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39. Ordinary Differential Equations (continued)

Let x and y be real variables, where the value of y is expressible as
a function of the independent real variable x as x varies over some
open interval /. We say that y satisfies a ordinary differential
equation of second order in x if there exists a function H of four
real variables with the property that

d’y dy
H <dx2’dx’y’x> =0

for all real values of x in the appropriate range within which which
the independent variable x takes its values.



39. Ordinary Differential Equations (continued)

We next prove results that determine all solutions of second order
differential equations of the form

d’y  dy

——5+b—+cy=0

dx? ax Y
where b and c are constants. These results show that solutions can
be determined directly once the roots of the auxiliary polynomial
2% + bz + c have been determined.



39. Ordinary Differential Equations (continued)

Proposition 39.2

Let b and c be real number, and let x be an independent real
variable that takes values in an open interval |. Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x, that satisfies the second order
differential equation

d’y  dy

— + b— =0

dx? + dx toy
throughout the open interval |I. Suppose that the quadratic
polynomial z? 4+ bz + ¢ has two distinct real roots r and s. Then
there exist real constants A and B such that

y(x) = Ae™ 4 Be®™.




39. Ordinary Differential Equations (continued)

Proof
Let u(x) = y(x)e™™ for all x € I. Then y(x) = x(x)e™ for all

x € I. Differentiating y(x) with respect to x using the product
rule, we find that

ﬂ = du+r e’
dx dx Y
d?y d%u du
Bz <d2+2d+”>e
It follows that
d?y  dy
0 = ﬁ"—baﬁ‘Cy

2

B d<u 2 rx
= <dx+(2r—|—b) + (r +br+c)u>e .



39. Ordinary Differential Equations (continued)

But r has been chosen so as to satisfy the quadratic equation
r> + br + ¢ = 0. It follows that

2

el + (2r +b)—

Thus if v = @ then
dx

%+(2r+b)v:0.

Now z2 4+ bz +c = (z—r)(z —s) = 22 — (r + s)z + rs. It follows
that b = —(r + s), and therefore 2r + b =r —s. Thus

—(s—r)v=0.



39. Ordinary Differential Equations (continued)

It follows from Corollary 39.1 that there exists a constant B such
that
v(x) = (s — r)Bels=nx,

Integrative the function v(x) in order to determine u(x), we find
that there exist constants A and B such that

u(x) = A+ Bels=nx,

But then
y(x) = Ae™ + Be™,|

as required. |



39. Ordinary Differential Equations (continued)

Proposition 39.3

Let b and c be real number, and let x be an independent real
variable that takes values in an open interval |. Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x, that satisfies the second order
differential equation

d’y  dy

— + b— =0

32 Vg Y
throughout the open interval |I. Suppose that the quadratic
polynomial z? 4+ bz + ¢ has a repeated real root r. Then there
exist real constants A and B such that

y(x) = (A+ Bx)e™.




39. Ordinary Differential Equations (continued)

Proof
Let u(x) = y(x)e™™ for all x € I. Then y(x) = x(x)e™ for all
x € |. Repeating the calculation in the proof of Proposition 39.2,

we find that )

u
a2
Moreover z2 + bz + ¢ = (z — r)? (because r is a repeated root of

the quadratic polynomial on the left hand side of this equation)
and therefore b = —2r. It follows that

+ (2r+ b)—

d%u

prela

and therefore u(x) = A+ Bx, where A and B are real constants. It
follows that y(x) = (A+ Bx)e™, as required. |}



39. Ordinary Differential Equations (continued)

Theorem 39.3

Let k be a positive real number, and let x be an independent real
variable that takes values in an open interval |. Let y be a real
variable, expressible as a twice-differentiable function of the
independent real variable x, that satisfies the second order

differential equation

Py o

— + ky=0

dx? TRy
throughout the open interval |I. Then there exist real constants A
and B such that

y = Acos kx + B sin kx

throughout the open interval I.




39. Ordinary Differential Equations (continued)

Proof

We first prove the result in the special case where cos kx # 0 for
all x € I. In this case we can express y in terms of another real
variable u, where u is a twice-differentiable function of x and
y(x) = u(x) cos kx for all x € . Now

d d
o (cos kx) = —ksin kx and e (sin kx) = k cos kx.
On applying the Product Rule of differential calculus, we find that
if y = u cos kx then

dy du

- dx cos kx — ku sin kx.



