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40 Introduction to Harmonic Analysis

40.1 Basic Trigonometrical Identities and Integrals

The following trigonometric identities satisfied by the sine and cosine func-
tions are basic and well-known:—

cos2A+ sin2A = 1,

cos(A+B) = cosA cosB − sinA sinB,

cos 2A = cos2A− sin2A,

sin(A+B) = sinA cosB + cosA sinB,

sin 2A = 2 sinA cosA,

cos2A = 1
2
(1 + cos 2A),

sin2A = 1
2
(1− cos 2A),

2 cosA cosB = cos(A+B) + cos(A−B),

2 sinA cosB = sin(A+B) + sin(A−B),

2 sinA sinB = cos(A−B)− cos(A+B),

On differentiating the sine and cosine function, we find that

d

dx
sin qx = q cos qx

d

dx
cos qx = −q sin qx.

for all real numbers q.
It follows that ∫

sin qx = −1

q
cos qx+ C∫

cos qx =
1

q
sin qx+ C,

for all non-zero real numbers q, where C is a constant of integration.

Proposition 40.1 Let j and k be positive integers. Then∫ 2π

0

cos jx dx = 0,∫ 2π

0

sin jx dx = 0,
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∫ 2π

0

cos jx cos kx dx =

{
π if j = k,
0 if j 6= k,∫ 2π

0

sin jx sin kx dx =

{
π if j = k,
0 if j 6= k,∫ 2π

0

sin jx cos kx dx = 0.

Proof First we note that∫ 2π

0

cos jx dx =

[
1

j
sin jx

]2π
0

=
1

j
(sin 2jπ − 0) = 0

and ∫ 2π

0

sin jx dx =

[
−1

j
cos jx

]2π
0

= −1

j
(cos 2jπ − 1) = 0

for all non-zero integers j, since cos 2jπ = 1 and sin 2jπ = 0 for all integers j.
Let j and k be positive integers. It follows from basic trigonometrical

identities that∫ 2π

0

cos jx cos kx dx = 1
2

∫ 2π

0

(cos((j − k)x) + cos((j + k)x)) dx.

and ∫ 2π

0

sin jx sin kx dx = 1
2

∫ 2π

0

(cos((j − k)x)− cos((j + k)x)) dx

But ∫ 2π

0

cos((j + k)x) dx = 0

(since j + k is a positive integer, and is thus non-zero).
Also ∫ 2π

0

cos((j − k)x) dx = 0 if j 6= k,

and ∫ 2π

0

cos((j − k)x) dx = 2π if j = k

(since cos((j − k)x) = 1 when j = k). It follows that∫ 2π

0

cos jx cos kx dx =

∫ 2π

0

sin jx sin kx dx = 1
2

∫ 2π

0

cos((j − k)x) dx

=

{
π if j = k,
0 if j 6= k,
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Also ∫ 2π

0

sin jx cos kx dx = 1
2

∫ 2π

0

(sin((j + k)x) + sin((j − k)x)) dx = 0

for all positive integers m and n. (Note that sin((j − k)x) = 0 in the case
when j = k).

40.2 Fourier Coefficients

We consider the theory of harmonic analysis, in which functions are approx-
imated by sums of trigonometric functions.

Let p and q be real numbers satisfying p < q. Let us denote by I(p, q)
the set whose elements are those real-valued functions on the interval

{x ∈ R : p ≤ x ≤ q}

that are integrable and that have finitely many points of discontinuity in the
interval.

We restrict attention to the case where p = 0 and q = 2π. Given f, g ∈
I(0, 2π), we define

(f, g) =
1

π

∫ 2π

0

f(x)g(x) dx

Note that

(f + h, g) = (f, g) + (h, g) and (f, g + h) = (f, g) + (f, h)

for all f, g, h ∈ I(0, 2π). Moreover (f, g) = (g, f), and

(cf, g) = (f, cg) = c(f, g)

for all f, g ∈ I(0, 2π) and for all real numbers c.
Also let

‖f‖ =
√

(f, f) =

(
1

π

∫ 2π

0

f(x)2 dx

) 1
2

.

If f ∈ I(0, 2π), and if ‖f‖ = 0 then either f(x) = 0 for all real numbers
x satisfying 0 ≤ x ≤ l or else the set of values of x for which f(x) 6= 0 is
a finite set whose elements are points of discontinuity of the function f . It
follows that if f, g ∈ I(0, 2π) and if ‖f − g‖ = 0 then either f(x) = g(x) for
all real numbers x satisfying 0 ≤ x ≤ l or else the set of values of x for which
f(x) 6= g(x) is a finite set whose elements are points of discontinuity either
of the function f or else of the function g.

88



In general ‖f − g‖ can be regarded as a measure of the “closeness” of
the functions f and g. It is but one of many such measures of closeness in
widespread use by mathematicians.

let cj(x) = cos jx for all non-negative integers j, and let sj(x) = sin jx
for all positive integers j. Then c0(x) = 1 for all x, and therefore

(c0, c0) =
1

π

∫ 2π

0

(c0(x))2 dx = 2.

