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39 Ordinary Differential Equations

We consider differential equations satisfied by real variables in situations
where some real variable y is expressible as a differentiable function of a real
variable x, where x takes values in some specified range. In such situations,
the real variable x is said to be the independent real variable, and the vari-
able y whose values are determined by the corresponding values of x is said
to be a dependent real variable.

The independent real variable x will typically vary over an open interval.
A subset I of the real numbers is said to be an open interval if it takes one
of the following four forms:—

(i) I = R;

(ii) I = {x ∈ R : x > a}, where a is some specified real constant;

(iii) I = {x ∈ R : x < b}, where b is some specified real constant;

(iv) I = {x ∈ R : a < x < b}, where a and b are specified real constants.

Note that if I is an open interval, and if u and v are real numbers belonging
to I, then x ∈ I for all real numbers x satisfying u < x < v.

Let x and y be real variables, where the value of y depends on the the
value of x, so y = h(x) for all values of x in some specified range, where
h(x) is a differentiable function of x. In this situation we regard x as an
independent real variable, and regard y to be a dependent real variable whose
value depends on that of the independent variable x. For instance it may
be the case that y = x3 for all real values of the independent variable x, or

y =
1

x
for all positive values of the independent variable x. We say that y

satisfies a ordinary differential equation of first order in x if there exists a
function H of three real variables with the property that

H

(
dy

dx
, y, x

)
= 0

for all real values of x in the appropriate range within which which the
independent variable x takes its values.

Example Let y = e3x for all real numbers x. Then y satisfies the first order
differential equation

dy

dx
− 3y = 0.
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Example Let y = x2 for all real numbers x. Then y satisfies the first order
differential equation (

dy

dx

)2

− 4y = 0.

Example Let y =
1

x2
for all positive real numbers x. Then y satisfies the

first order differential equation(
dy

dx

)2

− 4y3 = 0,

where the independent real variable x ranges over the set of positive real
numbers. Indeed

dy

dx
= − 2

x3
,

and therefore (
dy

dx

)2

=
4

x6
= 4y3

for all positive real numbers x.

Example Let y = sin 4x for all real number x. Then y satisfies the first
order differential equation(

dy

dx

)2

+ 16y2 − 16 = 0.

Indeed
dy

dx
= 4 cos 4x, and therefore

(
dy

dx

)2

+ 16y2 − 16 = 16 cos2 4x+ 16 sin2 4x− 16 = 0,

(We use here the trigonometrical identity that ensures that cos2 θ+sin2 θ = 1
for all real numbers θ.)

Let f(x) be a continuous function of the independent real variable x, let
c be a real number, and let y be a real variable that satisfies the differential
equation

dy

dx
+ cy = f(x).

We seek to determine y as a function of the independent variable x.
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Suppose that y is expressed in the form y(x) = u(x)erx, where r is a
constant and u is a differentiable function of the independent variable x. It
follows from the Product Rule of differential calculus that

dy

dx
=
du

dx
erx + u

d

dx
(erx) =

du

dx
erx + ruerx.

It follows that

dy

dx
+ cy =

(
du

dx
+ (c+ r)u

)
erx,

Thus the function y of x satisfies the given differential equation

dy

dx
+ cy = f(x).

if and only if y(x) = u(x)erx, where u(x) is a differentiable function of the
independent variable x that satisfies the differential equation

du

dx
+ (c+ r)u = f(x)e−rx.

The value of the constant r has not so far been chosen. Suppose we take
r = −c. We conclude that y satisfies the given differential equation

dy

dx
+ cy = f(x).

if and only if y(x) = u(x)e−cx, where u satisfies the differential equation

du

dx
= f(x)ecx.

Proposition 39.1 Let I be an open interval, let x be an independent real
variable which ranges over the open interval I, let c be a constant, let f(x)
be a continuous function of x on the interval I, and let y be a dependent
variable expressible as a differentiable function of the independent variable x.
Let g(x) be a function of x that satisfies

g(x) =

∫
f(x)ecx dx.

Then the dependent variable y satisfies the differential equation

dy

dx
+ cy = f(x)

if and only if y = g(x)e−cx + Ae−cx for all x ∈ I, where A is some real
constant.
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Proof Let

g(x) =

∫
f(x)ecx dx.

