MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 45 (February 17, 2016)

David R. Wilkins

38.2. The Scalar Product

Let **u** and **v** be vectors in three-dimensional space, represented in some Cartesian coordinate system by the ordered triples (u_1, u_2, u_3) and (v_1, v_2, v_3) respectively. The *scalar product* of the vectors **u** and **v** is defined to be the real number **u** . **v** defined by the formula

u . **v** =
$$u_1v_1 + u_2v_2 + u_3v_3$$
.

In particular,

$$\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2 + u_3^2 = |\mathbf{u}|^2,$$

for any vector \mathbf{u} , where $|\mathbf{u}|$ denotes the length of the vector \mathbf{u} .

Note that $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ for all vectors \mathbf{u} and \mathbf{v} . Also

$$(s\mathbf{u} + t\mathbf{v}) \cdot \mathbf{w} = s\mathbf{u} \cdot \mathbf{w} + t\mathbf{v} \cdot \mathbf{w},$$

 $\mathbf{u} \cdot (s\mathbf{v} + t\mathbf{w}) = s\mathbf{u} \cdot \mathbf{v} + t\mathbf{u} \cdot \mathbf{w}$

for all vectors \mathbf{u} , \mathbf{v} and \mathbf{w} and real numbers s and t.

Proposition 38.1

Let **u** and **v** be non-zero vectors in three-dimensional space. Then their scalar product $\mathbf{u} \cdot \mathbf{v}$ is given by the formula

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta,$

where θ denotes the angle between the vectors **u** and **v**.

Proof

Suppose first that the angle θ between the vectors \mathbf{u} and \mathbf{v} is an acute angle, so that $0 < \theta < \frac{1}{2}\pi$. Let us consider a triangle *ABC*, where $\overrightarrow{AB} = \mathbf{u}$ and $\overrightarrow{BC} = \mathbf{v}$, and thus $\overrightarrow{AC} = \mathbf{u} + \mathbf{v}$. Let *ADC* be the right-angled triangle constructed as depicted in the figure below, so that the line *AD* extends *AB* and the angle at *D* is a right angle.

38. Scalar and Vector Products in Three Dimensions (continued)

Note:

$$\begin{array}{rcl} AD &=& |\mathbf{u}| + |\mathbf{v}|\cos\theta,\\ CD &=& |\mathbf{v}|\sin\theta,\\ |\mathbf{u} + \mathbf{v}|^2 &=& AC^2 = AD^2 + CD^2 \quad (\text{Pythagoras}). \end{array}$$

38. Scalar and Vector Products in Three Dimensions (continued)

Then the lengths of the line segments *AB*, *BC*, *AC*, *BD* and *CD* may be expressed in terms of the lengths $|\mathbf{u}|$, $|\mathbf{v}|$ and $|\mathbf{u} + \mathbf{v}|$ of the displacement vectors \mathbf{u} , \mathbf{v} and $\mathbf{u} + \mathbf{v}$ and the angle θ between the vectors \mathbf{u} and \mathbf{v} by means of the following equations:

$$AB = |\mathbf{u}|, \quad BC = |\mathbf{v}|, \quad AC = |\mathbf{u} + \mathbf{v}|,$$
$$BD = |\mathbf{v}| \cos\theta \quad \text{and} \quad DC = |\mathbf{v}| \sin\theta.$$

Then

$$AD = AB + BD = |\mathbf{u}| + |\mathbf{v}| \cos \theta.$$

The triangle *ADC* is a right-angled triangle with hypotenuse *AC*. It follows from Pythagoras' Theorem that

$$\begin{aligned} |\mathbf{u} + \mathbf{v}|^2 &= AC^2 = AD^2 + DC^2 = (|\mathbf{u}| + |\mathbf{v}| \cos \theta)^2 + |\mathbf{v}| \sin^2 \theta \\ &= |\mathbf{u}|^2 + 2|\mathbf{u}| |\mathbf{v}| \cos \theta + |\mathbf{v}|^2 \cos^2 \theta + |\mathbf{v}|^2 \sin^2 \theta \\ &= |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2|\mathbf{u}| |\mathbf{v}| \cos \theta, \end{aligned}$$

because $\cos^2 \theta + \sin^2 \theta = 1$.

Let
$$\mathbf{u} = (u_1, u_2, u_3)$$
 and $\mathbf{v} = (v_1, v_2, v_3)$. Then
 $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3),$

and therefore

$$\begin{aligned} |\mathbf{u} + \mathbf{v}|^2 &= (u_1 + v_1)^2 + (u_2 + v_2)^2 + (u_3 + v_3)^2 \\ &= u_1^2 + 2u_1v_1 + v_1^2 + u_2^2 + 2u_2v_2 + v_2^2 + u_3^2 + 2u_3v_3 + v_3^2 \\ &= |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2(u_1v_1 + u_2v_2 + u_3v_3) \\ &= |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2\mathbf{u}.\mathbf{v}. \end{aligned}$$

On comparing the expressions for $|\mathbf{u} + \mathbf{v}|^2$ given by the above equations, we see that $\mathbf{u}.\mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ when $0 < \theta < \frac{1}{2}\pi$.