Also if j is a positive integer then

(c0, cj) = (cj, c0) =
1

π

∫ 2π

0

cos jx dx = 0,

(c0, sj) = (sj, c0) =
1

π

∫ 2π

0

sin jx dx = 0.

Next let j and k be positive integers. It follows from Proposition 40.1
that

(cj, ck) =
1

π

∫ 2π

0

cos jx coskx dx =

{
1 if j = k,
0 if j 6= k,

(sj, sk) =
1

π

∫ 2π

0

sin jx sinkx dx =

{
1 if j = k,
0 if j 6= k,

(sj, ck) = (cj, sk) = 0

Proposition 40.2 Let f(x) be a real-valued function of the real variable x
defined for 0 ≤ x ≤ 2π. Suppose that there exist constants a0, a1, . . . , aN and
b1, b2, . . . , bN such that

f(x) = 1
2
a0 +

N∑
j=1

aj cos jx+
N∑
j=1

bj sin jx

for all x. Then

aj =
1

π

∫ 2π

0

f(x) cosjx dx

for j = 0, 1, . . . , N and

bj =
1

π

∫ 2π

0

f(x) sinjx dx

for j = 1, 2, . . . , N .
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Proof The function f satisfies

f(x) =
1

2
a0c0 +

N∑
k=1

akck(x) +
N∑
k=1

bksk(x),

where the functions c0, c1, . . . , cN and s1, s2, . . . , sN are defined as described
above. It follows that

(f(x), c0) = 1
2
a0(c0, c0) +

N∑
k=1

aj(ck, c0) +
N∑
k=1

bk(sk, c0).

But (ck, c0) = 0 and (sk, c0) = 0 for all positive integers k. It follows that

(f(x), c0) = 1
2
a0(c0, c0) = a0.

Next let j be a positive integer. Then

(f(x), cj) = 1
2
a0(c0, cj) +

N∑
k=1

ak(ck, cj) +
N∑
k=1

bk(sk, cj).

But (c0, cj) = 0, (sk, cj) = 0 for all integers k, and (ck, cj) = 0 unless j = k.
It follows that

(f(x), cj) = aj.

Similarly

(f(x), sj) = 1
2
a0(c0, sj) +

N∑
k=1

ak(ck, sj) +
N∑
k=1

bk(sk, sj) = bj.

The result follows.

Now let f(x) be an integrable function, defined for values of the real
variable x satisfying 0 ≤ x ≤ 2π, that is either continuous throughout its
domain or else has at most finitely many points of discontinuity there. Let

p(x) = 1
2
a0 +

N∑
k=1

akck(x) +
N∑
k=1

bksk(x),

where a0, a1, . . . , aN and b1, b2, . . . , bN are the Fourier coefficients of f , deter-
mined so that a0 = (f, c0), ak = (f, ck) and bk = (f, sk) for k = 1, 2, . . . , N .
Then

(f − p, c0) = (f, c0)− 1
2
a0(c0, c0) = (f, c0)− a0 = 0,

(f − p, cj) = (f, cj)− (p, cj) = (f, cj)− aj = 0,

(f − p, sj) = (f, sj)− (p, sj) = (f, sj)− bj = 0.

90



Let u0, u1, . . . , uN and v1, . . . , vN be arbitary real numbers, and let

q(x) = 1
2
u0 +

N∑
k=1

ukck(x) +
N∑
k=1

vksk(x).

Then

(f − p, q) = 1
2
u0(f − p, c0) +

N∑
k=1

uk(f − p, ck) +
N∑
k=1

vk(f − p, sk) = 0,

and (q, f − p) = (f − p, q) = 0. It follows that

(f − p− q, f − p− q)
= (f − p, f − p)− (f − p, q)− (q, f − p) + (q, q)

= (f − p, f − p) + (q, q).

Thus
‖f − p− q‖2 = ‖f − p‖2 + ‖q‖2.

Now, taking ‖f−p−q‖ as a measure of the closeness of the function p+q
to the function f , we see that the function p+ q is closest to f with respect
to this measure when q = 0.

Thus if we seek to approximate f by a function of the form

p(x) = 1
2
a0 +

N∑
j=1

aj cos jx+
N∑
j=1

bj sin jx,

where coefficients a0, a1, . . . , aN and b1, b2, . . . , bN are to be determined to as
to achieve a good fit, we see that the values of these coefficients that result in
an approximating function that is closest to the function f , where distance
from f is measured by the quantity ‖f − p‖, precisely when the coefficients
a0, a1, . . . , aN and b1, b2, . . . , bN are the Fourier coefficients of f , defined such
that

aj =
1

π

∫ 2π

0

f(x) cosjx dx

for j = 0, 1, . . . , N and

bj =
1

π

∫ 2π

0

f(x) sinjx dx

for j = 1, 2, . . . , N .
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