(In other words, let g(x) be any function of x whose derivative with respect to
x is equal to the function f(x)ecx.) Then u satisfies the differential equation

du

dx
= f(x)ecx

if and only if
d

dx
(u(x)− g(x)) = 0,

and moreover this is the case if and only if u(x) = g(x) + A for some real
constant A.

It follows that the dependent variable y satisfies the differential equation

dy

dx
+ cy = f(x)

if and only if
y(x) = g(x)e−cx + Ae−cx,

where A is a real constant. The result follows.

Corollary 39.2 Let y be a real variable expressible as a differentiable func-
tion of an independent real variable x. Then the dependent real variable y
satisfies the differential equation

dy

dx
+ cy = 0,

where c is a real constant, if and only if there exists some real constant A for
which

y(x) = Ae−cx.

Proof This follows from Proposition 39.1 on setting the function f(x) in the
statement of that proposition equal to the zero function.

Corollary 39.3 Let f(x) be a continuous function of f defined over an open
interval I, let c be a real constant, and Let y1 and y2 be real variables depen-
dent on an independent real variable x that ranges over the open interval I.
Suppose that the first order differential equation

dy

dx
+ cy = f(x)

both when y = y1 and also when y = y2. Then there exists a real constant A
such that y2 = y1 + Ae−cx.
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Proof The dependent variables y1 and y2 satisfy

dy1
dx

+ cy1 = f(x) and
dy2
dx

+ cy2 = f(x).

Let u = y2 − y1. Then

du

dx
+ cu =

(
dy2
dx

+ cy2

)
−
(
dy1
dx

+ cy1

)
= 0.

It follows from Corollary 39.2 that there exists some real constant A such
that u = Ae−cx for all x ∈ I. Then y2 = y1 + Ae−cx, as required.

Example Let us consider the differential equation

dy

dx
+ cy = g + hx+ kx2

where the real numbers c, g, h and k are constants and c 6= 0. This differen-
tial equation could be solved by applying the result of Proposition 39.1 and
evaluating the resulting integral.

We shall however solve this differential equation by an alternative method,
suitable in situations where the right hand side of the differential equation is
a “forcing function” that is a polynomial in the independent variable x.

In this case we look for a “particular integral” that takes the form of a
polynomial of the same degree as that occurring on the right hand side of
the given differential equation.

Thus in this case we look for a solution yP satisfying the differential
equation

dyP
dx

+ cyP = g + hx+ kx2

that takes the form
yP = u+ vx+ wx2.

Differentiating, we find that

dyP
dx

= v + 2wx.

It follows that

dyP
dx

+ cyP = (v + cs) + (2w + cv)x+ cwx2.

Thus a quadratic polynomial yP of the form yP = u+ vx+ wx2 satisfies
the differential equation

dyP
dx

+ cyP = g + hx+ kx2
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if and only if

v + cu+ (2u+ cv)x+ cwx2 = g + hx+ kx2

for all values of the independent variable x. This is the case if and only if
the coefficients of the quadratic polynomial on the left hand side are equal to
the corresponding coefficients of the quadratic polynomial on the right hand
side. Thus yP is the required “particular integral” if and only if

t+ cs = g, 2w + cv = h and cw = k.

Substituting w =
k

c
into the equation 2w + cv = h, we find that

v =
1

c
(h− 2w) =

1

c2
(ch− 2k).

If we then substitute this formula for t into the equation v+ cu = g, we find
that

u =
1

c
(g − v) =

1

c3
(c2g − ch+ 2k).

Thus

yP =
1

c3
(
c2g − ch+ 2k + (c2h− 2ck)x+ c2kx2

)
.

Now the quadratic polynomial yP is just one of the solutions of the given
differential equation. It follows from Corollary 39.3 that the other solutions
of the differential equation

dy

dx
+ cy = g + hx+ kx2

take the form
y = yP + Ae−cx,

where A is an arbitrary real constant. Thus the general solution of this
differential equation takes the form

y(x) =
1

c3
(
c2g − ch+ 2k + (c2h− 2ck)x+ c2kx2

)
+ Ae−cx.

The term Ae−cx is often referred to as the “complementary function”. It is
the function that needs to be added to one solution to the differential equation
to obtain other solutions. The general solution of the differential equation is
the sum of the particular integral and the complementary function. The real
constants c, g, h and k in the general solution are fixed constants determined
by the differential equation. The real constant A takes different values for
different solutions of the differential equation.

The solution can be verified on the Wolfram Alpha website at
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http://www.wolframalpha.com/

by entering the string

y’ + cy = g + hx + kx^2

into the search box.

