e′ from T +ek. Then T ′ is connected, because the edge e′ is included
in a circuit within the graph T + ek. Also T ′ has m edges and m+ 1 vertices.
It is therefore a spanning tree. The cost of T ′ is less than or equal to that
of T . And the spanning tree T ′ contains the edges e1, e2, . . . , ek. The result
follows.

Theorem 35.2 Let a connected graph be given, together with a cost function
defined on its set of edges, and let Prim’s Algorithm be applied to determine
a spanning tree. Then the cost of the spanning tree generated by Prim’s
Algorithm is less than or equal to that of every other spanning tree for the
given connected graph.

Proof Let e1, e2, . . . , em be the edges of the spanning tree P generated by
Prim’s Algorithm, listed in the order in which they are added to that span-
ning tree through the application of that algorithm. Because the number of
spanning trees of the given connected graph is finite, there is a well-defined
real number that is the minimum cost of any spanning tree of the given
graph.

There then exists a spanning tree T with minimal cost which maximizes
the number k for which T contains edges e1, e2, . . . , ek−1 of the spanning
tree P generated by Prim’s Algorithm. It then follows from Proposition 35.1,
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together with the maximality of k, that the spanning tree T must include all
the edges of the Prim spanning tree P and must therefore coincide with the
Prim spanning tree. Therefore the Prim spanning tree has minimal cost, as
required.

Remark Let a connected graph be given, together with a cost function on
the vertices of the graph. Suppose that no two edges of this graph have
the same cost. Then there is only one ordering of the edges of that graph
consistent with the requirement that whenever e and e′ are edges of the
graph whose costs c(e) and c(e′) satisfy c(e) < c(e′) then e < e′. We can
apply Prim’s Algorithm to construct a minimal spanning tree. We refer to
this minimal spanning tree as the Prim spanning tree.

Let T be a spanning tree that is distinct from the Prim spanning tree. If
we apply to T the procedure used in the proof of Proposition 35.1 to construct
a modified spanning tree T ′, then, in this situation where no two edges of
the given connected graph have the same cost, an appropriate edge of T is
replaced in T ′ by an edge of the Prim spanning tree whose cost is strictly
lower, and therefore the cost of the modified spanning tree T ′ is strictly less
than that of the tree T . It follows that if T does not coincide with the Prim
spanning tree then T cannot itself be a minimal spanning tree.

We conclude from this that if no two edges of the given connected graph
have the same cost then the minimal spanning tree of that graph is uniquely
determined.
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