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39. Ordinary Differential Equations (continued)

Example
Let us consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = (g + hx)emx

where the real numbers b, c, g , h and m are constants and
m2 + bm + c 6= 0. In this case we look for a “particular integral”
of the form

yP = (u + vx)emx .

Differentiating using the Product Rule, we find that

dyP
dx

= vemx + m(u + vx)emx = (v + mu + mvx)emx

and

d2y

dx2
= 2mvemx + m2(u + vx)emx = (2mv + m2u + m2vx)emx



39. Ordinary Differential Equations (continued)

and therefore

d2yP
dx2

+ b
dyP
dx

+ cyP

=

(
2mv + m2u + bv + (bm + c)u + (m2 + bm + c)vx

)
emx .

It follows that yP solves the differential equation if and only if

(2m + b)v + (m2 + bm + c)u = g

and
(m2 + bm + c)v = h.

Solving the second of these equations for v , we find that

v =
h

m2 + bm + c
.



39. Ordinary Differential Equations (continued)

Then solving the other equation for u, we find that

u =
1

m2 + bm + c
(g − (2m + b)v)

=
(m2 + bm + c)g − (2m + b)h

(m2 + bm + c)2

Thus

yP =
(m2 + bm + c)(g + hx)− (2m + b)h

(m2 + bm + c)2
emx .



39. Ordinary Differential Equations (continued)

The general solution of the differential equation then takes the
form

y =
(m2 + bm + c)(g + hx)− (2m + b)h

(m2 + bm + c)2
emx + yC (x).

where the complementary function yC satisfies the differential
equation

d2yC
dx2

+ b
dyC
dx

+ cyC = 0.



39. Ordinary Differential Equations (continued)

Example
Consider the differential equation

d2y

dx2
− 2

dy

dx
+ 10y = (3− 2x)e4x .

This equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = (g + hx)emx

with b = −2, c = 10, g = 3, h = −2 and m = 4. We have shown
that equations of this form have a particular integral yP that takes
the form

yP =
(m2 + bm + c)(g + hx)− (2m + b)h

(m2 + bm + c)2
emx .



39. Ordinary Differential Equations (continued)

Substituting the values of b, c , g , h and m into this equation, we
find that

m2 + bm + c = 16− 2× 4 + 10 = 18,

(2m + b)h = (2× 4− 2)× (−2) = −12,

and therefore

yP =
66− 36x

324
e4x =

(
11

54
− x

9

)
e4x .



39. Ordinary Differential Equations (continued)

Now the auxiliary polynomial z2 − 2z + 10 has roots 1 +
√
−1 3

and 1−
√
−13. It follows that the complementary function yC for

this differential equation takes the form

yC (x) = ex(A cos 3x + B sin 3x).

The general solution to the differential equation thus takes the
form

y =

(
11

54
− x

9

)
e4x + ex(A cos 3x + B sin 3x).



39. Ordinary Differential Equations (continued)

Example
Let us consider the differential equation

d2y

dx2
+ b

dy

dx
+ cy = g cos kx + h sin kx

where the real numbers b, c , g , h and k are constants.

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx .

We look for a particular integral yP of the form

yP = u cos kx + v sin kx .



39. Ordinary Differential Equations (continued)

Differentiating, we find that

dyP
dx

= kv cos kx − ku sin kx

and
d2yP
dx2

= −k2u cos kx − k2v sin kx ,

and thus

d2yP
dx2

+ b
dyP
dx

+ cyP

= ((c − k2)u + bkv) cos kx + ((c − k2)v − bku) sin kx .



39. Ordinary Differential Equations (continued)

Therefore u and v should be chosen to satisfy the equations

(c − k2)u + bkv = g and (c − k2)v − bku = h.

It follows that

bkg + (c − k2)h

= bk((c − k2)u + bkv) + (c − k2)((c − k2)v − bku)

= (b2k2 + (c − k2)2)v

(c − k2)g − bkh

= (c − k2)((c − k2)u + bkv)− bk((c − k2)v − bku)

= (b2k2 + (c − k2)2)u.



39. Ordinary Differential Equations (continued)

Thus

u =
(c − k2)g − bkh

b2k2 + (c − k2)2

and

v =
bkg + (c − k2)h

b2k2 + (c − k2)2
,

and thus

yP =
1

b2k2 + (c − k2)2

(
((c − k2)g − bkh) cos kx

+ (bkg + (c − k2)h) sin kx

)
.



39. Ordinary Differential Equations (continued)

It follows that the general solution of the differential equation

d2y

dx2
+ b

dy

dx
+ cy = g cos kx + h sin kx

takes the form

y =
1

b2k2 + (c − k2)2

(
((c − k2)g − bkh) cos kx

+ (bkg + (c − k2)h) sin kx

)
+ yC ,

where the complementary function yC satisfies the differential
equation

d2yC
dx2

+ b
dyC
dx

+ cyC = 0.



39. Ordinary Differential Equations (continued)

Example
Consider the differential equation

d2y

dx2
− 6

dy

dx
+ 9y = 3 cos 2x + 4 sin 2x .

This equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = g cos kx + h sin kx

with b = −6, c = 9, k = 2, g = 3 and h = 4. We have shown that
equations of this form have a particular integral yP that takes the
form

yP =
1

b2k2 + (c − k2)2

(
((c − k2)g − bkh) cos kx

+ (bkg + (c − k2)h) sin kx

)
.



39. Ordinary Differential Equations (continued)

Substituting the values of b, c , k , g and h into this equation, we
find that

bk = −12

c − k2 = 9− 4 = 5

b2k2 + (c − k2)2 = 144 + 25 = 169,

(c − k2)g − bkh = 5× 3− (−12)× 4 = 15 + 48 = 63,

bkg + (c − k2)h = (−12)× 3 + 5× 4 = −36 + 20 = −16.

and therefore

yP =
1

169
(63 cos 2x − 16 sin 2x) .



39. Ordinary Differential Equations (continued)

Now the auxiliary polynomial z2 − 6z + 9 has a repeated root with
value 3. It follows that the complementary function yC for this
differential equation takes the form

yC (x) = (A + Bx)e3x .

The general solution to the differential equation thus takes the
form

y =
1

169
(63 cos 2x − 16 sin 2x) + (A + Bx)e3x .
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