The general solution of other differential equations of the form

dy

dx
+ cy = f(x)

can also be expressed as the sum of a particular integral and a complementary
function.

Example Let us consider the differential equation

dy

dx
+ cy = (g + hx)emx

where the real numbers c, g, h and m are constants and m + c 6= 0. In this
case we look for a “particular integral” of the form

yP = (u+ vx)emx.

Differentiating using the Product Rule, we find that

dyP
dx

= vemx +m(u+ vx)emx = (v +mu+mvx)emx

and therefore

dyP
dx

+ cyP = (v + (m+ c)u+ (m+ c)vx)emx

It follows that yP solves the differential equation if and only if

v + (m+ c)u = g and (m+ c)v = h.

Solving the second of these equations for v, we find that

v =
h

m+ c
.

Then solving the other equation for u, we find that

u =
1

m+ c
(g − v) =

1

(m+ c)2
((m+ c)g − h).
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Thus

yP =
1

(m+ c)2
((m+ c)(g + hx)− h)emx.

It follows that the general solution of the differential equation

dy

dx
+ cy = (g + hx)emx

(when c+m 6= 0) takes the form

y =
1

(m+ c)2
((m+ c)(g + hx)− h)emx + Ae−cx.

The solution can be verified on the Wolfram Alpha website at

http://www.wolframalpha.com/

by entering the string

y’ + cy = (g + hx) e^(mx)

into the search box.

Example Let us consider the differential equation

dy

dx
+ cy = g cos kx+ h sin kx

where the real numbers c, g, h and k are constants.

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx.

We look for a particular integral yP of the form

yP = u cos kx+ v sin kx.

Differentiating, we find that

dyP
dx

+ cyP = (cu+ kv) cos kx+ (cv − ku) sin kx.

Therefore u and v should be chosen to satisfy the equations

cu+ kv = g and cv − ku = h.

It follows that

kg + ch = k(cu+ kv) + c(cv − ku) = (k2 + c2)v
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and
cg − kh = c(cu+ kv)− k(cv − ku) = (k2 + c2)u.

Thus

u =
cg − kh
k2 + c2

and v =
kg + ch

k2 + c2
,

and thus

yP =
1

k2 + c2
((cg − kh) cos kx+ (kg + ch) sin kx) .

It follows that the general solution of the differential equation

dy

dx
+ cy = g cos kx+ h sin kx

takes the form

y =
1

k2 + c2
((cg − kh) cos kx+ (kg + ch) sin kx) + Ae−cx.

Let x and y be real variables, where the value of y is expressible as
a function of the independent real variable x as x varies over some open
interval I. We say that y satisfies a ordinary differential equation of second
order in x if there exists a function H of four real variables with the property
that

H

(
d2y

dx2
,
dy

dx
, y, x

)
= 0

for all real values of x in the appropriate range within which which the
independent variable x takes its values.

We next prove results that determine all solutions of second order differ-
ential equations of the form

d2y

dx2
+ b

dy

dx
+ cy = 0

where b and c are constants. These results show that solutions can be de-
termined directly once the roots of the auxiliary polynomial z2 + bz+ c have
been determined.

Proposition 39.4 Let b and c be real number, and let x be an indepen-
dent real variable that takes values in an open interval I. Let y be a real
variable, expressible as a twice-differentiable function of the independent real
variable x, that satisfies the second order differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0
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throughout the open interval I. Suppose that the quadratic polynomial z2 +
bz + c has two distinct real roots r and s. Then there exist real constants A
and B such that

y(x) = Aerx +Besx.

Proof Let u(x) = y(x)e−rx for all x ∈ I. Then y(x) = x(x)erx for all x ∈ I.
Differentiating y(x) with respect to x using the product rule, we find that

dy

dx
=

(
du

dx
+ ru

)
erx,

d2y

dx2
=

(
d2u

dx2
+ 2r

du

dx
+ r2u

)
erx.

It follows that

0 =
d2y

dx2
+ b

dy

dx
+ cy

=

(
d2u

dx2
+ (2r + b)

du

dx
+ (r2 + br + c)u

)
erx.

But r has been chosen so as to satisfy the quadratic equation r2+br+c =
0. It follows that

d2u

dx2
+ (2r + b)

du

dx
= 0.

Thus if v =
du

dx
then

dv

dx
+ (2r + b)v = 0.