The identity $\mathbf{u}.\mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ clearly holds when $\theta = 0$ and $\theta = \pi$. Pythagoras' Theorem ensures that it also holds when the angle θ is a right angle (so that $\theta = \frac{1}{2}\pi$. Suppose that $\frac{1}{2}\pi < \theta < \pi$, so that the angle θ is obtuse. Then the angle between the vectors \mathbf{u} and $-\mathbf{v}$ is acute, and is equal to $\pi - \theta$. Moreover $\cos(\pi - \theta) = -\cos\theta$ for all angles θ . It follows that

$$\mathbf{u}.\mathbf{v} = -\mathbf{u}.(-\mathbf{v}) = -|\mathbf{u}| |\mathbf{v}| \cos(\pi - \theta) = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

when $\frac{1}{2}\pi < \theta < \pi$. We have therefore verified that the identity $\mathbf{u}.\mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ holds for all non-zero vectors \mathbf{u} and \mathbf{v} , as required.

Corollary 38.1

Two non-zero vectors \mathbf{u} and \mathbf{v} in three-dimensional space are perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Proof

It follows directly from Proposition 38.1 that $\mathbf{u} \cdot \mathbf{v} = 0$ if and only if $\cos \theta = 0$, where θ denotes the angle between the vectors \mathbf{u} and \mathbf{v} . This is the case if and only if the vectors \mathbf{u} and \mathbf{v} are perpendicular.

We can use the scalar product to calculate the angle θ between the vectors (2,2,0) and (0,3,3) in three-dimensional space. Let u=(2,2,0) and v=(0,3,3). Then $|\textbf{u}|^2=2^2+2^2=8$ and $|\textbf{v}|^2=3^2+3^2=18.$ It follows that $(|\textbf{u}|\,|\textbf{v}|)^2=8\times18=144,$ and thus $|\textbf{u}|\,|\textbf{v}|=12.$ Now u. v=6. It follows that

$$6 = |\mathbf{u}| |\mathbf{v}| \cos \theta = 12 \cos \theta.$$

Therefore $\cos \theta = \frac{1}{2}$, and thus $\theta = \frac{1}{3}\pi$.

We can use the scalar product to find the distance between points on a sphere. Now the Cartesian coordinates of a point P on the unit sphere about the origin O in three-dimensional space may be expressed in terms of angles θ and φ as follows:

 $P = (\sin\theta\,\cos\varphi,\,\sin\theta\,\sin\varphi,\,\cos\theta).$

The angle θ is that between the displacement vector \overrightarrow{OP} and the vectical vector (0,0,1). Thus the angle $\frac{1}{2}\pi - \theta$ represents the 'latitude' of the point *P*, when we regard the point (0,0,1) as the 'north pole' of the sphere. The angle φ measures the 'longitude' of the point *P*.

Now let P_1 and P_2 be points on the unit sphere, where

$$P_1 = (\sin \theta_1 \cos \varphi_1, \sin \theta_1 \sin \varphi_1, \cos \theta_1),$$

$$P_2 = (\sin \theta_2 \cos \varphi_2, \sin \theta_2 \sin \varphi_2, \cos \theta_2).$$

We wish to find the angle ψ between the displacement vectors $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ of the points P_1 and P_2 from the origin. Now $|\overrightarrow{OP_1}| = 1$ and $|\overrightarrow{OP_2}| = 1$. On applying Proposition 38.1, we see that

$$\cos \psi = \overrightarrow{OP_1} \cdot \overrightarrow{OP_2}$$

- $= \sin \theta_1 \sin \theta_2 \cos \varphi_1 \cos \varphi_2 + \sin \theta_1 \sin \theta_2 \sin \varphi_1 \sin \varphi_2$ $+ \cos \theta_1 \cos \theta_2$
- $= \sin \theta_1 \sin \theta_2 (\cos \varphi_1 \cos \varphi_2 + \sin \varphi_1 \sin \varphi_2) + \cos \theta_1 \cos \theta_2$
- $= \sin \theta_1 \sin \theta_2 \cos(\varphi_1 \varphi_2) + \cos \theta_1 \cos \theta_2.$

Let X be a plane in three-dimensional space, and let \mathbf{p} be a vector that is perpendicular to the plane X. Let O be the origin of a Cartesian coordinate system in three-dimensional space, and let \mathbf{v} and \mathbf{w} be the position vectors \overrightarrow{OV} and \overrightarrow{OW} of points V and W respectively lying in the plane X. Then the vector \mathbf{p} is perpendicular to the displacement vector \overrightarrow{VW} . Now $\overrightarrow{VW} = \mathbf{w} - \mathbf{v}$. It follows that

