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38. Scalar and Vector Products in Three Dimensions (continued)

38.2. The Scalar Product

Let u and v be vectors in three-dimensional space, represented in
some Cartesian coordinate system by the ordered triples (u1, u2, u3)
and (v1, v2, v3) respectively. The scalar product of the vectors u
and v is defined to be the real number u . v defined by the formula

u . v = u1v1 + u2v2 + u3v3.

In particular,
u . u = u21 + u22 + u23 = |u|2,

for any vector u, where |u| denotes the length of the vector u.



38. Scalar and Vector Products in Three Dimensions (continued)

Note that u . v = v . u for all vectors u and v. Also

(su + tv) .w = su .w + tv .w,

u . (sv + tw) = su . v + tu .w

for all vectors u, v and w and real numbers s and t.



38. Scalar and Vector Products in Three Dimensions (continued)

Proposition 38.1

Let u and v be non-zero vectors in three-dimensional space. Then
their scalar product u . v is given by the formula

u . v = |u| |v| cos θ,

where θ denotes the angle between the vectors u and v.

Proof
Suppose first that the angle θ between the vectors u and v is an
acute angle, so that 0 < θ < 1

2π. Let us consider a triangle ABC ,

where
−→
AB = u and

−→
BC = v, and thus

−→
AC = u + v. Let ADC be

the right-angled triangle constructed as depicted in the figure
below, so that the line AD extends AB and the angle at D is a
right angle.
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Note:

AD = |u|+ |v| cos θ,

CD = |v| sin θ,

|u + v|2 = AC 2 = AD2 + CD2 (Pythagoras).



38. Scalar and Vector Products in Three Dimensions (continued)

Then the lengths of the line segments AB, BC , AC , BD and CD
may be expressed in terms of the lengths |u|, |v| and |u + v| of the
displacement vectors u, v and u + v and the angle θ between the
vectors u and v by means of the following equations:

AB = |u|, BC = |v|, AC = |u + v|,

BD = |v| cos θ and DC = |v| sin θ.

Then
AD = AB + BD = |u|+ |v| cos θ.

The triangle ADC is a right-angled triangle with hypotenuse AC .
It follows from Pythagoras’ Theorem that

|u + v|2 = AC 2 = AD2 + DC 2 = (|u|+ |v| cos θ)2 + |v| sin2 θ

= |u|2 + 2|u| |v| cos θ + |v|2 cos2 θ + |v|2 sin2 θ

= |u|2 + |v|2 + 2|u| |v| cos θ,

because cos2 θ + sin2 θ = 1.



38. Scalar and Vector Products in Three Dimensions (continued)

Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

u + v = (u1 + v1, u2 + v2, u3 + v3),

and therefore

|u + v|2 = (u1 + v1)2 + (u2 + v2)2 + (u3 + v3)2

= u21 + 2u1v1 + v21 + u22 + 2u2v2 + v22 + u23 + 2u3v3 + v23

= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3)

= |u|2 + |v|2 + 2u.v.

On comparing the expressions for |u + v|2 given by the above
equations, we see that u.v = |u| |v| cos θ when 0 < θ < 1

2π.



38. Scalar and Vector Products in Three Dimensions (continued)

The identity u.v = |u| |v| cos θ clearly holds when θ = 0 and
θ = π. Pythagoras’ Theorem ensures that it also holds when the
angle θ is a right angle (so that θ = 1

2π. Suppose that
1
2π < θ < π, so that the angle θ is obtuse. Then the angle
between the vectors u and −v is acute, and is equal to π − θ.
Moreover cos(π − θ) = − cos θ for all angles θ. It follows that

u.v = −u.(−v) = −|u| |v| cos(π − θ) = |u| |v| cos θ

when 1
2π < θ < π. We have therefore verified that the identity

u.v = |u| |v| cos θ holds for all non-zero vectors u and v, as
required.



38. Scalar and Vector Products in Three Dimensions (continued)

Corollary 38.1

Two non-zero vectors u and v in three-dimensional space are
perpendicular if and only if u . v = 0.

Proof
It follows directly from Proposition 38.1 that u . v = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors u and v.
This is the case if and only if the vectors u and v are
perpendicular.



38. Scalar and Vector Products in Three Dimensions (continued)

Example
We can use the scalar product to calculate the angle θ between the
vectors (2, 2, 0) and (0, 3, 3) in three-dimensional space. Let
u = (2, 2, 0) and v = (0, 3, 3). Then |u|2 = 22 + 22 = 8 and
|v|2 = 32 + 32 = 18. It follows that (|u| |v|)2 = 8× 18 = 144, and
thus |u| |v| = 12. Now u . v = 6. It follows that

6 = |u| |v| cos θ = 12 cos θ.

