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39. Ordinary Differential Equations

39. Ordinary Differential Equations

We consider differential equations satisfied by real variables in
situations where some real variable y is expressible as a
differentiable function of a real variable x , where x takes values in
some specified range. In such situations, the real variable x is said
to be the independent real variable, and the variable y whose
values are determined by the corresponding values of x is said to
be a dependent real variable.



39. Ordinary Differential Equations (continued)

The independent real variable x will typically vary over an open
interval. A subset I of the real numbers is said to be an open
interval if it takes one of the following four forms:—

(i) I = R;

(ii) I = {x ∈ R : x > a}, where a is some specified real constant;

(iii) I = {x ∈ R : x < b}, where b is some specified real constant;

(iv) I = {x ∈ R : a < x < b}, where a and b are specified real
constants.

Note that if I is an open interval, and if u and v are real numbers
belonging to I , then x ∈ I for all real numbers x satisfying
u < x < v .



39. Ordinary Differential Equations (continued)

Let x and y be real variables, where the value of y depends on the
the value of x , so y = h(x) for all values of x in some specified
range, where h(x) is a differentiable function of x . In this situation
we regard x as an independent real variable, and regard y to be a
dependent real variable whose value depends on that of the
independent variable x . For instance it may be the case that

y = x3 for all real values of the independent variable x , or y =
1

x
for all positive values of the independent variable x . We say that y
satisfies a ordinary differential equation of first order in x if there
exists a function H of three real variables with the property that

H

(
dy

dx
, y , x

)
= 0

for all real values of x in the appropriate range within which which
the independent variable x takes its values.



39. Ordinary Differential Equations (continued)

Example
Let y = e3x for all real numbers x . Then y satisfies the first order
differential equation

dy

dx
− 3y = 0.

Example
Let y = x2 for all real numbers x . Then y satisfies the first order
differential equation (

dy

dx

)2

− 4y = 0.



39. Ordinary Differential Equations (continued)

Example

Let y =
1

x2
for all positive real numbers x . Then y satisfies the

first order differential equation(
dy

dx

)2

− 4y3 = 0,

where the independent real variable x ranges over the set of
positive real numbers. Indeed

dy

dx
= − 2

x3
,

and therefore (
dy

dx

)2

=
4

x6
= 4y3

for all positive real numbers x .



39. Ordinary Differential Equations (continued)

Example
Let y = sin 4x for all real number x . Then y satisfies the first
order differential equation(

dy

dx

)2

+ 16y2 − 16 = 0.

Indeed
dy

dx
= 4 cos 4x , and therefore

(
dy

dx

)2

+ 16y2 − 16 = 16 cos2 4x + 16 sin2 4x − 16 = 0,

(We use here the trigonometrical identity that ensures that
cos2 θ + sin2 θ = 1 for all real numbers θ.)



39. Ordinary Differential Equations (continued)

Let f (x) be a continuous function of the independent real variable
x , let c be a real number, and let y be a real variable that satisfies
the differential equation

dy

dx
+ cy = f (x).

We seek to determine y as a function of the independent
variable x .

Suppose that y is expressed in the form y(x) = u(x)erx , where r is
a constant and u is a differentiable function of the independent
variable x . It follows from the Product Rule of differential calculus
that

dy

dx
=

du

dx
erx + u

d

dx
(erx) =

du

dx
erx + ruerx .



39. Ordinary Differential Equations (continued)

It follows that

dy

dx
+ cy =

(
du

dx
+ (c + r)u

)
erx ,

Thus the function y of x satisfies the given differential equation

dy

dx
+ cy = f (x).

if and only if y(x) = u(x)erx , where u(x) is a differentiable
function of the independent variable x that satisfies the differential
equation

du

dx
+ (c + r)u = f (x)e−rx .



39. Ordinary Differential Equations (continued)

The value of the constant r has not so far been chosen. Suppose
we take r = −c . We conclude that y satisfies the given differential
equation

dy

dx
+ cy = f (x).

if and only if y(x) = u(x)e−cx , where u satisfies the differential
equation

du

dx
= f (x)ecx .



