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40. Introduction to Harmonic Analysis

40. Introduction to Harmonic Analysis

40.1. Basic Trigonometrical Identities and Integrals

The following trigonometric identities satisfied by the sine and
cosine functions are basic and well-known:—

cos2 A + sin2 A = 1,

cos(A + B) = cosA cosB − sinA sinB,

cos 2A = cos2 A− sin2 A,

sin(A + B) = sinA cosB + cosA sinB,

sin 2A = 2 sinA cosA,

cos2 A = 1
2(1 + cos 2A),

sin2 A = 1
2(1− cos 2A),

2 cosA cosB = cos(A + B) + cos(A− B),

2 sinA cosB = sin(A + B) + sin(A− B),

2 sinA sinB = cos(A− B)− cos(A + B),



40. Introduction to Harmonic Analysis (continued)

On differentiating the sine and cosine function, we find that

d

dx
sin qx = q cos qx

d

dx
cos qx = −q sin qx .

for all real numbers q.
It follows that ∫

sin qx = −1

q
cos qx + C∫

cos qx =
1

q
sin qx + C ,

for all non-zero real numbers q, where C is a constant of
integration.



40. Introduction to Harmonic Analysis (continued)

Proposition 40.1

Let j and k be positive integers. Then∫ 2π

0
cos jx dx = 0,∫ 2π

0
sin jx dx = 0,∫ 2π

0
cos jx cos kx dx =

{
π if j = k,
0 if j 6= k,∫ 2π

0
sin jx sin kx dx =

{
π if j = k,
0 if j 6= k,∫ 2π

0
sin jx cos kx dx = 0.
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Proof
First we note that∫ 2π

0
cos jx dx =

[
1

j
sin jx

]2π
0

=
1

j
(sin 2jπ − 0) = 0

and ∫ 2π

0
sin jx dx =

[
−1

j
cos jx

]2π
0

= −1

j
(cos 2jπ − 1) = 0

for all non-zero integers j , since cos 2jπ = 1 and sin 2jπ = 0 for all
integers j .



40. Introduction to Harmonic Analysis (continued)

Let j and k be positive integers. It follows from basic
trigonometrical identities that∫ 2π

0
cos jx cos kx dx = 1

2

∫ 2π

0
(cos((j − k)x) + cos((j + k)x)) dx .

and∫ 2π

0
sin jx sin kx dx = 1

2

∫ 2π

0
(cos((j − k)x)− cos((j + k)x)) dx

But ∫ 2π

0
cos((j + k)x) dx = 0

(since j + k is a positive integer, and is thus non-zero).



40. Introduction to Harmonic Analysis (continued)

Also ∫ 2π

0
cos((j − k)x) dx = 0 if j 6= k ,

and ∫ 2π

0
cos((j − k)x) dx = 2π if j = k

(since cos((j − k)x) = 1 when j = k). It follows that∫ 2π

0
cos jx cos kx dx =

∫ 2π

0
sin jx sin kx dx = 1

2

∫ 2π

0
cos((j − k)x) dx

=

{
π if j = k ,
0 if j 6= k ,

Also∫ 2π

0
sin jx cos kx dx = 1

2

∫ 2π

0
(sin((j + k)x) + sin((j − k)x)) dx = 0

for all positive integers m and n. (Note that sin((j − k)x) = 0 in
the case when j = k).



40. Introduction to Harmonic Analysis (continued)

40.2. Fourier Coefficients

We consider the theory of harmonic analysis, in which functions
are approximated by sums of trigonometric functions.
Let p and q be real numbers satisfying p < q. Let us denote by
I(p, q) the set whose elements are those real-valued functions on
the interval

{x ∈ R : p ≤ x ≤ q}

that are integrable and that have finitely many points of
discontinuity in the interval.
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We restrict attention to the case where p = 0 and q = 2π. Given
f , g ∈ I(0, 2π), we define

(f , g) =
1

π

∫ 2π

0
f (x)g(x) dx

Note that

(f + h, g) = (f , g) + (h, g) and (f , g + h) = (f , g) + (f , h)

for all f , g , h ∈ I(0, 2π). Moreover (f , g) = (g , f ), and

(cf , g) = (f , cg) = c(f , g)

for all f , g ∈ I(0, 2π) and for all real numbers c .
Also let

‖f ‖ =
√

(f , f ) =

(
1

π

∫ 2π

0
f (x)2 dx

) 1
2

.
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If f ∈ I(0, 2π), and if ‖f ‖ = 0 then either f (x) = 0 for all real
numbers x satisfying 0 ≤ x ≤ l or else the set of values of x for
which f (x) 6= 0 is a finite set whose elements are points of
discontinuity of the function f . It follows that if f , g ∈ I(0, 2π)
and if ‖f − g‖ = 0 then either f (x) = g(x) for all real numbers x
satisfying 0 ≤ x ≤ l or else the set of values of x for which
f (x) 6= g(x) is a finite set whose elements are points of
discontinuity either of the function f or else of the function g .

In general ‖f − g‖ can be regarded as a measure of the
“closeness” of the functions f and g . It is but one of many such
measures of closeness in widespread use by mathematicians.
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let cj(x) = cos jx for all non-negative integers j , and let
sj(x) = sin jx for all positive integers j . Then c0(x) = 1 for all x ,
and therefore

(c0, c0) =
1

π

∫ 2π

0
(c0(x))2 dx = 2.

