MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 49 (February 26, 2016)

David R. Wilkins

Example

We shall find the equation of the plane containing the points A, Band C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if $\mathbf{u} = \overrightarrow{AB} = (1, 2, 0)$ and $\mathbf{v} = \overrightarrow{AC} = (0, 1, 2)$ then the vectors \mathbf{u} and **v** are parallel to the plane. It follows that the vector $\mathbf{u} \times \mathbf{v}$ is perpendicular to this plane. Now $\mathbf{u} \times \mathbf{v} = (4, -2, 1)$, and therefore the displacement vector between any two points of the plane must be perpendicular to the vector (4, -2, 1). It follows that the function mapping the point (x, y, z) to the quantity 4x - 2y + zmust be constant throughout the plane. Thus the equation of the plane takes the form

$$4x - 2y + z = k,$$

for some constant k.

We can calculate the value of k by substituting for x, y and z the coordinates of any chosen point of the plane. On taking this chosen point to be the point A, we find that $k = 4 \times 3 - 2 \times 4 + 1 = 5$. Thus the equation of the plane is the following:

$$4x - 2y + z = 5.$$

(We can check our result by verifying that the coordinates of the points A, B and C do indeed satisfy this equation.)

38.4. Scalar Triple Products

Given three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in three-dimensional space, we can form the *scalar triple product* $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. This quantity can be expressed as the determinant of a 3×3 matrix whose rows contain the Cartesian components of the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} . Indeed

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1),$$

and thus

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = u_1(v_2 w_3 - v_3 w_2) + u_2(v_3 w_1 - v_1 w_3) + u_3(v_1 w_2 - v_2 w_1).$$

The quantity on the right hand side of this equality defines the determinant of the 3 \times 3 matrix

$$\left(\begin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{array}\right)$$

We have therefore obtained the following result.

Lemma 38.2

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in three-dimensional space. Then

$${f u} \,.\, ({f v} imes {f w}) = egin{bmatrix} u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ w_1 & w_2 & w_3 \end{bmatrix}$$

Using basic properties of determinants, or by direct calculation, one can easily obtain the identities

$$\begin{array}{rcl} u \,.\, (v \times w) &=& v \,.\, (w \times u) = w \,.\, (u \times v) \\ &=& -u \,.\, (w \times v) = -v \,.\, (u \times w) = -w \,.\, (v \times u) \end{array}$$

One can show that the absolute value of the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is the volume of the parallelepiped in three-dimensional space whose vertices are the points whose displacement vectors from some fixed point *O* are $\mathbf{0}$, \mathbf{u} , \mathbf{v} , \mathbf{w} , $\mathbf{u} + \mathbf{v}$, $\mathbf{u} + \mathbf{w}$, $\mathbf{v} + \mathbf{w}$ and $\mathbf{u} + \mathbf{v} + \mathbf{w}$. (A *parallelepiped* is a solid like a brick, but whereas the faces of a brick are rectangles, the faces of the parallelepiped are parallelograms.)

Example

We shall find the volume of the parallelepiped in 3-dimensional space with vertices at (0,0,0), (1,2,0), (-4,2,-5), (0,1,1), (-3,4,-5), (1,3,1), (-4,3,-4) and (-3,5,-4). The volume of this parallelepiped is the absolute value of the scalar triple product **u** . (**v** × **w**), where

$$\mathbf{u} = (1, 2, 0), \quad \mathbf{v} = (-4, 2, -5), \quad \mathbf{w} = (0, 1, 1).$$

Now

$$\begin{array}{lll} \textbf{u} . (\textbf{v} \times \textbf{w}) &=& (1,2,0) . \left(\, (-4,2,-5) \times (0,1,1) \, \right) \\ &=& (1,2,0) . \, (7,4,-4) = 7+2 \times 4 = 15. \end{array}$$

Thus the volume of the paralellepiped is 15 units.