39. Ordinary Differential Equations (continued)

Proposition 39.1

Let I be an open interval, let x be an independent real variable
which ranges over the open interval I , let c be a constant, let f (x)
be a continuous function of x on the interval I , and let y be a
dependent variable expressible as a differentiable function of the
independent variable x. Let g(x) be a function of x that satisfies

g(x) =

∫
f (x)ecx dx .

Then the dependent variable y satisfies the differential equation

dy

dx
+ cy = f (x)

if and only if y = g(x)e−cx + Ae−cx for all x ∈ I , where A is some
real constant.



39. Ordinary Differential Equations (continued)

Proof
Let

g(x) =

∫
f (x)ecx dx .

(In other words, let g(x) be any function of x whose derivative
with respect to x is equal to the function f (x)ecx .) Then u
satisfies the differential equation

du

dx
= f (x)ecx

if and only if
d

dx
(u(x)− g(x)) = 0,

and moreover this is the case if and only if u(x) = g(x) + A for
some real constant A.



39. Ordinary Differential Equations (continued)

It follows that the dependent variable y satisfies the differential
equation

dy

dx
+ cy = f (x)

if and only if
y(x) = g(x)e−cx + Ae−cx ,

where A is a real constant. The result follows.



39. Ordinary Differential Equations (continued)

Corollary 39.1

Let y be a real variable expressible as a differentiable function of
an independent real variable x. Then the dependent real variable y
satisfies the differential equation

dy

dx
+ cy = 0,

where c is a real constant, if and only if there exists some real
constant A for which

y(x) = Ae−cx .

Proof
This follows from Proposition 39.1 on setting the function f (x) in
the statement of that proposition equal to the zero function.



39. Ordinary Differential Equations (continued)

Corollary 39.2

Let f (x) be a continuous function of f defined over an open
interval I , let c be a real constant, and Let y1 and y2 be real
variables dependent on an independent real variable x that ranges
over the open interval I . Suppose that the first order differential
equation

dy

dx
+ cy = f (x)

both when y = y1 and also when y = y2. Then there exists a real
constant A such that y2 = y1 + Ae−cx .



39. Ordinary Differential Equations (continued)

Proof
The dependent variables y1 and y2 satisfy

dy1
dx

+ cy1 = f (x) and
dy2
dx

+ cy2 = f (x).

Let u = y2 − y1. Then

du

dx
+ cu =

(
dy2
dx

+ cy2

)
−
(
dy1
dx

+ cy1

)
= 0.

It follows from Corollary 39.1 that there exists some real
constant A such that u = Ae−cx for all x ∈ I . Then
y2 = y1 + Ae−cx , as required.



39. Ordinary Differential Equations (continued)

Example
Let us consider the differential equation

dy

dx
+ cy = g + hx + kx2

where the real numbers c , g , h and k are constants and c 6= 0.
This differential equation could be solved by applying the result of
Proposition 39.1 and evaluating the resulting integral.
We shall however solve this differential equation by an alternative
method, suitable in situations where the right hand side of the
differential equation is a “forcing function” that is a polynomial in
the independent variable x .
In this case we look for a “particular integral” that takes the form
of a polynomial of the same degree as that occurring on the right
hand side of the given differential equation.



39. Ordinary Differential Equations (continued)

Thus in this case we look for a solution yP satisfying the
differential equation

dyP
dx

+ cyP = g + hx + kx2

that takes the form

yP = u + vx + wx2.

Differentiating, we find that

dyP
dx

= v + 2wx .

It follows that

dyP
dx

+ cyP = (v + cs) + (2w + cv)x + cwx2.



39. Ordinary Differential Equations (continued)

Thus a quadratic polynomial yP of the form yP = u + vx + wx2

satisfies the differential equation

dyP
dx

+ cyP = g + hx + kx2

if and only if

v + cu + (2u + cv)x + cwx2 = g + hx + kx2

for all values of the independent variable x . This is the case if and
only if the coefficients of the quadratic polynomial on the left hand
side are equal to the corresponding coefficients of the quadratic
polynomial on the right hand side. Thus yP is the required
“particular integral” if and only if

t + cs = g , 2w + cv = h and cw = k .



39. Ordinary Differential Equations (continued)

Substituting w =
k

c
into the equation 2w + cv = h, we find that

v =
1

c
(h − 2w) =

1

c2
(ch − 2k).