Therefore cos θ = 1
2 , and thus θ = 1

3π.



38. Scalar and Vector Products in Three Dimensions (continued)

Example
We can use the scalar product to find the distance between points
on a sphere. Now the Cartesian coordinates of a point P on the
unit sphere about the origin O in three-dimensional space may be
expressed in terms of angles θ and ϕ as follows:

P = (sin θ cosϕ, sin θ sinϕ, cos θ).

The angle θ is that between the displacement vector
−→
OP and the

vectical vector (0, 0, 1). Thus the angle 1
2π − θ represents the

‘latitude’ of the point P, when we regard the point (0, 0, 1) as the
‘north pole’ of the sphere. The angle ϕ measures the ‘longitude’ of
the point P.
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Now let P1 and P2 be points on the unit sphere, where

P1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1),

P2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2).

We wish to find the angle ψ between the displacement vectors
−→
OP1

and
−→
OP2 of the points P1 and P2 from the origin. Now |

−→
OP1| = 1

and |
−→
OP2| = 1. On applying Proposition 38.1, we see that

cosψ =
−→
OP1 .

−→
OP2

= sin θ1 sin θ2 cosϕ1 cosϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2

+ cos θ1 cos θ2

= sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.



38. Scalar and Vector Products in Three Dimensions (continued)

Example
Let X be a plane in three-dimensional space, and let p be a vector
that is perpendicular to the plane X . Let O be the origin of a
Cartesian coordinate system in three-dimensional space, and let v

and w be the position vectors
−→
OV and

−→
OW of points V and W

respectively lying in the plane X . Then the vector p is

perpendicular to the displacement vector
−→
VW . Now

−→
VW = w − v.

It follows that
(w − v) . p = 0

(see Corollary 38.1), and therefore v.p = w.p. Identifying the
points of the plane X with their position vectors r with respect to
the origin O of the Cartesian coordinate system, we find that It
follows from this that there exists a real number k such that

X = {r ∈ R3 : r . p = k}.



38. Scalar and Vector Products in Three Dimensions (continued)

Let r = (x , y , z) and p = (a, b, c). The point r belongs to the
plane X if and only if r . p = k. It follows that

X = {(x , y , z) ∈ R3 : ax + by + cz = k}.

Suppose that the vector r is the position vector of an arbitrary
point R of three-dimensional space. We wish to determine the
distance from this point to the plane X . Now the line through the
point r parallel to the vector p cuts the plane X in a single point.
Therefore there exists a unique real number t for which
r + tp ∈ X . For this value of t the equation

(r + tp) . p = k

is satisfied. Then
r . p = t|p|2 = k ,

and therefore

t =
1

|p|2
(k − r . p).
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Let w = r + tp, where t has the value determined above that
ensures that w ∈ X . Let v be an arbitrary point that lies on the
plane X . Then the displacement vector v −w from W to V is
perpendicular to the vector p. Now

v − r = tp + (v −w).

It follows, either directly from Pythagoras’ Theorem, or else from
an equivalent calculation using scalar products (using the result of
Corollary 38.1) that

|v − r|2 = t2|p|2 + |v −w|2.

It follows that
|v − r| ≥ t|p|,

and that
|v − r| = t|p| ⇐⇒ v = w.
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Thus the point w is the closest point of the plane X to the
point R with position vector r. It follows that the distance d(r,X )
from the point R to the plane X is the length |w− r| of the vector
w − r. Thus

d(r,X ) = t|p| =
1

|p|
|k − r . p|.

Let r = (x , y , z) and p = (a, b, c). Then

d(r,X ) =
|k − ax − by − cz |√

a2 + b2 + c2
.
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Example
Suppose that we wish to determine the equation of a cone in
three-dimensional space. Let O be the origin of a Cartesian
coordinate system, let V be the apex of the cone, let v be the

position vector of V , so that v =
−→
OV , and let b be a vector

pointed into the axis of the cone. Let θ be a fixed angle between
zero and a right angle. The cone consists of those points R for

which the displacement vector
−→
VR makes an angle θ with the

vector b. It follows from Proposition 38.1 that r is the position
vector of a point lying on the cone if and only if

(r − v) . b = |r − v| |b| cos θ.
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Squaring both sides of this identity, we find that

((r − v) . b)2 = |r − v|2 |b|2 cos2 θ.

Let

r = (x , y , z), v = (vx , vy , vz) and b = (bx , by , bz).

Then the equation of the cone becomes

((x − vx)bx + (y − vy )by + (z − vz)bz)2

= C
(
(x − vx)2 + (y − vy )2 + (z − vz)2

)
,

where C = |b|2 cos2 θ. Note that this constant C must satisfy the
inequalities 0 ≤ C < |b|2.
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