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42. The Mathematics underlying RSA Encryption (continued)

The RSA encryption scheme works as follows. In order to establish
the necessary public and private keys, one first chooses two distinct
large prime numbers p and q. Messages to be sent are to be
represented by integers n satisfying 0 ≤ n < m, where m = pq. Let
s = (p − 1)(q − 1), and let e be any positive integer that is
coprime to s. Then there exists a positive integer d such that
ed ≡ 1 (mod s) (see Lemma 41.12). Indeed there exist integers d
and t such that ed − st = 1 (Corollary 41.3), and appropriate
values for d and t may by found using the Euclidean algorithm.
Moreover d and t may be chosen such that d > 1, for if d ′ and t ′

satisfy the equation ed ′ − st ′ = 1, and if d = d ′ + ks and
t = t ′ + ke for some integer k , then ed − st = 1. Thus, once a
positive integer e is chosen coprime to s, standard algorithms
enable one to calculate a positive integer d such that
ed ≡ 1 (mod s).



42. The Mathematics underlying RSA Encryption (continued)

Now suppose that p, q, m, s, e and d have been chosen such that
p and q are distinct prime numbers, m = pq, s = (p − 1)(q − 1), e
and d are coprime to s and ed ≡ 1 (mod s). Let

I = {n ∈ Z : 0 ≤ n < m}.

Then for each integer x belonging to the set I , there exists a
unique integer E (x) that belongs to I and satisfies the congruence
E (x) ≡ xe (modm). Similarly, for each integer y belonging to the
set I , there exists a unique integer D(y) that belongs to I and
satisfies the congruence D(y) ≡ yd (modm). Now it follows from
standard properties of congruences (Lemma 41.9) that if y and z
are integers, and if y ≡ z (modm), then yd ≡ zd (modm). It
follows that D(E (x)) ≡ D(xe) ≡ xed (modm) for all integers x
belonging to I . But ed ≡ 1 (mod s), where s = (p − 1)(q − 1). It
follows from Theorem 42.1 that xed ≡ x (modm). We conclude
therefore that D(E (x)) ≡ x (modm) for all x ∈ I . But every
congruence class modulo m is represented by a single integer in the
set I . It follows that that D(E (x)) = x for all x ∈ I .



42. The Mathematics underlying RSA Encryption (continued)

On reversing the roles of the numbers e and d , we find that
E (D(y)) = y for all y ∈ I . Thus E : I → I is an invertible function
whose inverse is D : I → I .

On order to apply the RSA cryptographic method one determines
integers p, q, m, s, e and d . The pair (m, e) of integers represents
the public key and determines the encryption function E : I → I .
The pair (m, d) of integers represents the corresponding private
key and determines the decryption function D : I → I . The
messages to be sent are represented as integers belonging to I , or
perhaps as strings of such integers. If Alice publishes her public
key (m, e), but keeps secret her private key (m, d), then Bob can
send messages to Alice, encrypting them using the encryption
function E determined by Alice’s public key. When Alice receives
the message from Bob, she can decrypt it using the decryption
function D determined by her private key.



42. The Mathematics underlying RSA Encryption (continued)

Note that if the value of the integer s is known, where
s = (p − 1)(q − 1), then a private key can easily be calculated by
means of the Euclidean algorithm. Obviously once the values of p
and q are known, then so are the values of m and s. Conversely if
the values of m and s are known, then p and q can easily be
determined, since these prime numbers are the roots of the
polynomial x2 + (s −m − 1)x + m. Thus knowledge of s
corresponds to knowledge of the factorization of the composite
number m as a product of prime numbers. There are known
algorithms for factoring numbers as products of primes, but one
can make sure that the primes p and q are chosen large enough to
ensure that massive resources are required in order to factorize
their product pq using known algorithms. The security of RSA also
rests on the assumption that there is no method of decryption that
requires less computational resources than are required for
factorizing the product of the prime numbers determining the
public key.



42. The Mathematics underlying RSA Encryption (continued)

It remains to discuss whether it is in fact feasable to do the
calculations involved in encrypting messages using RSA. Now, in
order determine the value of E (x) for any non-negative integer x
less than m, one needs to determine the congruence class of xe

modulo m. Now e could be a very large number. However, in
order to determine the congruence class of xe modulo m, it is not
necessary to determine the value of the integer xe itself. For given
any non-negative integer x less than m, we can determine a
sequence a0, a1, a2, a3, . . . of non-negative integers less than m
such that a0 = x and ai+1 ≡ a2i (modm) for each non-negative

integer i . Then ai ≡ x2
i

for all non-negative integers i . Any
positive integer e may then be expressed in the form

e = e0 + 2e1 + 22e2 + 23e3 + · · ·

where ei has the value 0 or 1 for each non-negative integer i .
(These numbers ei are of course the digits in the binary
representation of the number e.)



42. The Mathematics underlying RSA Encryption (continued)

Then xe is then congruent to the product of those integers ai for
which ek = i . The execution time required to calculate E (x) by
this method is therefore determined by the number of digits in the
binary expansion of e, and is therefore bounded above by some
constant multiple of logm (assuming that e has been chosen so
that it is less than s, and thus less than m).



42. The Mathematics underlying RSA Encryption (continued)

Moreover the execution time required by the Euclidean algorithm,
when applied to natural numbers that are less than m is also
bounded above by some constant multiple of logm. For in order to
apply the Euclidean algorithm, one is required to calculate a
decreasing sequence r0, r1, r2, r3, . . . such that, for k ≤ 2, the
non-negative integer rk is the remainder obtained on dividing rk−2
by rk−1 in integer arithmetic, and therefore satisfies the inequality
rk ≤ 1

2 rk−2. (To see this, consider separately what happens in the
two cases when rk−1 ≤ 1

2 rk−2 and rk−1 >
1
2 rk−2.)
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