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39. Ordinary Differential Equations (continued)

Let x and y be real variables, where the value of y is expressible as
a function of the independent real variable x as x varies over some
open interval I . We say that y satisfies a ordinary differential
equation of second order in x if there exists a function H of four
real variables with the property that

H

(
d2y

dx2
,
dy

dx
, y , x

)
= 0

for all real values of x in the appropriate range within which which
the independent variable x takes its values.



39. Ordinary Differential Equations (continued)

We next prove results that determine all solutions of second order
differential equations of the form

d2y

dx2
+ b

dy

dx
+ cy = 0

where b and c are constants. These results show that solutions can
be determined directly once the roots of the auxiliary polynomial
z2 + bz + c have been determined.



39. Ordinary Differential Equations (continued)

Proposition 39.2

Let b and c be real number, and let x be an independent real
variable that takes values in an open interval I . Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x , that satisfies the second order
differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0

throughout the open interval I . Suppose that the quadratic
polynomial z2 + bz + c has two distinct real roots r and s. Then
there exist real constants A and B such that

y(x) = Aerx + Besx .



39. Ordinary Differential Equations (continued)

Proof
Let u(x) = y(x)e−rx for all x ∈ I . Then y(x) = x(x)erx for all
x ∈ I . Differentiating y(x) with respect to x using the product
rule, we find that

dy

dx
=

(
du

dx
+ ru

)
erx ,

d2y

dx2
=

(
d2u

dx2
+ 2r

du

dx
+ r2u

)
erx .

It follows that

0 =
d2y

dx2
+ b

dy

dx
+ cy

=

(
d2u

dx2
+ (2r + b)

du

dx
+ (r2 + br + c)u

)
erx .



39. Ordinary Differential Equations (continued)

But r has been chosen so as to satisfy the quadratic equation
r2 + br + c = 0. It follows that

d2u

dx2
+ (2r + b)

du

dx
= 0.

Thus if v =
du

dx
then

dv

dx
+ (2r + b)v = 0.

Now z2 + bz + c = (z − r)(z − s) = z2 − (r + s)z + rs. It follows
that b = −(r + s), and therefore 2r + b = r − s. Thus

dv

dx
− (s − r)v = 0.



39. Ordinary Differential Equations (continued)

It follows from Corollary 39.1 that there exists a constant B such
that

v(x) = (s − r)Be(s−r)x .

Integrative the function v(x) in order to determine u(x), we find
that there exist constants A and B such that

u(x) = A + Be(s−r)x .

But then
y(x) = Aerx + Besx ,

as required.



39. Ordinary Differential Equations (continued)

Proposition 39.3

Let b and c be real number, and let x be an independent real
variable that takes values in an open interval I . Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x , that satisfies the second order
differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0

throughout the open interval I . Suppose that the quadratic
polynomial z2 + bz + c has a repeated real root r . Then there
exist real constants A and B such that

y(x) = (A + Bx)erx .



39. Ordinary Differential Equations (continued)

Proof
Let u(x) = y(x)e−rx for all x ∈ I . Then y(x) = x(x)erx for all
x ∈ I . Repeating the calculation in the proof of Proposition 39.2,
we find that

d2u

dx2
+ (2r + b)

du

dx
= 0.

Moreover z2 + bz + c = (z − r)2 (because r is a repeated root of
the quadratic polynomial on the left hand side of this equation)
and therefore b = −2r . It follows that

d2u

dx2
= 0,

and therefore u(x) = A + Bx , where A and B are real constants. It
follows that y(x) = (A + Bx)erx , as required.



39. Ordinary Differential Equations (continued)

Theorem 39.3

Let k be a positive real number, and let x be an independent real
variable that takes values in an open interval I . Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x , that satisfies the second order
differential equation

d2y

dx2
+ k2y = 0

throughout the open interval I . Then there exist real constants A
and B such that

y = A cos kx + B sin kx

throughout the open interval I .



39. Ordinary Differential Equations (continued)

Proof
We first prove the result in the special case where cos kx 6= 0 for
all x ∈ I . In this case we can express y in terms of another real
variable u, where u is a twice-differentiable function of x and
y(x) = u(x) cos kx for all x ∈ I . Now

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx .

On applying the Product Rule of differential calculus, we find that
if y = u cos kx then

dy

dx
=

du

dx
cos kx − ku sin kx .