Now z2 + bz + c = (z − r)(z − s) = z2 − (r + s)z + rs. It follows that
b = −(r + s), and therefore 2r + b = r − s. Thus

dv

dx
− (s− r)v = 0.

It follows from Corollary 39.2 that there exists a constant B such that

v(x) = (s− r)Be(s−r)x.

Integrative the function v(x) in order to determine u(x), we find that there
exist constants A and B such that

u(x) = A+Be(s−r)x.

But then
y(x) = Aerx +Besx,

as required.
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Proposition 39.5 Let b and c be real number, and let x be an indepen-
dent real variable that takes values in an open interval I. Let y be a real
variable, expressible as a twice-differentiable function of the independent real
variable x, that satisfies the second order differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0

throughout the open interval I. Suppose that the quadratic polynomial z2 +
bz + c has a repeated real root r. Then there exist real constants A and B
such that

y(x) = (A+Bx)erx.

Proof Let u(x) = y(x)e−rx for all x ∈ I. Then y(x) = x(x)erx for all x ∈ I.
Repeating the calculation in the proof of Proposition 39.4, we find that

d2u

dx2
+ (2r + b)

du

dx
= 0.

Moreover z2 + bz+ c = (z− r)2 (because r is a repeated root of the quadratic
polynomial on the left hand side of this equation) and therefore b = −2r. It
follows that

d2u

dx2
= 0,

and therefore u(x) = A + Bx, where A and B are real constants. It follows
that y(x) = (A+Bx)erx, as required.

Theorem 39.6 Let k be a positive real number, and let x be an indepen-
dent real variable that takes values in an open interval I. Let y be a real
variable, expressible as a twice-differentiable function of the independent real
variable x, that satisfies the second order differential equation

d2y

dx2
+ k2y = 0

throughout the open interval I. Then there exist real constants A and B such
that

y = A cos kx+B sin kx

throughout the open interval I.

Proof We first prove the result in the special case where cos kx 6= 0 for all
x ∈ I. In this case we can express y in terms of another real variable u,
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where u is a twice-differentiable function of x and y(x) = u(x) cos kx for all
x ∈ I. Now

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx.

On applying the Product Rule of differential calculus, we find that if y =
u cos kx then

dy

dx
=
du

dx
cos kx− ku sin kx.

On differentiating again, we find that

d2y

dx2
=

d

dx

(
du

dx
cos kx

)
− k d

dx
(u sin kx)

=
d

dx

(
du

dx

)
cos kx+

du

dx

d

dx
(cos kx)

− kdu
dx

sin kx− ku d

dx
(sin kx)

=
d2u

dx2
cos kx− 2k

du

dx
sin kx− k2u cos kx

=
d2u

dx2
cos kx− 2k

du

dx
sin kx− k2y.

Thus y satisfies the differential equation

d2y

dx2
+ k2y = 0

if and only if y = u cos kx, where

d2u

dx2
cos kx− 2k

du

dx
sin kx = 0.

Now let

v =
du

dx
cos2 kx

(where cos2 kx = (cos kx)2). It then follows from the Product Rule of differ-
ential calculus that

dv

dx
=

d2u

dx2
cos2 kx− 2k

du

dx
cos kx sin kx

=

(
d2u

dx2
cos kx− 2k

du

dx
sin kx

)
cos kx.
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Now cos kx 6= 0 for all x ∈ I. It follows that

d2u

dx2
cos kx− 2k

du

dx
sin kx = 0

for all x ∈ I if and only if
dv

dx
= 0

for all x ∈ I. However this is the case if and only if v = Bk for all x ∈ I,
where B is a real constant, in which case

du

dx
=

Bk

cos2 kx

for all x ∈ I.
We conclude that y satisfies the differential equation

d2y

dx2
+ k2y = 0

on the open interval I, where cos kx 6= 0 for all x ∈ I, if and only if y =
u cos kx on I, where

du

dx
=

Bk

cos2 kx
.