 $(\mathbf{w} - \mathbf{v})$. $\mathbf{p} = 0$

(see Corollary 38.1), and therefore $\mathbf{v}.\mathbf{p} = \mathbf{w}.\mathbf{p}$. Identifying the points of the plane X with their position vectors \mathbf{r} with respect to the origin O of the Cartesian coordinate system, we find that It follows from this that there exists a real number k such that

$$X = \{\mathbf{r} \in \mathbb{R}^3 : \mathbf{r} \cdot \mathbf{p} = k\}.$$

38. Scalar and Vector Products in Three Dimensions (continued)

Let $\mathbf{r} = (x, y, z)$ and $\mathbf{p} = (a, b, c)$. The point \mathbf{r} belongs to the plane X if and only if $\mathbf{r} \cdot \mathbf{p} = k$. It follows that

$$X = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = k\}.$$

Suppose that the vector \mathbf{r} is the position vector of an arbitrary point R of three-dimensional space. We wish to determine the distance from this point to the plane X. Now the line through the point \mathbf{r} parallel to the vector \mathbf{p} cuts the plane X in a single point. Therefore there exists a unique real number t for which $\mathbf{r} + t\mathbf{p} \in X$. For this value of t the equation

$$(\mathbf{r} + t\mathbf{p}) \cdot \mathbf{p} = k$$

is satisfied. Then

$$\mathbf{r} \cdot \mathbf{p} = t |\mathbf{p}|^2 = k,$$

and therefore

$$t=\frac{1}{|\mathbf{p}|^2}(k-\mathbf{r}\cdot\mathbf{p}).$$

Let $\mathbf{w} = \mathbf{r} + t\mathbf{p}$, where *t* has the value determined above that ensures that $\mathbf{w} \in X$. Let \mathbf{v} be an arbitrary point that lies on the plane *X*. Then the displacement vector $\mathbf{v} - \mathbf{w}$ from *W* to *V* is perpendicular to the vector \mathbf{p} . Now

$$\mathbf{v} - \mathbf{r} = t\mathbf{p} + (\mathbf{v} - \mathbf{w}).$$

It follows, either directly from Pythagoras' Theorem, or else from an equivalent calculation using scalar products (using the result of Corollary 38.1) that

$$|\mathbf{v} - \mathbf{r}|^2 = t^2 |\mathbf{p}|^2 + |\mathbf{v} - \mathbf{w}|^2.$$

It follows that

$$|\mathbf{v} - \mathbf{r}| \ge t |\mathbf{p}|,$$

and that

$$|\mathbf{v} - \mathbf{r}| = t |\mathbf{p}| \iff \mathbf{v} = \mathbf{w}.$$

Thus the point **w** is the closest point of the plane X to the point R with position vector **r**. It follows that the distance $d(\mathbf{r}, X)$ from the point R to the plane X is the length $|\mathbf{w} - \mathbf{r}|$ of the vector $\mathbf{w} - \mathbf{r}$. Thus

$$d(\mathbf{r}, X) = t|\mathbf{p}| = \frac{1}{|\mathbf{p}|}|k - \mathbf{r} \cdot \mathbf{p}|.$$

Let $\mathbf{r} = (x, y, z)$ and p = (a, b, c). Then

$$d(\mathbf{r}, X) = \frac{|k - ax - by - cz|}{\sqrt{a^2 + b^2 + c^2}}.$$

Suppose that we wish to determine the equation of a cone in three-dimensional space. Let O be the origin of a Cartesian coordinate system, let V be the apex of the cone, let \mathbf{v} be the position vector of V, so that $\mathbf{v} = \overrightarrow{OV}$, and let \mathbf{b} be a vector pointed into the axis of the cone. Let θ be a fixed angle between zero and a right angle. The cone consists of those points R for which the displacement vector \overrightarrow{VR} makes an angle θ with the vector \mathbf{b} . It follows from Proposition 38.1 that \mathbf{r} is the position vector of a point lying on the cone if and only if

$$(\mathbf{r} - \mathbf{v}) \cdot \mathbf{b} = |\mathbf{r} - \mathbf{v}| |\mathbf{b}| \cos \theta.$$

Squaring both sides of this identity, we find that

$$((\mathbf{r} - \mathbf{v}) \cdot \mathbf{b})^2 = |\mathbf{r} - \mathbf{v}|^2 |\mathbf{b}|^2 \cos^2 \theta.$$

Let

$$\mathbf{r} = (x, y, z), \quad \mathbf{v} = (v_x, v_y, v_z) \quad \text{and} \quad \mathbf{b} = (b_x, b_y, b_z).$$

Then the equation of the cone becomes

$$\begin{array}{l} ((x-v_x)b_x+(y-v_y)b_y+(z-v_z)b_z)^2 \\ = C\left((x-v_x)^2+(y-v_y)^2+(z-v_z)^2\right), \end{array}$$

where $C = |\mathbf{b}|^2 \cos^2 \theta$. Note that this constant *C* must satisfy the inequalities $0 \le C < |\mathbf{b}|^2$.