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41. Elementary Number Theory

41. Elementary Number Theory

41.1. Subgroups of the Integers

A subset S of the set Z of integers is a subgroup of Z if 0 ∈ S ,
−x ∈ S and x + y ∈ S for all x ∈ S and y ∈ S .
It is easy to see that a non-empty subset S of Z is a subgroup of Z
if and only if x − y ∈ S for all x ∈ S and y ∈ S .
Let m be an integer, and let mZ = {mn : n ∈ Z}. Then mZ (the
set of integer multiples of m) is a subgroup of Z.

Theorem 41.1

Let S be a subgroup of Z. Then S = mZ for some non-negative
integer m.



41. Elementary Number Theory (continued)

Proof
If S = {0} then S = mZ with m = 0. Suppose that S 6= {0}.
Then S contains a non-zero integer, and therefore S contains a
positive integer (since −x ∈ S for all x ∈ S). Let m be the
smallest positive integer belonging to S . A positive integer n
belonging to S can be written in the form n = qm + r , where q is
a positive integer and r is an integer satisfying 0 ≤ r < m. Then
qm ∈ S (because qm = m + m + · · ·+ m). But then r ∈ S , since
r = n − qm. It follows that r = 0, since m is the smallest positive
integer in S . Therefore n = qm, and thus n ∈ mZ. It follows that
S = mZ, as required.



41. Elementary Number Theory (continued)

41.2. Greatest Common Divisors

Definition

Let a1, a2, . . . , ar be integers, not all zero. A common divisor of
a1, a2, . . . , ar is an integer that divides each of a1, a2, . . . , ar . The
greatest common divisor of a1, a2, . . . , ar is the greatest positive
integer that divides each of a1, a2, . . . , ar . The greatest common
divisor of a1, a2, . . . , ar is denoted by (a1, a2, . . . , ar ).

Theorem 41.2

Let a1, a2, . . . , ar be integers, not all zero. Then there exist
integers u1, u2, . . . , ur such that

(a1, a2, . . . , ar ) = u1a1 + u2a2 + · · ·+ urar .

where (a1, a2, . . . , ar ) is the greatest common divisor of
a1, a2, . . . , ar .



41. Elementary Number Theory (continued)

Proof
Let S be the set of all integers that are of the form

n1a1 + n2a2 + · · ·+ nrar

for some n1, n2, . . . , nr ∈ Z. Then S is a subgroup of Z. It follows
that S = mZ for some non-negative integer m (Theorem 41.1).
Then m is a common divisor of a1, a2, . . . , ar , (since ai ∈ S for
i = 1, 2, . . . , r). Moreover any common divisor of a1, a2, . . . , ar is a
divisor of each element of S and is therefore a divisor of m. It
follows that m is the greatest common divisor of a1, a2, . . . , ar . But
m ∈ S , and therefore there exist integers u1, u2, . . . , ur such that

(a1, a2, . . . , ar ) = u1a1 + u2a2 + · · ·+ urar ,

as required.



41. Elementary Number Theory (continued)

Definition

Let a1, a2, . . . , ar be integers, not all zero. If the greatest common
divisor of a1, a2, . . . , ar is 1 then these integers are said to be
coprime. If integers a and b are coprime then a is said to be
coprime to b. (Thus a is coprime to b if and only if b is coprime to
a.)



41. Elementary Number Theory (continued)

Corollary 41.3

Let a1, a2, . . . , ar be integers that are not all zero. Then
a1, a2, . . . , ar are coprime if and only if there exist integers
u1, u2, . . . , ur such that

1 = u1a1 + u2a2 + · · ·+ urar .

Proof
If a1, a2, . . . , ar are coprime then the existence of the required
integers u1, u2, . . . , ur follows from Theorem 41.2. On the other
hand, if there exist integers u1, u2, . . . , ur with the required
property then any common divisor of a1, a2, . . . , ar must be a
divisor of 1, and therefore a1, a2, . . . , ar must be coprime.