Now it follows from the Quotient Rule of differential calculus that

d

dx

(
sin kx

cos kx

)
=

d

dx
(sin kx) cos kx− sin kx

d

dx
(cos kx)

cos2 kx

=
k cos2 kx+ k sin2 kx

cos2 kx
=

k

cos2 kx

(where we have used the fact that sin2 θ + cos2 θ = 1 for all real numbers θ).
It follows that a variable u expressible as a differentiable function of x on

the open interval I satisfies

du

dx
=

Bk

cos2 kx

throughout that open interval if and only if

d

dx

(
u− B sin kx

cos kx

)
= 0,

in which case

u = A+
B sin kx

cos kx
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for some constant A.
We have thus shown that if k is a real number, and if y is a twice-

differentiable function of an independent real variable x, where x varies over
an open interval I and cos kx 6= 0 for all x ∈ I, then y satisfies the differential
equation

d2y

dx2
+ k2y = 0

if and only if
y = A cos kx+B sin kx

for all values of the independent variable x belonging to the open interval I.
We now extend the result to cases where the open interval I includes

values of x for which cos kx = 0. Let s ∈ I satisfy cos ks = 0, and let I1 and
I2 be open subintervals of I that are of the form

I1 = {x ∈ R : a < x < s}, I2 = {x ∈ R : s < x < b},

where a is chosen close enough to s to ensure that cos kx 6= 0 for all x ∈ I1
and b is chosen close enough to s to ensure that cos kx 6= 0 for all x ∈ I2.
Let y be a twice-differentiable function of x for a < x < b that satisfies the
differential equation

d2y

dx2
+ k2y = 0.

Then there exist constants A1, B1, A2 and B2 such that

y = A1 cos kx+B1 sin kx for all x ∈ I1

y = A2 cos kx+B2 sin kx for all x ∈ I2
Then cos ks = 0 and sin ks = ±1. It follows from the continuity and

differentiability of y with respect to x that

B1 sin ks = lim
x→s

y = B2 sin ks

and

A1 sin ks = lim
x→s

dy

dx
= B2 sin ks,

and thus A1 = A2 and B1 = B2. We have thus shown that the coefficients
of cos kx and sin kx that determine y as a function of x match up on both
sides of points s of the open interval I at which cos ks = 0. It follows that
there exist constants A and B such that

y = A cos kx+B sin kx

for all values of the independent variable x belonging to the open interval I,
as required.
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Proposition 39.7 Let b and c be real number, and let x be an indepen-
dent real variable that takes values in an open interval I. Let y be a real
variable, expressible as a twice-differentiable function of the independent real
variable x, that satisfies the second order differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0

throughout the open interval I. Suppose that the quadratic polynomial z2 +
bz + c has two non-real roots p +

√
−1q and p −

√
−1q. real roots r and s.

Then there exist real constants A and B such that

y(x) = epx(A cos qx+B sin qx).

Proof Let u(x) = y(x)e−px. Then

y(x) = u(x)epx,

dy(x)

dx
=

(
du(x)

dx
+ pu(x)

)
epx,

d2y(x)

dx2
=

(
d2u(x)

dx2
+ 2p

du(x)

dx
+ p2u(x)

)
epx.

It follows that

0 =
d2y

dx2
+ b

dy

dx
+ cy

=

(
d2u

dx2
+ (b+ 2p)

du

dx
+ (p2 + bp+ c)u

)
epx.

Moreover the quadratic polynomial z2 + bz + c satisfies

z2 + bz + c = (z − p−
√
−1 q)(z − p+

√
−1 q)

= (z − p)2 + q2 = z2 − 2pz + p2 + q2,

and therefore, on equating coefficients of the variable z, we find that 2p = −b
and p2 + q2 = c. It follows that

p2 + bp+ c = p2 − 2p2 + (p2 + q2) = q2.

Therefore the dependent variable u satisfies the differential equation

d2u

dx2
+ q2u = 0.
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Theorem 39.6 therefore ensures that

u(x) = A cos qx+B sin qx,

where A and B are constants, and therefore

y(x) = epx(A cos qx+B sin qx),

as required.

39.1 Review of Solutions of
d2y

dx2
+ b

dy

dx
+ cy = 0.

The following lemma is a basic result that enables us to superimpose solutions
of second order differential equations of the form

d2y

dx2
+ b

dy

dx
+ cy = 0.

Lemma 39.8 Let u and v be solutions of the second order differential equa-
tion

d2y

dx2
+ b

dy

dx
+ cy = 0,

where b and c are constants, and let A and B be real numbers. Then Au+Bv
is also a solution of the differential equation.

