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38. Scalar and Vector Products in Three Dimensions (continued)

Example
We shall find the equation of the plane containing the points A, B
and C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if

u =
−→
AB = (1, 2, 0) and v =

−→
AC = (0, 1, 2) then the vectors u and

v are parallel to the plane. It follows that the vector u× v is
perpendicular to this plane. Now u× v = (4,−2, 1), and therefore
the displacement vector between any two points of the plane must
be perpendicular to the vector (4,−2, 1). It follows that the
function mapping the point (x , y , z) to the quantity 4x − 2y + z
must be constant throughout the plane. Thus the equation of the
plane takes the form

4x − 2y + z = k ,

for some constant k .



38. Scalar and Vector Products in Three Dimensions (continued)

We can calculate the value of k by substituting for x , y and z the
coordinates of any chosen point of the plane. On taking this
chosen point to be the point A, we find that
k = 4× 3− 2× 4 + 1 = 5. Thus the equation of the plane is the
following:

4x − 2y + z = 5.

(We can check our result by verifying that the coordinates of the
points A, B and C do indeed satisfy this equation.)



38. Scalar and Vector Products in Three Dimensions (continued)

38.4. Scalar Triple Products

Given three vectors u, v and w in three-dimensional space, we can
form the scalar triple product u . (v ×w). This quantity can be
expressed as the determinant of a 3× 3 matrix whose rows contain
the Cartesian components of the vectors u, v and w. Indeed

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1),

and thus

u . (v×w) = u1(v2w3−v3w2)+u2(v3w1−v1w3)+u3(v1w2−v2w1).

The quantity on the right hand side of this equality defines the
determinant of the 3× 3 matrix u1 u2 u3

v1 v2 v3
w1 w2 w3

 .

We have therefore obtained the following result.



38. Scalar and Vector Products in Three Dimensions (continued)

Lemma 38.2

Let u, v and w be vectors in three-dimensional space. Then

u . (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Using basic properties of determinants, or by direct calculation,
one can easily obtain the identities

u . (v ×w) = v . (w × u) = w . (u× v)

= −u . (w × v) = −v . (u×w) = −w . (v × u)



38. Scalar and Vector Products in Three Dimensions (continued)

One can show that the absolute value of the scalar triple product
u . (v ×w) is the volume of the parallelepiped in three-dimensional
space whose vertices are the points whose displacement vectors
from some fixed point O are 0, u, v, w, u + v, u + w, v + w and
u + v + w. (A parallelepiped is a solid like a brick, but whereas the
faces of a brick are rectangles, the faces of the parallelepiped are
parallelograms.)



38. Scalar and Vector Products in Three Dimensions (continued)

Example
We shall find the volume of the parallelepiped in 3-dimensional
space with vertices at (0, 0, 0), (1, 2, 0), (−4, 2,−5), (0, 1, 1),
(−3, 4,−5), (1, 3, 1), (−4, 3,−4) and (−3, 5,−4). The volume of
this parallelepiped is the absolute value of the scalar triple product
u . (v ×w), where

u = (1, 2, 0), v = (−4, 2,−5), w = (0, 1, 1).

Now

u . (v ×w) = (1, 2, 0) . ( (−4, 2,−5)× (0, 1, 1) )

= (1, 2, 0) . (7, 4,−4) = 7 + 2× 4 = 15.

Thus the volume of the paralellepiped is 15 units.
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38.5. The Vector Triple Product Identity

Proposition 38.3

Let u, v and w be vectors in three-dimensional space. Then

u× (v ×w) = (u .w) v − (u . v)w.

Proof
Let q = u× (v ×w), and let u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1,w2,w3), and q = (q1, q2, q3). Then

v ×w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

and hence u× (v ×w) = q = (q1, q2, q3), where



38. Scalar and Vector Products in Three Dimensions (continued)

q1 = u2(v1w2 − v2w1)− u3(v3w1 − v1w3)

= (u2w2 + u3w3)v1 − (u2v2 + u3v3)w1

= (u1w1 + u2w2 + u3w3)v1 − (u1v1 + u2v2 + u3v3)w1

= (u .w)v1 − (u . v)w1

Similarly
q2 = (u .w)v2 − (u . v)w2

and
q3 = (u .w)v3 − (u . v)w3



38. Scalar and Vector Products in Three Dimensions (continued)

(In order to verify the formula for q2 with an minimum of
calculation, take the formulae above involving q1, and cyclicly
permute the subcripts 1, 2 and 3, replacing 1 by 2, 2 by 3, and 3
by 1. A further cyclic permutation of these subscripts yields the
formula for q3.) It follows that

q = (u .w) v − (u . v)w,

as required, since we have shown that the Cartesian components of
the vectors on either side of this identity are equal.



38. Scalar and Vector Products in Three Dimensions (continued)

38.6. Orthonormal Triads of Unit Vectors

Let u and v be unit vectors (i.e., vectors of length one) that are
perpendicular to each other, and let w = u× v. It follows
immediately from Proposition 38.2 that |w| = |u| |v| = 1, and that
this unit vector w is perpendicular to both u and v. Then

u . u = v . v = w .w = 1

and
u . v = v .w = w . u = 0.
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On applying the Vector Triple Product Identity (Proposition 38.3)
we find that

v ×w = v × (u× v) = (v . v)u− (v . u) v = u,

and

w × u = −u×w = −u× (u× v) = −(u . v)u + (u . u) v = v,

Therefore

u×v = −v×u = w, v×w = −w×v = u, w×u = −u×w = v,



38. Scalar and Vector Products in Three Dimensions (continued)

Three unit vectors, such as the vectors u, v and w above, that are
mutually perpendicular, are referred to as an orthonormal triad of
vectors in three-dimensional space. The vectors u, v and w in any
orthonormal triad are linearly independent. It follows directly from
Theorem 36.2 that any vector in three-dimensional space may be
expressed, uniquely, as a linear combination of the form

pu + qv + rw.



38. Scalar and Vector Products in Three Dimensions (continued)

Any Cartesian coordinate system on three-dimensional space
determines an orthonormal triad i, j and k, where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

The scalar and vector products of these vectors satisfy the same
relations as the vectors u, v and w above. A vector represented in
these Cartesian components by an ordered triple (x , y , z) then
satisfies the identity

(x , y , z) = x i + y j + zk.
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