Also if j is a positive integer then

(c0, cj) = (cj , c0) =
1

π

∫ 2π

0
cos jx dx = 0,

(c0, sj) = (sj , c0) =
1

π

∫ 2π

0
sin jx dx = 0.
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Next let j and k be positive integers. It follows from
Proposition 40.1 that

(cj , ck) =
1

π

∫ 2π

0
cos jx coskx dx =

{
1 if j = k ,
0 if j 6= k ,

(sj , sk) =
1

π

∫ 2π

0
sin jx sinkx dx =

{
1 if j = k ,
0 if j 6= k ,

(sj , ck) = (cj , sk) = 0



40. Introduction to Harmonic Analysis (continued)

Proposition 40.2

Let f (x) be a real-valued function of the real variable x defined for
0 ≤ x ≤ 2π. Suppose that there exist constants a0, a1, . . . , aN and
b1, b2, . . . , bN such that

f (x) = 1
2a0 +

N∑
j=1

aj cos jx +
N∑
j=1

bj sin jx

for all x. Then

aj =
1

π

∫ 2π

0
f (x) cosjx dx

for j = 0, 1, . . . ,N and

bj =
1

π

∫ 2π

0
f (x) sinjx dx

for j = 1, 2, . . . ,N.
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Proof
The function f satisfies

f (x) =
1

2
a0c0 +

N∑
k=1

akck(x) +
N∑

k=1

bksk(x),

where the functions c0, c1, . . . , cN and s1, s2, . . . , sN are defined as
described above. It follows that

(f (x), c0) = 1
2a0(c0, c0) +

N∑
k=1

aj(ck , c0) +
N∑

k=1

bk(sk , c0).

But (ck , c0) = 0 and (sk , c0) = 0 for all positive integers k . It
follows that

(f (x), c0) = 1
2a0(c0, c0) = a0.



40. Introduction to Harmonic Analysis (continued)

Next let j be a positive integer. Then

(f (x), cj) = 1
2a0(c0, cj) +

N∑
k=1

ak(ck , cj) +
N∑

k=1

bk(sk , cj).

But (c0, cj) = 0, (sk , cj) = 0 for all integers k , and (ck , cj) = 0
unless j = k. It follows that

(f (x), cj) = aj .

Similarly

(f (x), sj) = 1
2a0(c0, sj) +

N∑
k=1

ak(ck , sj) +
N∑

k=1

bk(sk , sj) = bj .

The result follows.



40. Introduction to Harmonic Analysis (continued)

Now let f (x) be an integrable function, defined for values of the
real variable x satisfying 0 ≤ x ≤ 2π, that is either continuous
throughout its domain or else has at most finitely many points of
discontinuity there. Let

p(x) = 1
2a0 +

N∑
k=1

akck(x) +
N∑

k=1

bksk(x),

where a0, a1, . . . , aN and b1, b2, . . . , bN are the Fourier coefficients
of f , determined so that a0 = (f , c0), ak = (f , ck) and bk = (f , sk)
for k = 1, 2, . . . ,N. Then

(f − p, c0) = (f , c0)− 1
2a0(c0, c0) = (f , c0)− a0 = 0,

(f − p, cj) = (f , cj)− (p, cj) = (f , cj)− aj = 0,

(f − p, sj) = (f , sj)− (p, sj) = (f , sj)− bj = 0.
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Let u0, u1, . . . , uN and v1, . . . , vN be arbitary real numbers, and let

q(x) = 1
2u0 +

N∑
k=1

ukck(x) +
N∑

k=1

vksk(x).

Then

(f −p, q) = 1
2u0(f −p, c0)+

N∑
k=1

uk(f −p, ck)+
N∑

k=1

vk(f −p, sk) = 0,

and (q, f − p) = (f − p, q) = 0. It follows that

(f − p − q, f − p − q)

= (f − p, f − p)− (f − p, q)− (q, f − p) + (q, q)

= (f − p, f − p) + (q, q).



40. Introduction to Harmonic Analysis (continued)

Thus
‖f − p − q‖2 = ‖f − p‖2 + ‖q‖2.

Now, taking ‖f − p − q‖ as a measure of the closeness of the
function p + q to the function f , we see that the function p + q is
closest to f with respect to this measure when q = 0.
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Thus if we seek to approximate f by a function of the form

p(x) = 1
2a0 +

N∑
j=1

aj cos jx +
N∑
j=1

bj sin jx ,

where coefficients a0, a1, . . . , aN and b1, b2, . . . , bN are to be
determined to as to achieve a good fit, we see that the values of
these coefficients that result in an approximating function that is
closest to the function f , where distance from f is measured by the
quantity ‖f − p‖, precisely when the coefficients a0, a1, . . . , aN and
b1, b2, . . . , bN are the Fourier coefficients of f , defined such that

aj =
1

π

∫ 2π

0
f (x) cosjx dx

for j = 0, 1, . . . ,N and

bj =
1

π

∫ 2π

0
f (x) sinjx dx

for j = 1, 2, . . . ,N.
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