41. Elementary Number Theory (continued)

41.3. The Euclidean Algorithm

Let a and b be positive integers with a > b. Let r0 = a and r1 = b.
If b does not divide a then let r2 be the remainder on dividing a by
b. Then a = q1b + r2, where q1 and r2 are positive integers and
0 < r2 < b. If r2 does not divide b then let r3 be the remainder on
dividing b by r2. Then b = q2r2 + r3, where q2 and r3 are positive
integers and 0 < r3 < r2. If r3 does not divide r2 then let r4 be the
remainder on dividing r2 by r3. Then r2 = q3r3 + r4, where q3 and
r4 are positive integers and 0 < r4 < r3. Continuing in this fashion,
we construct positive integers r0, r1, . . . , rn such that r0 = a, r1 = b
and ri is the remainder on dividing ri−2 by ri−1 for i = 2, 3, . . . , n.
Then ri−2 = qi−1ri−1 + ri , where qi−1 and ri are positive integers
and 0 < ri < ri−1. The algorithm for constructing the positive
integers r0, r1, . . . , rn terminates when rn divides rn−1. Then
rn−1 = qnrn for some positive integer qn. (The algorithm must
clearly terminate in a finite number of steps, since
r0 > r1 > r2 > · · · > rn.)



41. Elementary Number Theory (continued)

We claim that rn is the greatest common divisor of a and b.
Any divisor of rn is a divisor of rn−1, because rn−1 = qnrn.
Moreover if 2 ≤ i ≤ n then any common divisor of ri and ri−1 is a
divisor of ri−2, because ri−2 = qi−1ri−1 + ri . If follows that every
divisor of rn is a divisor of all the integers r0, r1, . . . , rn. In
particular, any divisor of rn is a common divisor of a and b. In
particular, rn is itself a common divisor of a and b.
If 2 ≤ i ≤ n then any common divisor of ri−2 and ri−1 is a divisor
of ri , because ri = ri−2 − qi−1ri−1. It follows that every common
divisor of a and b is a divisor of all the integers r0, r1, . . . , rn. In
particular any common divisor of a and b is a divisor of rn. It
follows that rn is the greatest common divisor of a and b.



41. Elementary Number Theory (continued)

There exist integers ui and vi such that ri = uia + vib for
i = 1, 2, . . . , n. Indeed ui = ui−2 − qi−1ui−1 and
vi = vi−2 − qi−1vi−1 for each integer i between 2 and n, where
u0 = 1, v0 = 0, u1 = 0 and v1 = 1. In particular rn = una + vnb.
The algorithm described above for calculating the greatest
common divisor (a, b) of two positive integers a and b is referred
to as the Euclidean algorithm. It also enables one to calculate
integers u and v such that (a, b) = ua + vb.



41. Elementary Number Theory (continued)

Example
We calculate the greatest common divisor of 425 and 119. Now

425 = 3× 119 + 68

119 = 68 + 51

68 = 51 + 17

51 = 3× 17.

It follows that 17 is the greatest common divisor of 425 and 119.
Moreover

17 = 68− 51 = 68− (119− 68)

= 2× 68− 119 = 2× (425− 3× 119)− 119

= 2× 425− 7× 119.



41. Elementary Number Theory (continued)

Example
We calculate the greatest common divisor of 90, 126, 210, and
express it in the form 90u + 126v + 210w for appropriate integers
u, v and w .
First we calculate the greatest common divisor of 90 and 126 using
the Euclidean algorithm. Now

126 = 90 + 36

90 = 2× 36 + 18

36 = 2× 18.

It follows that 18 is the greatest common divisor of 90 and 126.
Moreover

18 = 90− 2× 36 = 90− 2× (126− 90)

= 3× 90− 2× 126.



41. Elementary Number Theory (continued)

Now any common divisor d of 90, 126 and 210 is a common
divisor of 90 and 126, and therefore divides the greatest common
divisor of 90 and 126. Thus d divides 18. But d also divides 210.
It follows that any common divisor of 90, 126 and 210 is a
common divisor of 18 and 210, and therefore divides the greatest
common divisor of 18 and 210. We calculate this greatest common
divisor using the Euclidean algorithm. Now

210 = 11× 18 + 12

18 = 12 + 6

12 = 2× 6.

