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41. Elementary Number Theory (continued)

41.9. The Chinese Remainder Theorem

Let I be a set of integers. The integers belonging to I are said to
be pairwise coprime if any two distinct integers belonging to I are
coprime.

Proposition 41.1

Let m1,m2, . . . ,mr be non-zero integers that are pairwise coprime.
Let x be an integer that is divisible by mi for i = 1, 2, . . . , r . Then
x is divisible by the product m1m2 · · ·mr of the integers
m1,m2, . . . ,mr .



41. Elementary Number Theory (continued)

Proof
For each integer k between 1 and r let Pk be the product of the
integers mi with 1 ≤ i ≤ k . Then P1 = m1 and Pk = Pk−1mk for
k = 2, 3, . . . , r . Let x be a positive integer that is divisible by mi

for i = 1, 2, . . . , r . We must show that Pr divides x . Suppose that
Pk−1 divides x for some integer k between 2 and r . Let
y = x/Pk−1. Then mk and Pk−1 are coprime (Lemma 41.14) and
mk divides Pk−1y . It follows from Lemma 41.10 that mk divides y .
But then Pk divides x , since Pk = Pk−1mk and x = Pk−1y . On
successively applying this result with k = 2, 3, . . . , r we conclude
that Pr divides x , as required.



41. Elementary Number Theory (continued)

Theorem 41.15

(Chinese Remainder Theorem) Let m1,m2, . . . ,mr be pairwise
coprime positive integers. Then, given any integers x1, x2, . . . , xr ,
there exists an integer z such that z ≡ xi (modmi ) for
i = 1, 2, . . . , r . Moreover if z ′ is any integer satisfying
z ′ ≡ xi (modmi ) for i = 1, 2, . . . , r then z ′ ≡ z (modm), where
m = m1m2 · · ·mr .



41. Elementary Number Theory (continued)

Proof
Let m = m1m2 · · ·mr , and let si = m/mi for i = 1, 2, . . . , r . Note
that si is the product of the integers mj with j 6= i , and is thus a
product of integers coprime to mi . It follows from Lemma 41.14
that mi and si are coprime for i = 1, 2, . . . , r . Therefore there exist
integers ai and bi such that aimi + bi si = 1 for i = 1, 2, . . . , r
(Corollary 41.3). Let ui = bi si for i = 1, 2, . . . , r . Then
ui ≡ 1 (modmi ), and ui ≡ 0 (modmj) when j 6= i . Thus if

z = x1u1 + x2u2 + · · · xrur

then z ≡ xi (modmi ) for i = 1, 2, . . . , r .
Now let z ′ be an integer with z ′ ≡ xi (modmi ) for i = 1, 2, . . . , r .
Then z ′ − z is divisible by mi for i = 1, 2, . . . , r . It follows from
Proposition 41.1 that z ′ − z is divisible by the product m of the
integers m1,m2, . . . ,mr . Then z ′ ≡ z (modm), as required.



41. Elementary Number Theory (continued)

Example
Suppose we seek an integer x such that x ≡ 3 (mod 5),
x ≡ 7 (mod 11) and x ≡ 4 (mod 17). (Note that 5, 11 and 17 are
prime numbers, and are therefore pairwise coprime.) There should
exist such an integer x that is of the form

x = 3u1 + 7u2 + 4u3,

where

u1 ≡ 1 (mod 5) u1 ≡ 0 (mod 11), u1 ≡ 0 (mod 17),

u2 ≡ 0 (mod 5) u2 ≡ 1 (mod 11), u2 ≡ 0 (mod 17),

u3 ≡ 0 (mod 5) u3 ≡ 0 (mod 11), u3 ≡ 1 (mod 17).



41. Elementary Number Theory (continued)

Now u1 should be divisible by both 11 and 17. Moreover 11 and 17
are coprime. It follows that u1 should be divisible by the product of
11 and 17, which is 187. Now 187 ≡ 2 (mod 5), and we are
seeking an integer u1 for which u1 ≡ 1 (mod 5). However
3× 2 = 6 and 6 ≡ 1 (mod 5), and 3× 187 = 561. It follows from
standard properties of congruences that if we take u1 = 561, then
u1 satisfies all the required congruences. And one can readily
check that this is the case.

Similarly u2 should be a multiple of 85, given that 85 = 5 ∗ 17.
But 85 ≡ 8 (mod 11), 7× 8 = 56, 56 ≡ 1 (mod 11), and
7× 85 = 595, so if we take u2 = 595 then u2 should satisfy all the
required congruences, and this is the case.

The same method shows that u3 should be a multiple of 55. But
55 ≡ 4 (mod 17), 13× 4 = 52, 52 ≡ 1 (mod 17) and
13× 55 = 715, and thus if u3 = 715 then u3 should satisfy the
required congruences, which it does.



41. Elementary Number Theory (continued)

An integer x satisfying the congruences x ≡ 3 (mod 5),
x ≡ 7 (mod 11) and x ≡ 4 (mod 17), is then given by

x = 3× 561 + 7× 595 + 4× 715 = 8708.

