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38. Scalar and Vector Products in Three Dimensions (continued)

38.3. The Vector Product

Definition

Let u and v be vectors in three-dimensional space, with Cartesian
components given by the formulae u = (a1, a2, a3) and
v = (b1, b2, b3). The vector product u× v of the vectors u and v is
the vector defined by the formula

u× v = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Note that u× v = −v × u for all vectors u and v. Also u× u = 0
for all vectors u. It follows easily from the definition of the vector
product that

(su+ tv)×w = su×w + tv×w, u× (sv + tw) = su×v + tu×w

for all vectors u, v and w and real numbers s and t.



38. Scalar and Vector Products in Three Dimensions (continued)

Proposition 38.2

Let u and v be vectors in three-dimensional space R3. Then their
vector product u× v is a vector of length |u| |v| | sin θ|, where θ
denotes the angle between the vectors u and v. Moreover the
vector u× v is perpendicular to the vectors u and v.

Proof
Let u = (a1, a2, a3) and v = (b1, b2, b3), and let l denote the
length |u× v| of the vector u× v. Then
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l2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2
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since

|u|2 = a21+a22+a23, |v|2 = b21+b22+b23, u.v = a1b1+a2b2+a3b3

But u . v = |u| |v| cos θ (Proposition 38.1). Therefore

l2 = |u|2|v|2(1− cos2 θ) = |u|2|v|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus
l = |u| |v| | sin θ|. Also

u .(u×v) = a1(a2b3−a3b2)+a2(a3b1−a1b3)+a3(a1b2−a2b1) = 0

and

v .(u×v) = b1(a2b3−a3b2)+b2(a3b1−a1b3)+b3(a1b2−a2b1) = 0

and therefore the vector u× v is perpendicular to both u and v
(Corollary 38.1), as required.
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Using elementary geometry, and the formula for the length of the
vector product u× v given by Proposition 38.2 it is not difficult to
show that the length of this vector product is equal to the area of
a parallelogram in three-dimensional space whose sides are
represented, in length and direction, by the vectors u and v.

Remark
Let u and v be non-zero vectors that are not colinear (i.e., so that
they do not point in the same direction, or in opposite directions).
The direction of u× v may be determined, using the thumb and
first two fingers of your right hand, as follows. Orient your right
hand such that the thumb points in the direction of the vector u
and the first finger points in the direction of the vector v, and let
your second finger point outwards from the palm of your hand so
that it is perpendicular to both the thumb and the first finger.
Then the second finger points in the direction of the vector
product u× v.
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Indeed it is customary to describe points of three-dimensional
space by Cartesian coordinates (x , y , z) oriented so that if the
positive x-axis and positive y -axis are pointed in the directions of
the thumb and first finger respectively of your right hand, then the
positive z-axis is pointed in the direction of the second finger of
that hand, when the thumb and first two fingers are mutually
perpendicular. For example, if the positive x-axis points towards
the East, and the positive y -axis points towards the North, then
the positive z-axis is chosen so that it points upwards. Moreover if
i = (1, 0, 0) and j = (0, 1, 0) then these vectors i and j are unit
vectors pointed in the direction of the positive x-axis and positive
y -axis respectively, and i× j = k, where k = (0, 0, 1), and the
vector k points in the direction of the positive z-axis. Thus the
‘right-hand’ rule for determining the direction of the vector product
u× v using the fingers of your right hand is valid when u = i and
v = j.
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If the directions of the vectors u and v are allowed to vary
continuously, in such a way that these vectors never point either in
the same direction or in opposite directions, then their vector
product u× v will always be a non-zero vector, whose direction will
vary continuously with the directions of u and v. It follows from
this that if the ‘right-hand rule’ for determining the direction of
u× v applies when u = i and v = j, then it will also apply
whatever the directions of u and v, since, if your right hand is
moved around in such a way that the thumb and first finger never
point in the same direction, and if the second finger is always
perpendicular to the thumb and first finger, then the direction of
the second finger will vary continuously, and will therefore always
point in the direction of the vector product of two vectors pointed
in the direction of the thumb and first finger respectively.
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Example
We shall find the area of the parallelogram OACB in
three-dimensional space, where

O = (0, 0, 0), A = (1, 2, 0),

B = (−4, 2,−5), C = (−3, 4,−5).

Note that
−→
OC =

−→
OA +

−→
OB. Let u =

−→
OA = (1, 2, 0) and

v =
−→
OB = (−4, 2,−5). Then u× v = (−10, 5, 10). Now

(−10, 5, 10) = 5(−2, 1, 2), and |(−2, 1, 2)| =
√

9 = 3. It follows
that

areaOACB = |u× v| = 15.

Note also that the vector (−2, 1, 2) is perpendicular to the
parallelogram OACB.
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