It follows that 6 is the greatest common divisor of 18 and 210.
Moreover

6 = 18− 12 = 18− (210− 11× 18)

= 12× 18− 210.



41. Elementary Number Theory (continued)

But 18 = 3× 90− 2× 126. It follows that

6 = 36× 90− 24× 126− 210.

The number 6 divides 90, 126 and 210. Moreover any common
divisor of 90, 126 and 210 must also divide 6. Therefore 6 is the
greatest common divisor of 90, 126 and 210. Also
6 = 90u + 126v + 210w where u = 36, v = −24 and w = −1.

Remark
Let a1, a2, . . . , ar be non-zero integers, where r > 2. Suppose we
wish to compute the greatest common divisor d of a1, a2, . . . , ar ,
and express it in the form

d = u1a1 + u2a2 + · · ·+ urar .

where u1, u2, . . . , ur are integers.



41. Elementary Number Theory (continued)

Let d ′ be the greatest common divisor of a1, a2, . . . , ar−1. Then
any common divisor of a1, a2, . . . , ar divides both d ′ and ar , and
therefore divides the greatest common divisor (d ′, ar ) of d ′ and ar .
In particular d divides (d ′, ar ). But (d ′, ar ) divides ai for
i = 1, 2, . . . , r . It follows that d = (d ′, ar ). Thus

(a1, a2, . . . , ar ) = ((a1, a2, . . . , ar−1), ar ).

for any non-zero integers a1, a2, . . . , ar . Moreover there exist
integers p and q such that d = pd ′ + qar . These integers p and q
may be computed using the Euclidean algorithm, given d ′ and ar .



41. Elementary Number Theory (continued)

Let v1, v2, . . . , vr−1 be integers for which

d ′ = v1a1 + v2a2 + · · ·+ vr−1ar−1.

Then
d = u1a1 + u2a2 + · · ·+ urar ,

where ui = pvi for i = 1, 2, . . . , r − 1 and ur = q. Therefore
successive applications of the Euclidean algorithm will enable us to
compute the greatest common divisor (a1, a2, . . . , ar ) of
a1, a2, . . . , ar and express it in the form

(a1, a2, . . . , ar ) = u1a1 + u2a2 + · · ·+ urar

for appropriate integers u1, u2, . . . , ur .



41. Elementary Number Theory (continued)

Indeed we may proceed by computing successively the greatest
common divisors

(a1, a2), (a1, a2, a3), (a1, a2, a3, a4), . . . ,

representing each quantity (a1, a2, . . . , ak) by an expression of the
form

(a1, a2, . . . , ak) =
k∑

i=1

vkiai ,

where the quantities vki are integers.



41. Elementary Number Theory (continued)

41.4. Prime Numbers

Definition

A prime number is an integer p greater than one with the property
that 1 and p are the only positive integers that divide p.

Let p be a prime number, and let x be an integer. Then the
greatest common divisor (p, x) of p and x is a divisor of p, and
therefore either (p, x) = p or else (p, x) = 1. It follows that either
x is divisible by p or else x is coprime to p.



41. Elementary Number Theory (continued)

Theorem 41.4

Let p be a prime number, and let x and y be integers. If p divides
xy then either p divides x or else p divides y .

Proof
Suppose that p divides xy but p does not divide x . Then p and x
are coprime, and hence there exist integers u and v such that
1 = up + vx (Corollary 41.3). Then y = upy + vxy . It then follows
that p divides y , as required.



41. Elementary Number Theory (continued)

Corollary 41.5

Let p be a prime number. If p divides a product of integers then p
divides at least one of the factors of the product.

Proof
Let a1, a2, . . . , ak be integers, where k > 1. Suppose that p divides
a1a2 · · · ak . Then either p divides ak or else p divides a1a2 · · · ak−1.
The required result therefore follows by induction on the number k
of factors in the product.