38. Scalar and Vector Products in Three Dimensions (continued)

38.5. The Vector Triple Product Identity

Proposition 38.3

Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in three-dimensional space. Then

$$\mathbf{u} imes (\mathbf{v} imes \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}.$$

Proof

Let
$$\mathbf{q} = \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$$
, and let $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$,
 $\mathbf{w} = (w_1, w_2, w_3)$, and $\mathbf{q} = (q_1, q_2, q_3)$. Then

$$\mathbf{v} \times \mathbf{w} = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1).$$

and hence $\mathbf{u} imes (\mathbf{v} imes \mathbf{w}) = \mathbf{q} = (q_1, q_2, q_3)$, where

38. Scalar and Vector Products in Three Dimensions (continued)

$$q_{1} = u_{2}(v_{1}w_{2} - v_{2}w_{1}) - u_{3}(v_{3}w_{1} - v_{1}w_{3})$$

$$= (u_{2}w_{2} + u_{3}w_{3})v_{1} - (u_{2}v_{2} + u_{3}v_{3})w_{1}$$

$$= (u_{1}w_{1} + u_{2}w_{2} + u_{3}w_{3})v_{1} - (u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3})w_{1}$$

$$= (\mathbf{u} \cdot \mathbf{w})v_{1} - (\mathbf{u} \cdot \mathbf{v})w_{1}$$

Similarly

$$q_2 = (\mathbf{u} \cdot \mathbf{w})v_2 - (\mathbf{u} \cdot \mathbf{v})w_2$$

and

$$q_3 = (\mathbf{u} \cdot \mathbf{w})v_3 - (\mathbf{u} \cdot \mathbf{v})w_3$$

(In order to verify the formula for q_2 with an minimum of calculation, take the formulae above involving q_1 , and cyclicly permute the subcripts 1, 2 and 3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation of these subscripts yields the formula for q_3 .) It follows that

$$\mathbf{q} = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w},$$

as required, since we have shown that the Cartesian components of the vectors on either side of this identity are equal.

38.6. Orthonormal Triads of Unit Vectors

Let **u** and **v** be unit vectors (i.e., vectors of length one) that are perpendicular to each other, and let $\mathbf{w} = \mathbf{u} \times \mathbf{v}$. It follows immediately from Proposition 38.2 that $|\mathbf{w}| = |\mathbf{u}| |\mathbf{v}| = 1$, and that this unit vector **w** is perpendicular to both **u** and **v**. Then

$$\mathbf{u}$$
 . $\mathbf{u} = \mathbf{v}$. $\mathbf{v} = \mathbf{w}$. $\mathbf{w} = 1$

and

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{u} = 0.$$

On applying the Vector Triple Product Identity (Proposition 38.3) we find that

$$\mathbf{v} \times \mathbf{w} = \mathbf{v} \times (\mathbf{u} \times \mathbf{v}) = (\mathbf{v} \cdot \mathbf{v}) \mathbf{u} - (\mathbf{v} \cdot \mathbf{u}) \mathbf{v} = \mathbf{u},$$

and

$$\mathbf{w} \times \mathbf{u} = -\mathbf{u} \times \mathbf{w} = -\mathbf{u} \times (\mathbf{u} \times \mathbf{v}) = -(\mathbf{u} \cdot \mathbf{v}) \mathbf{u} + (\mathbf{u} \cdot \mathbf{u}) \mathbf{v} = \mathbf{v},$$

Therefore

 $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u} = \mathbf{w}, \quad \mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v} = \mathbf{u}, \quad \mathbf{w} \times \mathbf{u} = -\mathbf{u} \times \mathbf{w} = \mathbf{v},$

Three unit vectors, such as the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} above, that are mutually perpendicular, are referred to as an *orthonormal triad* of vectors in three-dimensional space. The vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in any orthonormal triad are linearly independent. It follows directly from Theorem 36.2 that any vector in three-dimensional space may be expressed, uniquely, as a linear combination of the form

 $p\mathbf{u} + q\mathbf{v} + r\mathbf{w}$.

Any Cartesian coordinate system on three-dimensional space determines an orthonormal triad \mathbf{i} , \mathbf{j} and \mathbf{k} , where

$$\mathbf{i} = (1, 0, 0), \quad \mathbf{j} = (0, 1, 0), \quad \mathbf{k} = (0, 0, 1).$$

The scalar and vector products of these vectors satisfy the same relations as the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} above. A vector represented in these Cartesian components by an ordered triple (x, y, z) then satisfies the identity

$$(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$