Proof Let y = Au+Bv. Then

dy

dx
= A

du

dx
+B

dv

dx
,

d2y

dx2
= A

d2u

d2x
+B

d2v

dx2
,

d2u

dx2
+ b

du

dx
+ cu = 0 and

d2v

dx2
+ b

dv

dx
+ cv = 0,

and therefore

d2y

dx2
+ b

dy

dx
+ cy = A

(
d2u

dx2
+ b

du

dx
+ cu

)
+B

(
d2v

dx2
+ b

dv

dx
+ cv

)
= 0.

75



We now verify the solutions of all second order differential equations of
this type. Let r be a real root of the auxiliary polynomial z2 + bz + c of the
differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0,

and let y = erx. Then

dy

dx
= rerx = ry and

d2y

dx2
= r2erx = r2y,

and therefore
d2y

dx2
+ b

dy

dx
+ cy = (r2 + br + c)y = 0.

Thus erx is a solution of the differential equation.
It follows that if the auxiliary polynomial z2 + bz + c of the differential

equation of the differential equation has two distinct real roots r and s then
Aerx + Besx is a solution of the differential equation for all real numbers A
and B. Proposition 39.4 then ensures that all solutions of the differential
equation are of this form.

Next suppose that r is a repeated root of the auxiliary polynomial. Then

z2 + bz + c = (z − r)2,

and therefore b = −2r and c = r2. If y = xerx then

dy

dx
= (rx+ 1)erx = ry + erx

and
d2y

dx2
= (r2x+ 2r)erx = r2y + 2rerx,

and therefore

d2y

dx2
+ b

dy

dx
+ cy = (r2 + br + c)y + (2r + b)erx = 0.

Thus xerx is a solution of the differential equation.
We have already shown that erx is also a solution of this differential

equation. It follows that (A+Bx)erx is a solution of this differential equation
for all real constantsA andB. Proposition 39.5 then ensures that all solutions
of the differential equation are of this form.

Finally suppose that p+iq is a root of the auxiliary polynomial z2+bz+c
for the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0,
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where q 6= 0 and i =
√
−1. Then p − iq is also a root of the auxiliary

polynomial. It follows that

z2 + bz + c = (z − p− iq)(z − p+ iq) = (z − p)2 + q2

= z2 − 2pz + p2 + q2,

and therefore b = −2p and c = p2 + q2.
Let u = epx cos qx and v = epx sin qx. Then

du

dx
= epx(p cos qx− q sin qx) = pu− qv

and
dv

dx
= epx(p sin qx+ q cos qx) = pv + qu,

and therefore

d2u

dx2
= p

du

dx
− q dv

dx
= p(pu− qv)− q(pv + qu)

= (p2 − q2)u− 2pqv

d2v

dx2
= p

dv

dx
+ q

du

dx
= p(pv + qu) + q(pu− qv)

= (p2 − q2)v + 2pqu

It follows that

d2u

dx2
+ b

du

dx
+ c = ((p2 − q2)u− 2pqv) + b(pu− qv) + cu

= (p2 − q2 + bp+ c)u− (2pq + bq)v,

d2v

dx2
+ b

dv

dx
+ c = ((p2 − q2)v + 2pqu) + b(pv + qu) + cv

= (p2 − q2 + bp+ c)v + (2pq + bq)v.

But
p2 − q2 + bp+ c = p2 − q2 − 2p2 + p2 + q2 = 0

and
2pq + bq = 2pq − 2pq = 0.

Therefore
d2u

dx2
+ b

du

dx
+ c = 0
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and
d2v

dx2
+ b

dv

dx
+ c = 0.

Thus if
y = epx(A cos qx+B sin qx)

where A and B are real constants, then y = Au+Bv and therefore

d2y

dx2
+ b

dy

dx
+ c = 0.

Proposition 39.7 then ensures that all solutions of the differential equation
are of this form.

39.2 Solutions of
d2y

dx2
+ b

dy

dx
+ cy = f(x).

Example Let us consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = g + hx+ kx2

where the real numbers b, c, g, h and k are constants and c 6= 0.
In this case we look for a “particular integral” that takes the form of a

polynomial of the same degree as that occurring on the right hand side of
the given differential equation.

Thus in this case we look for a solution yP satisfying the differential
equation

d2yP
dx2

+ b
dyP
dx

+ cyP = g + hx+ kx2

that takes the form
yP = u+ vx+ wx2.

Differentiating, we find that

dyP
dx

= v + 2wx and
d2yP
dx2

= 2w.

It follows that

d2yP
dx2

+ b
dyP
dx

+ cyP = 2w + bv + cu+ (2bw + cv)x+ cwx2.