39. Ordinary Differential Equations (continued)

On differentiating again, we find that

i(}; = dix (cdbL: cos kx> — kdi:( (u sin kx)
= dix (Zi) coskx—f—%d%'((coskx)
— k% sin kx — ku % (sin kx)
= C::(Z cos kx—2kd—i sin kx — k2u cos kx
Pu

du . >
= I coskx—2k& sinkx — k“y.



39. Ordinary Differential Equations (continued)

Thus y satisfies the differential equation

d?y
— 2+ Ky =0
dx? TRy

if and only if y = u cos kx, where

d2

d—g cos kx — 2k$ sin kx = 0.
Ix Ix



39. Ordinary Differential Equations (continued)

Now let d

v = d—i cos? kx
(where cos? kx = (cos kx)?). It then follows from the Product Rule
of differential calculus that

dv d%u

= —— cos® kx — k@ cos kx sin kx

dx dx2 dx

2
= <Z ;I cos kx — k# sin kx> cos kx.
Ix X



39. Ordinary Differential Equations (continued)

Now cos kx # 0 for all x € /. It follows that

d?u du
) coskx—2kd— sinkx =0

for all x € I if and only if
dv

dx
for all x € I. However this is the case if and only if v = Bk for all
x € I, where B is a real constant, in which case

du Bk
dx  cos? kx

for all x € I.



39. Ordinary Differential Equations (continued)

We conclude that y satisfies the differential equation

&y

dx?
on the open interval I, where cos kx # 0 for all x € /, if and only if
y = ucos kx on I, where

+ k?y =0

du Bk
dx  cos? kx'

Now it follows from the Quotient Rule of differential calculus that

d , . ) d
d ( sinkx & (sin kx) cos kx — sin kx o (cos kx)
dx \ cos kx cos? kx
B k cos? kx + k sin? kx B k
a cos? kx ~ cos? kx

(where we have used the fact that sin?§ + cos? = 1 for all real
numbers 6).



39. Ordinary Differential Equations (continued)

It follows that a variable u expressible as a differentiable function
of x on the open interval [ satisfies

du Bk

dx  cos? kx

throughout that open interval if and only if
i o Bsinkx\ 0
dx coskx )

B sin kx
cos kx

in which case
u=A+

for some constant A.



39. Ordinary Differential Equations (continued)

We have thus shown that if k is a real number, and if y is a
twice-differentiable function of an independent real variable x,
where x varies over an open interval I and cos kx # 0 for all x € I,
then y satisfies the differential equation

&y

dx? +k2y:0

if and only if
y = Acos kx + Bsin kx

for all values of the independent variable x belonging to the open
interval /.



39. Ordinary Differential Equations (continued)

We now extend the result to cases where the open interval /
includes values of x for which cos kx = 0. Let s € [ satisfy

cos ks = 0, and let /; and h be open subintervals of / that are of
the form

h={xeR:a<x<s}, h={xeR:s<x<b},

where a is chosen close enough to s to ensure that cos kx # 0 for
all x € b and b is chosen close enough to s to ensure that
cos kx # 0 for all x € k. Let y be a twice-differentiable function of
x for a < x < b that satisfies the differential equation

d?y
dx?

Then there exist constants A1, B1, A> and B> such that

+k2y:0.

y = Ajcoskx + Bysinkx forall x € )y

y = Ascoskx + Bysinkx for all x € I



39. Ordinary Differential Equations (continued)

Then cos ks = 0 and sin ks = 1. It follows from the continuity
and differentiability of y with respect to x that

Bisinks = lim y = By sin ks
X—S

and

d
Arsinks = lim & = Bysinks,
x—s dx

and thus A; = A, and By = B>. We have thus shown that the

coefficients of cos kx and sin kx that determine y as a function of x
match up on both sides of points s of the open interval I at which
cos ks = 0. It follows that there exist constants A and B such that

y = Acos kx + Bsin kx

for all values of the independent variable x belonging to the open
interval /, as required. |}
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