39. Ordinary Differential Equations (continued)

On differentiating again, we find that

d2y

dx2
=

d

dx

(
du

dx
cos kx

)
− k

d

dx
(u sin kx)

=
d

dx

(
du

dx

)
cos kx +

du

dx

d

dx
(cos kx)

− k
du

dx
sin kx − ku

d

dx
(sin kx)

=
d2u

dx2
cos kx − 2k

du

dx
sin kx − k2u cos kx

=
d2u

dx2
cos kx − 2k

du

dx
sin kx − k2y .



39. Ordinary Differential Equations (continued)

Thus y satisfies the differential equation

d2y

dx2
+ k2y = 0

if and only if y = u cos kx , where

d2u

dx2
cos kx − 2k

du

dx
sin kx = 0.



39. Ordinary Differential Equations (continued)

Now let

v =
du

dx
cos2 kx

(where cos2 kx = (cos kx)2). It then follows from the Product Rule
of differential calculus that

dv

dx
=

d2u

dx2
cos2 kx − 2k

du

dx
cos kx sin kx

=

(
d2u

dx2
cos kx − 2k

du

dx
sin kx

)
cos kx .



39. Ordinary Differential Equations (continued)

Now cos kx 6= 0 for all x ∈ I . It follows that

d2u

dx2
cos kx − 2k

du

dx
sin kx = 0

for all x ∈ I if and only if

dv

dx
= 0

for all x ∈ I . However this is the case if and only if v = Bk for all
x ∈ I , where B is a real constant, in which case

du

dx
=

Bk

cos2 kx

for all x ∈ I .



39. Ordinary Differential Equations (continued)

We conclude that y satisfies the differential equation

d2y

dx2
+ k2y = 0

on the open interval I , where cos kx 6= 0 for all x ∈ I , if and only if
y = u cos kx on I , where

du

dx
=

Bk

cos2 kx
.

Now it follows from the Quotient Rule of differential calculus that

d

dx

(
sin kx

cos kx

)
=

d

dx
(sin kx) cos kx − sin kx

d

dx
(cos kx)

cos2 kx

=
k cos2 kx + k sin2 kx

cos2 kx
=

k

cos2 kx

(where we have used the fact that sin2 θ + cos2 θ = 1 for all real
numbers θ).



39. Ordinary Differential Equations (continued)

It follows that a variable u expressible as a differentiable function
of x on the open interval I satisfies

du

dx
=

Bk

cos2 kx

throughout that open interval if and only if

d

dx

(
u − B sin kx

cos kx

)
= 0,

in which case

u = A +
B sin kx

cos kx

for some constant A.



39. Ordinary Differential Equations (continued)

We have thus shown that if k is a real number, and if y is a
twice-differentiable function of an independent real variable x ,
where x varies over an open interval I and cos kx 6= 0 for all x ∈ I ,
then y satisfies the differential equation

d2y

dx2
+ k2y = 0

if and only if
y = A cos kx + B sin kx

for all values of the independent variable x belonging to the open
interval I .



39. Ordinary Differential Equations (continued)

We now extend the result to cases where the open interval I
includes values of x for which cos kx = 0. Let s ∈ I satisfy
cos ks = 0, and let I1 and I2 be open subintervals of I that are of
the form

I1 = {x ∈ R : a < x < s}, I2 = {x ∈ R : s < x < b},

where a is chosen close enough to s to ensure that cos kx 6= 0 for
all x ∈ I1 and b is chosen close enough to s to ensure that
cos kx 6= 0 for all x ∈ I2. Let y be a twice-differentiable function of
x for a < x < b that satisfies the differential equation

d2y

dx2
+ k2y = 0.

Then there exist constants A1, B1, A2 and B2 such that

y = A1 cos kx + B1 sin kx for all x ∈ I1

y = A2 cos kx + B2 sin kx for all x ∈ I2



39. Ordinary Differential Equations (continued)

Then cos ks = 0 and sin ks = ±1. It follows from the continuity
and differentiability of y with respect to x that

B1 sin ks = lim
x→s

y = B2 sin ks

and

A1 sin ks = lim
x→s

dy

dx
= B2 sin ks,

and thus A1 = A2 and B1 = B2. We have thus shown that the
coefficients of cos kx and sin kx that determine y as a function of x
match up on both sides of points s of the open interval I at which
cos ks = 0. It follows that there exist constants A and B such that

y = A cos kx + B sin kx

for all values of the independent variable x belonging to the open
interval I , as required.
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