Thus a quadratic polynomial yP of the form yP = u+ vx+ wx2 satisfies
the differential equation

d2yP
dx2

+ b
dyP
dx

+ cyP = g + hx+ kx2
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if and only if

2w + bv + cu+ (2bw + cv)x+ cwx2 = g + hx+ kx2

for all values of the independent variable x. This is the case if and only if
the coefficients of the quadratic polynomial on the left hand side are equal to
the corresponding coefficients of the quadratic polynomial on the right hand
side. Thus yP is the required “particular integral” if and only if

2w + bv + cu = g, 2bw + cv = h and cw = k.

Substituting w =
k

c
into the equation 2bw + cv = h, we find that

v =
1

c
(h− 2bw) =

1

c2
(ch− 2bk).

If we then substitute this formula for v into the equation 2w + bv + cs = g,
we find that

u =
1

c
(g − 2w − bv) =

1

c3
(c2g − 2ck − bch+ 2b2k).

Thus

yP =
1

c3
(
c2g − 2ck − bch+ 2b2k + (c2h− 2bck)x+ c2kx2

)
.

Now the quadratic polynomial yP is just one of the solutions of the given
differential equation. Other solutions are obtained by adding onto the par-
ticular integral yP a complementary function yC . Accordingly the general
solution of the differential equation therefore takes the form

y =
1

c3
(
c2g − 2ck − bch+ 2b2k + (c2h− 2bck)x+ c2kx2

)
+ yC(x),

where the complementary function yC satisfies the differential equation

d2yC
dx2

+ b
dyC
dx

+ cyC = 0.

The solution can be verified on the Wolfram Alpha website at

http://www.wolframalpha.com/

by entering the string

y’’ + b y’ + cy = g + hx + kx^2
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into the search box.

Example Consider the differential equation

d2y

dy2
+ 5

dy

dx
+ 6y = x2 − 7.

The equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = g + hx+ kx2,

with b = 5, c = 6, g = −7, h = 0 and k = 1. We have shown that equations
of this form have a particular integral yP that takes the form

yP =
1

c3
(
c2g − 2ck − bch+ 2b2k + (c2h− 2bck)x+ c2kx2

)
.

Substituting the values of b, c, g, h and k into this equation, we find that

c3 = 216,

c2g − 2ck − bch+ 2b2k = 36× (−7)− 2× 6× 1 + 2× 25

= −252− 12 + 50 = −214,

c2h− 2bck = 36× 0− 2× 5× 6× 1 = −60,

c2k = 36× 1 = 36,

and therefore

yP =
−214− 60x+ 36x2

216
.

= −107

108
− 5

18
x+

1

6
x2

Now the auxiliary polynomial z2 + 5z + 6 has roots −2 and −3. The
complementary function yC(x) therefore satisfies

yC(x) = Ae−2x +Be−3x.

It follows that the general solution to the differential equation is given by

y = −107

108
− 5

18
x+

1

6
x2 + Ae−2x +Be−3x,

where A and B are real constants.
The solution can be verified on the Wolfram Alpha website at

80



http://www.wolframalpha.com/

by entering the string

y’’ + 5 y’ + 6 y = x^2 - 7

into the search box.

Example Let us consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = (g + hx)emx

where the real numbers b, c, g, h and m are constants and m2 + bm+ c 6= 0.
In this case we look for a “particular integral” of the form

yP = (u+ vx)emx.

Differentiating using the Product Rule, we find that

dyP
dx

= vemx +m(u+ vx)emx = (v +mu+mvx)emx

and

d2y

dx2
= 2mvemx +m2(u+ vx)emx = (2mv +m2u+m2vx)emx

and therefore

d2yP
dx2

+ b
dyP
dx

+ cyP

=
(

2mv +m2u+ bv + (bm+ c)u+ (m2 + bm+ c)vx
)
emx.

It follows that yP solves the differential equation if and only if

(2m+ b)v + (m2 + bm+ c)u = g

and
(m2 + bm+ c)v = h.

Solving the second of these equations for v, we find that

v =
h

m2 + bm+ c
.
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Then solving the other equation for u, we find that

u =
1

m2 + bm+ c
(g − (2m+ b)v)

=
(m2 + bm+ c)g − (2m+ b)h

(m2 + bm+ c)2

Thus

yP =
(m2 + bm+ c)(g + hx)− (2m+ b)h

(m2 + bm+ c)2
emx.