41. Elementary Number Theory (continued)

41.5. The Fundamental Theorem of Arithmetic

Lemma 41.6

Every integer greater than one is a prime number or factors as a
product of prime numbers.

Proof
Let n be an integer greater than one. Suppose that every integer m
satisfying 1 < m < n is a prime number or factors as a product of
prime numbers. If n is not a prime number then n = ab for some
integers a and b satisfying 1 < a < n and 1 < b < n. Then a and b
are prime numbers or products of prime numbers. Thus if n is not
itself a prime number then n must be a product of prime numbers.
The required result therefore follows by induction on n.



41. Elementary Number Theory (continued)

An integer greater than one that is not a prime number is said to
be a composite number.
Let n be an composite number. We say that n factors uniquely as
a product of prime numbers if, given prime numbers p1, p2, . . . , pr
and q1, q2, . . . , qs such that

n = p1p2 · · · pr = q1q2 . . . qs ,

the number of times a prime number occurs in the list
p1, p2, . . . , pr is equal to the number of times it occurs in the list
q1, q2, . . . , qs . (Note that this implies that r = s.)



41. Elementary Number Theory (continued)

Theorem 41.7

(The Fundamental Theorem of Arithmetic) Every composite
number greater than one factors uniquely as a product of prime
numbers.

Proof
Let n be a composite number greater than one. Suppose that
every composite number greater than one and less than n factors
uniquely as a product of prime numbers. We show that n then
factors uniquely as a product of prime numbers. Suppose therefore
that

n = p1p2 · · · pr = q1q2 . . . , qs ,

where p1, p2, . . . , pr and q1, q2, . . . , qs are prime numbers,
p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs . We must prove that
r = s and pi = qi for all integers i between 1 and r .



41. Elementary Number Theory (continued)

Let p be the smallest prime number that divides n. If a prime
number divides a product of integers then it must divide at least
one of the factors (Corollary 41.5). It follows that p must divide pi
and thus p = pi for some integer i between 1 and r . But then
p = p1, since p1 is the smallest of the prime numbers p1, p2, . . . , pr .
Similarly p = q1. Therefore p = p1 = q1. Let m = n/p. Then

m = p2p3 · · · pr = q2q3 · · · qs .

But then r = s and pi = qi for all integers i between 2 and r ,
because every composite number greater than one and less than n
factors uniquely as a product of prime numbers. It follows that n
factors uniquely as a product of prime numbers. The required
result now follows by induction on n. (We have shown that if all
composite numbers m satisfying 1 < m < n factor uniquely as a
product of prime numbers, then so do all composite numbers m
satisfying 1 < m < n + 1.)



41. Elementary Number Theory (continued)

41.6. The Infinitude of Primes

Theorem 41.8

(Euclid) The number of prime numbers is infinite.

Proof
Let p1, p2, . . . , pr be prime numbers, let m = p1p2 · · · pr + 1. Now
pi does not divide m for i = 1, 2, . . . , r , since if pi were to divide m
then it would divide m− p1p2 · · · pr and thus would divide 1. Let p
be a prime factor of m. Then p must be distinct from
p1, p2, . . . , pr . Thus no finite set {p1, p2, . . . , pr} of prime numbers
can include all prime numbers.



41. Elementary Number Theory (continued)

41.7. Congruences

Let m be a positive integer. Integers x and y are said to be
congruent modulo m if x − y is divisible by m. If x and y are
congruent modulo m then we denote this by writing
x ≡ y (modm).
The congruence class of an integer x modulo m is the set of all
integers that are congruent to x modulo m.
Let x , y and z be integers. Then x ≡ x (modm). Also
x ≡ y (modm) if and only if y ≡ x (modm). If x ≡ y (modm)
and y ≡ z (modm) then x ≡ z (modm). Thus congruence
modulo m is an equivalence relation on the set of integers.