Now the integers y satisfying the required congruences are those
that satisfy the congruence y ≡ x (mod 935), since
935 = 5× 11× 17. The smallest positive value of y with the
required properties is 293.



41. Elementary Number Theory (continued)

41.10. Fermat’s Little Theorem

Theorem 41.16 (Fermat’s Little Theorem)

Let p be a prime number. Then xp ≡ x (mod p) for all integers x.
Moreover if x is coprime to p then xp−1 ≡ 1 (mod p).

We shall give two proofs of this theorem below.



41. Elementary Number Theory (continued)

Lemma 41.17

Let p be a prime number. Then the binomial coefficient

(
p

k

)
is

divisible by p for all integers k satisfying 0 < k < p.

Proof
The binomial coefficient is given by the formula(
p

k

)
=

p!

(p − k)!k!
. Thus if 0 < k < p then

(
p

k

)
=

pm

k!
, where

m =
(p − 1)!

(p − k)!
. Thus if 0 < k < p then k! divides pm. Also k! is

coprime to p. It follows that k! divides m (Lemma 41.10), and

therefore the binomial coefficient

(
p

k

)
is a multiple of p.



41. Elementary Number Theory (continued)

First Proof of Theorem 41.16
Let p be prime number. Then

(x + 1)p =

p∑
k=0

(
p

k

)
xk .

It then follows from Lemma 41.17 that (x + 1)p ≡ xp + 1 (mod p).
Thus if f (x) = xp − x then f (x + 1) ≡ f (x) (mod p) for all
integers x , since f (x + 1)− f (x) = (x + 1)p − xp − 1. But
f (0) ≡ 0 (mod p). It follows by induction on |x | that
f (x) ≡ 0 (mod p) for all integers x . Thus xp ≡ x (mod p) for all
integers x . Moreover if x is coprime to p then it follows from
Lemma 41.11 that xp−1 ≡ 1 (mod p), as required.



41. Elementary Number Theory (continued)

Second Proof of Theorem 41.16
Let x be an integer. If x is divisible by p then x ≡ 0 (mod p) and
xp ≡ 0 (mod p).
Suppose that x is coprime to p. If j is an integer satisfying
1 ≤ j ≤ p − 1 then j is coprime to p and hence xj is coprime to p.
It follows that there exists a unique integer uj such that
1 ≤ uj ≤ p − 1 and xj ≡ uj (mod p). If j and k are integers
between 1 and p − 1 and if j 6= k then uj 6= uk . It follows that
each integer between 1 and p − 1 occurs exactly once in the list
u1, u2, . . . , up−1, and therefore u1u2 · · · up−1 = (p − 1)!. Thus if
we multiply together the left hand sides and right hand sides of the
congruences xj ≡ uj (mod p) for j = 1, 2, . . . , p − 1 we obtain the
congruence xp−1(p − 1)! ≡ (p − 1)! (mod p). But then
xp−1 ≡ 1 (mod p) by Lemma 41.11, since (p − 1)! is coprime to
p. But then xp ≡ x (mod p), as required.



42. The RSA Cryptographic System

42. The RSA Cryptographic System

42.1. The Specification of RSA

Theorem 42.1

Let p and q be distinct prime numbers, let m = pq and let
s = (p − 1)(q − 1). Let j and k be positive integers with the
property that j ≡ k (mod s). Then x j ≡ xk (modm) for all
integers x.



42. The RSA Cryptographic System (continued)

Proof
We may order j and k so that j ≤ k. Let x be an integer. Then
either x is divisible by p or x is coprime to p. Let us first suppose
that x is coprime to p. Then Fermat’s Little Theorem
(Theorem 41.16) ensures that xp−1 ≡ 1 (mod p). But then
x r(p−1) ≡ 1 (mod p) for all non-negative integers r (for if two
integers are congruent modulo p, then so are the r th powers of
those integers). In particular xns ≡ 1 (mod p) for all non-negative
integers n, where s = (p − 1)(q − 1).



42. The RSA Cryptographic System (continued)

Now j and k are positive integers such that j ≤ k and
j ≡ k (mod s). It follows that there exists some non-negative
integer n such that k = ns + j . But then xk = xnsx j , and therefore
xk ≡ x j (mod p). We have thus shown that the congruence
x j ≡ xk (mod p) is satisfied whenever x is coprime to p. This
congruence is also satisfied when x is divisible by p, since in that
case both xk and x j are divisible by p and so are congruent to zero
modulo p. We conclude that x j ≡ xk (mod p) for all integers x .
On interchanging the roles of the primes p and q we find that
x j ≡ xk (mod q) for all integers x . Therefore, given any integer x ,
the integers xk − x j is divisible by both p and q. But p and q are
distinct prime numbers, and are therefore coprime. It follows that
xk − x j must be divisible by the product m of p and q (see
Proposition 41.1). Therefore every integer x satisfies the
congruence x j ≡ xk (modm), as required.
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