The general solution of the differential equation then takes the form

y =
(m2 + bm+ c)(g + hx)− (2m+ b)h

(m2 + bm+ c)2
emx + yC(x).

where the complementary function yC satisfies the differential equation

d2yC
dx2

+ b
dyC
dx

+ cyC = 0.

Example Consider the differential equation

d2y

dx2
− 2

dy

dx
+ 10y = (3− 2x)e4x.

This equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = (g + hx)emx

with b = −2, c = 10, g = 3, h = −2 and m = 4. We have shown that
equations of this form have a particular integral yP that takes the form

yP =
(m2 + bm+ c)(g + hx)− (2m+ b)h

(m2 + bm+ c)2
emx.

Substituting the values of b, c, g, h and m into this equation, we find that

m2 + bm+ c = 16− 2× 4 + 10 = 18,

(2m+ b)h = (2× 4− 2)× (−2) = −12,

and therefore

yP =
66− 36x

324
e4x =

(
11

54
− x

9

)
e4x.
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Now the auxiliary polynomial z2 − 2z + 10 has roots 1 +
√
−1 3 and

1−
√
−13. It follows that the complementary function yC for this differential

equation takes the form

yC(x) = ex(A cos 3x+B sin 3x).

The general solution to the differential equation thus takes the form

y =

(
11

54
− x

9

)
e4x + ex(A cos 3x+B sin 3x).

Example Let us consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = g cos kx+ h sin kx

where the real numbers b, c, g, h and k are constants.

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx.

We look for a particular integral yP of the form

yP = u cos kx+ v sin kx.

Differentiating, we find that

dyP
dx

= kv cos kx− ku sin kx

and
d2yP
dx2

= −k2u cos kx− k2v sin kx,

and thus

d2yP
dx2

+ b
dyP
dx

+ cyP

= ((c− k2)u+ bkv) cos kx+ ((c− k2)v − bku) sin kx.

Therefore u and v should be chosen to satisfy the equations

(c− k2)u+ bkv = g and (c− k2)v − bku = h.
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It follows that

bkg + (c− k2)h
= bk((c− k2)u+ bkv) + (c− k2)((c− k2)v − bku)

= (b2k2 + (c− k2)2)v
(c− k2)g − bkh

= (c− k2)((c− k2)u+ bkv)− bk((c− k2)v − bku)

= (b2k2 + (c− k2)2)u.

Thus

u =
(c− k2)g − bkh
b2k2 + (c− k2)2

and

v =
bkg + (c− k2)h
b2k2 + (c− k2)2

,

and thus

yP =
1

b2k2 + (c− k2)2
(

((c− k2)g − bkh) cos kx

+ (bkg + (c− k2)h) sin kx
)
.

It follows that the general solution of the differential equation

d2y

dx2
+ b

dy

dx
+ cy = g cos kx+ h sin kx

takes the form

y =
1

b2k2 + (c− k2)2
(

((c− k2)g − bkh) cos kx

+ (bkg + (c− k2)h) sin kx
)

+ yC ,

where the complementary function yC satisfies the differential equation

d2yC
dx2

+ b
dyC
dx

+ cyC = 0.

Example Consider the differential equation

d2y

dx2
− 6

dy

dx
+ 9y = 3 cos 2x+ 4 sin 2x.
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This equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = g cos kx+ h sin kx

with b = −6, c = 9, k = 2, g = 3 and h = 4. We have shown that equations
of this form have a particular integral yP that takes the form

yP =
1

b2k2 + (c− k2)2
(

((c− k2)g − bkh) cos kx

+ (bkg + (c− k2)h) sin kx
)
.

Substituting the values of b, c, k, g and h into this equation, we find that

bk = −12

c− k2 = 9− 4 = 5

b2k2 + (c− k2)2 = 144 + 25 = 169,

(c− k2)g − bkh = 5× 3− (−12)× 4 = 15 + 48 = 63,

bkg + (c− k2)h = (−12)× 3 + 5× 4 = −36 + 20 = −16.

and therefore

yP =
1

169
(63 cos 2x− 16 sin 2x) .

Now the auxiliary polynomial z2−6z+9 has a repeated root with value 3.
It follows that the complementary function yC for this differential equation
takes the form

yC(x) = (A+Bx)e3x.

The general solution to the differential equation thus takes the form

y =
1

169
(63 cos 2x− 16 sin 2x) + (A+Bx)e3x.
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