If we then substitute this formula for t into the equation
v + cu = g , we find that

u =
1

c
(g − v) =

1

c3
(c2g − ch + 2k).

Thus

yP =
1

c3
(
c2g − ch + 2k + (c2h − 2ck)x + c2kx2

)
.



39. Ordinary Differential Equations (continued)

Now the quadratic polynomial yP is just one of the solutions of the
given differential equation. It follows from Corollary 39.2 that the
other solutions of the differential equation

dy

dx
+ cy = g + hx + kx2

take the form
y = yP + Ae−cx ,

where A is an arbitrary real constant. Thus the general solution of
this differential equation takes the form

y(x) =
1

c3
(
c2g − ch + 2k + (c2h − 2ck)x + c2kx2

)
+ Ae−cx .



39. Ordinary Differential Equations (continued)

The term Ae−cx is often referred to as the “complementary
function”. It is the function that needs to be added to one solution
to the differential equation to obtain other solutions. The general
solution of the differential equation is the sum of the particular
integral and the complementary function. The real constants c , g ,
h and k in the general solution are fixed constants determined by
the differential equation. The real constant A takes different values
for different solutions of the differential equation.



39. Ordinary Differential Equations (continued)

The solution can be verified on the Wolfram Alpha website at

http://www.wolframalpha.com/

by entering the string

y’ + cy = g + hx + kx^2

into the search box.

The general solution of other differential equations of the form

dy

dx
+ cy = f (x)

can also be expressed as the sum of a particular integral and a
complementary function.



39. Ordinary Differential Equations (continued)

Example
Let us consider the differential equation

dy

dx
+ cy = (g + hx)emx

where the real numbers c , g , h and m are constants and
m + c 6= 0. In this case we look for a “particular integral” of the
form

yP = (u + vx)emx .

Differentiating using the Product Rule, we find that

dyP
dx

= vemx + m(u + vx)emx = (v + mu + mvx)emx

and therefore

dyP
dx

+ cyP = (v + (m + c)u + (m + c)vx)emx



39. Ordinary Differential Equations (continued)

It follows that yP solves the differential equation if and only if

v + (m + c)u = g and (m + c)v = h.

Solving the second of these equations for v , we find that

v =
h

m + c
.

Then solving the other equation for u, we find that

u =
1

m + c
(g − v) =

1

(m + c)2
((m + c)g − h).

Thus

yP =
1

(m + c)2
((m + c)(g + hx)− h)emx .



39. Ordinary Differential Equations (continued)

It follows that the general solution of the differential equation

dy

dx
+ cy = (g + hx)emx

(when c + m 6= 0) takes the form

y =
1

(m + c)2
((m + c)(g + hx)− h)emx + Ae−cx .

The solution can be verified on the Wolfram Alpha website at

http://www.wolframalpha.com/

by entering the string

y’ + cy = (g + hx) e^(mx)

into the search box.



39. Ordinary Differential Equations (continued)

Example
Let us consider the differential equation

dy

dx
+ cy = g cos kx + h sin kx

where the real numbers c , g , h and k are constants.

d

dx
(cos kx) = −k sin kx and

d

dx
(sin kx) = k cos kx .

We look for a particular integral yP of the form

yP = u cos kx + v sin kx .

Differentiating, we find that

dyP
dx

+ cyP = (cu + kv) cos kx + (cv − ku) sin kx .



39. Ordinary Differential Equations (continued)

Therefore u and v should be chosen to satisfy the equations

cu + kv = g and cv − ku = h.

It follows that

kg + ch = k(cu + kv) + c(cv − ku) = (k2 + c2)v

and

cg − kh = c(cu + kv)− k(cv − ku) = (k2 + c2)u.

Thus

u =
cg − kh

k2 + c2
and v =

kg + ch

k2 + c2
,

and thus

yP =
1

k2 + c2
((cg − kh) cos kx + (kg + ch) sin kx) .



39. Ordinary Differential Equations (continued)

It follows that the general solution of the differential equation

dy

dx
+ cy = g cos kx + h sin kx

takes the form

y =
1

k2 + c2
((cg − kh) cos kx + (kg + ch) sin kx) + Ae−cx .
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