41. Elementary Number Theory (continued)

Lemma 41.9

Let m be a positive integer, and let x, x ′, y and y ′ be integers.
Suppose that x ≡ x ′ (modm) and y ≡ y ′ (modm). Then
x + y ≡ x ′ + y ′ (modm) and xy ≡ x ′y ′ (modm).

Proof
The result follows immediately from the identities

(x + y)− (x ′ + y ′) = (x − x ′) + (y − y ′),

xy − x ′y ′ = (x − x ′)y + x ′(y − y ′).



41. Elementary Number Theory (continued)

Lemma 41.10

Let x, y and m be integers with m 6= 0. Suppose that m divides xy
and that m and x are coprime. Then m divides y .

Proof
There exist integers a and b such that 1 = am + bx , since m and x
are coprime (Corollary 41.3). Then y = amy + bxy , and m divides
xy , and therefore m divides y , as required.



41. Elementary Number Theory (continued)

Lemma 41.11

Let m be a positive integer, and let a, x and y be integers with
ax ≡ ay (modm). Suppose that m and a are coprime. Then
x ≡ y (modm).

Proof
If ax ≡ ay (modm) then a(x − y) is divisible by m. But m and a
are coprime. It therefore follows from Lemma 41.10 that x − y is
divisible by m, and thus x ≡ y (modm), as required.



41. Elementary Number Theory (continued)

Lemma 41.12

Let x and m be non-zero integers. Suppose that x is coprime to
m. Then there exists an integer y such that xy ≡ 1 (modm).
Moreover y is coprime to m.

Proof
There exist integers y and k such that xy + mk = 1, since x and
m are coprime (Corollary 41.3). Then xy ≡ 1 (modm). Moreover
any common divisor of y and m must divide xy and therefore must
divide 1. Thus y is coprime to m, as required.



41. Elementary Number Theory (continued)

Lemma 41.13

Let m be a positive integer, and let a and b be integers, where a is
coprime to m. Then there exist integers x that satisfy the
congruence ax ≡ b (modm). Moreover if x and x ′ are integers
such that ax ≡ b (modm) and ax ′ ≡ b (modm) then
x ≡ x ′ (modm).

Proof
There exists an integer c such that ac ≡ 1 (modm), since a is
coprime to m (Lemma 41.12). Then ax ≡ b (modm) if and only
if x ≡ cb (modm). The result follows.



41. Elementary Number Theory (continued)

Lemma 41.14

Let a1, a2, . . . , ar be integers, and let x be an integer that is
coprime to ai for i = 1, 2, . . . , r . Then x is coprime to the product
a1a2 · · · ar of the integers a1, a2, . . . , ar .

Proof
Let p be a prime number which divides the product a1a2 · · · ar .
Then p divides one of the factors a1, a2, . . . , ar (Corollary 41.5). It
follows that p cannot divide x , since x and ai are coprime for
i = 1, 2, . . . , r . Thus no prime number is a common divisor of x
and the product a1a2 · · · ar . It follows that the greatest common
divisor of x and a1a2 · · · ar is 1, since this greatest common divisor
cannot have any prime factors. Thus x and a1a2 · · · ar are coprime,
as required.



41. Elementary Number Theory (continued)

Let m be a positive integer. For each integer x , let [x ] denote the
congruence class of x modulo m. If x , x ′, y and y ′ are integers
and if x ≡ x ′ (modm) and y ≡ y ′ (modm) then
xy ≡ x ′y ′ (modm). It follows that there is a well-defined
operation of multiplication defined on congruence classes of
integers modulo m, where [x ][y ] = [xy ] for all integers x and y .
This operation is commutative and associative, and [x ][1] = [x ] for
all integers x . If x is an integer coprime to m, then it follows from
Lemma 41.12 that there exists an integer y coprime to m such
that xy ≡ 1 (modm). Then [x ][y ] = [1]. Therefore the set Z∗m of
congruence classes modulo m of integers coprime to m is an
Abelian group (with multiplication of congruence classes defined as
above).
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